The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory ...The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury.展开更多
Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LM...Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.展开更多
Incremental Nonlinear Dynamic Inversion(INDI)is a control approach that has gained popularity in flight control over the past decade.Besides the INDI law,several common additional components complement an INDI-based c...Incremental Nonlinear Dynamic Inversion(INDI)is a control approach that has gained popularity in flight control over the past decade.Besides the INDI law,several common additional components complement an INDI-based controller.This paper,the second part of a two-part series of surveys on INDI,aims to summarize the modern trends in INDI and its related components.Besides a comprehensive components specification,it addresses their most common challenges,compares different variants,and discusses proposed advances.Further important aspects of INDI are gain design,stability,and robustness.This paper also provides an overview of research conducted concerning these aspects.This paper is written in a tutorial style to familiarize researchers with the essential specifics and pitfalls of INDI and its components.At the same time,it can also serve as a reference for readers already familiar with INDI.展开更多
Alcohol use disorder(AUD)is a medical condition that impairs a person's ability to stop or manage their drinking in the face of negative social,occupational,or health consequences.AUD is defined by the National In...Alcohol use disorder(AUD)is a medical condition that impairs a person's ability to stop or manage their drinking in the face of negative social,occupational,or health consequences.AUD is defined by the National Institute on Alcohol Abuse and Alcoholism as a"severe problem".The central nervous system is the primary target of alcohol's adverse effects.It is crucial to identify various neurological disorders associated with AUD,including alcohol withdrawal syndrome,Wernicke-Korsakoff syndrome,Marchiafava-Bignami disease,dementia,and neuropathy.To gain a better understanding of the neurological environment of alcoholism and to shed light on the role of various neurotransmitters in the phenomenon of alcoholism.A comprehensive search of online databases,including PubMed,EMBASE,Web of Science,and Google Scholar,was conducted to identify relevant articles.Several neurotransmitters(dopamine,gammaaminobutyric acid,serotonin,and glutamate)have been linked to alcoholism due to a brain imbalance.Alcoholism appears to be a complex genetic disorder,with variations in many genes influencing risk.Some of these genes have been identified,including two alcohol metabolism genes,alcohol dehydrogenase 1B gene and aldehyde dehydrogenase 2 gene,which have the most potent known effects on the risk of alcoholism.Neuronal degeneration and demyelination in people with AUD may be caused by neuronal damage,nutrient deficiencies,and blood brain barrier dysfunction;however,the underlying mechanism is unknown.This review will provide a detailed overview of the neurobiology of alcohol addiction,followed by recent studies published in the genetics of alcohol addiction,molecular mechanism and detailed information on the various acute and chronic neurological manifestations of alcoholism for the Future research.展开更多
针对散煤输送过程中煤料均存在湿润的问题,为研究不同含水率下湿煤料对螺旋输送机磨损的影响,以不同含水率湿煤颗粒为研究对象,通过仿真和试验研究了不同含水率下设备的磨损,采用Hertz-Mindlin with JKR模型分析颗粒表面张力和黏性,并...针对散煤输送过程中煤料均存在湿润的问题,为研究不同含水率下湿煤料对螺旋输送机磨损的影响,以不同含水率湿煤颗粒为研究对象,通过仿真和试验研究了不同含水率下设备的磨损,采用Hertz-Mindlin with JKR模型分析颗粒表面张力和黏性,并通过试验机对不同含水率下湿煤料对设备磨损进行试验验证。结果表明:设备磨损量均随着含水率的增大先增加后减小,仿真实验中当JKR为40时磨损量最大;试验机测试中煤料含水率为10%时磨损量最大,含水率为20%时磨损量最小。展开更多
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
基金supported by the Deutsche Forschungsgemeinschaft(DFG),TRR274(Project ID 408885537,Sy Nergy,EXC 2145/ID 390857198,to FMB)。
文摘The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury.
基金National Natural Science Foundation of China,No.42161006Yunnan Fundamental Research Projects No.202201AT070094,No.202301BF070001-004+1 种基金Special Project for High-level Talents of Yunnan Province for Young Top Talents,No.C6213001159European Research Council(ERC)Starting-Grant STORIES,No.101040939。
文摘Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.
文摘Incremental Nonlinear Dynamic Inversion(INDI)is a control approach that has gained popularity in flight control over the past decade.Besides the INDI law,several common additional components complement an INDI-based controller.This paper,the second part of a two-part series of surveys on INDI,aims to summarize the modern trends in INDI and its related components.Besides a comprehensive components specification,it addresses their most common challenges,compares different variants,and discusses proposed advances.Further important aspects of INDI are gain design,stability,and robustness.This paper also provides an overview of research conducted concerning these aspects.This paper is written in a tutorial style to familiarize researchers with the essential specifics and pitfalls of INDI and its components.At the same time,it can also serve as a reference for readers already familiar with INDI.
文摘Alcohol use disorder(AUD)is a medical condition that impairs a person's ability to stop or manage their drinking in the face of negative social,occupational,or health consequences.AUD is defined by the National Institute on Alcohol Abuse and Alcoholism as a"severe problem".The central nervous system is the primary target of alcohol's adverse effects.It is crucial to identify various neurological disorders associated with AUD,including alcohol withdrawal syndrome,Wernicke-Korsakoff syndrome,Marchiafava-Bignami disease,dementia,and neuropathy.To gain a better understanding of the neurological environment of alcoholism and to shed light on the role of various neurotransmitters in the phenomenon of alcoholism.A comprehensive search of online databases,including PubMed,EMBASE,Web of Science,and Google Scholar,was conducted to identify relevant articles.Several neurotransmitters(dopamine,gammaaminobutyric acid,serotonin,and glutamate)have been linked to alcoholism due to a brain imbalance.Alcoholism appears to be a complex genetic disorder,with variations in many genes influencing risk.Some of these genes have been identified,including two alcohol metabolism genes,alcohol dehydrogenase 1B gene and aldehyde dehydrogenase 2 gene,which have the most potent known effects on the risk of alcoholism.Neuronal degeneration and demyelination in people with AUD may be caused by neuronal damage,nutrient deficiencies,and blood brain barrier dysfunction;however,the underlying mechanism is unknown.This review will provide a detailed overview of the neurobiology of alcohol addiction,followed by recent studies published in the genetics of alcohol addiction,molecular mechanism and detailed information on the various acute and chronic neurological manifestations of alcoholism for the Future research.
文摘针对散煤输送过程中煤料均存在湿润的问题,为研究不同含水率下湿煤料对螺旋输送机磨损的影响,以不同含水率湿煤颗粒为研究对象,通过仿真和试验研究了不同含水率下设备的磨损,采用Hertz-Mindlin with JKR模型分析颗粒表面张力和黏性,并通过试验机对不同含水率下湿煤料对设备磨损进行试验验证。结果表明:设备磨损量均随着含水率的增大先增加后减小,仿真实验中当JKR为40时磨损量最大;试验机测试中煤料含水率为10%时磨损量最大,含水率为20%时磨损量最小。
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.