Spout-fluid beds are unique systems that require thorough study prior to their industrial application.In this study,the hydrodynamics of spout-fluid beds were investigated using 3D computational fluid dy-namics couple...Spout-fluid beds are unique systems that require thorough study prior to their industrial application.In this study,the hydrodynamics of spout-fluid beds were investigated using 3D computational fluid dy-namics coupled with discrete element method(CFD-DEM).Three flow regimes,including jet-in-fluidized bed,spouting-with-aeration,and intermediate/spout-fluidization were studied,and the particle mixing was quantified in these regimes using the Lacey mixing index.The results showed that both axial and lateral mixing rates are better in jet-in-fluidized bed and the spouting-with-aeration flow regimes,with the axial mixing being superior to the lateral in all flow regimes.Examining the diffusivity coefficient revealed that mixing in the jet-in-fluidized bed flow regime is better due to the formation and eruption of bubbles in the annulus.Additionally,the granular temperature was analyzed in all flow regimes,and higher particle velocity fluctuations were observed in the spouting-with-aeration and the jet-in-fluidized bed flow regimes due to the higher spout gas velocity and formation of bubbles in the annulus.This study provides valuable insights into the hydrodynamics of spout-fluid beds in different flow regimes,which can aid in the design and optimization of spout-fluid bed reactors for various industrial applications.展开更多
Multi-scale analysis and non-linear analysis were combined to investigate the hydrodynamics of fluidized beds with and without horizontal tubes. Pressure fluctuations were measured and analyzed employing discrete wave...Multi-scale analysis and non-linear analysis were combined to investigate the hydrodynamics of fluidized beds with and without horizontal tubes. Pressure fluctuations were measured and analyzed employing discrete wavelet analysis, recurrence plot analysis, and recurrence quantification analysis. A systematic procedure was followed to determine wavelet parameters. At low gas velocities, the energy of macro-structures reduces with the addition of the first tube and then increases with the addition of a second tube. However, there is no notable difference at high gas velocities. Determinism is high for the bed without tubes, which can be attributed to the periodic behavior of bubbles. Determinism decreases with the addition of tubes because the breakage of bubbles results in less periodic behavior. The three methods of analysis used in this study captured the effects of immersed tubes on the hydrodynamics of fluidized beds. Recurrence quantitative analysis was found to be a powerful and easy-to-use method that can capture the nonlinear characteristics of fluidized beds much more quickly than conventional methods of nonlinear analysis. This method can thus be effectively used for the online monitoring of hydrodynamic changes in fluidized beds.展开更多
The dynamic features of an agglomerate bubbling fluidization of nanoparticles were investigated through the analysis of pressure fluctuations. Experiments were carried out in a lab-scale fluidized bed at ambient condi...The dynamic features of an agglomerate bubbling fluidization of nanoparticles were investigated through the analysis of pressure fluctuations. Experiments were carried out in a lab-scale fluidized bed at ambient conditions using 10-15 nm silica nanoparticles without any surface modification. Pressure fluctuation signals were processed in both frequency and time-frequency domains to characterize the behavior of various scales of phenomena (i.e.. macro-, meso-, and micro-structures) during fluidization. Due to the aggregation of nanoparticles, three separate broad peaks were observed in the frequency spectra of the pressure signals measured in the bubbling fluidized bed of nanoparticles. A non-intrusive method based on the decoupling of pressure fluctuations recorded simultaneously in the plenum and in the bed was used to determine the approximate size of the bubbles in the bed.展开更多
The influence of temperature on fluidization was investigated by a statistical chaotic attractor comparison test known as S-statistic, After calibration of the variables used in this method, the S-test was applied to ...The influence of temperature on fluidization was investigated by a statistical chaotic attractor comparison test known as S-statistic, After calibration of the variables used in this method, the S-test was applied to the radioactive particle tracking (RPT) data obtained from a lab-scale fluidized bed. Experiments were performed with sand as fluidized particles and in temperatures from ambient up to 600 ℃ with superficial gas velocities of 0.29, 0.38 and 0.52 m/s. Considering the behavior of bubbles and comparing with frequency domain analysis, it was concluded that S-statistic is a reliable method for characterization of fluidization process behavior at different temperatures.展开更多
The flow of pharmaceutical pellets in a Wiirster fluid bed (WFB) was characterized by a frequency domain analysis of pressure fluctuations. Pellets with a diameter of 0.780 mm and density of 1.225 kg/m^3 were used in ...The flow of pharmaceutical pellets in a Wiirster fluid bed (WFB) was characterized by a frequency domain analysis of pressure fluctuations. Pellets with a diameter of 0.780 mm and density of 1.225 kg/m^3 were used in the experiments. Different flow structures were identified in the bed, including bulk movement of pellets in the annulus (f<5Hz), bulk movement of pellets inside the draft tube and bulk horizontal movement of pellets through the entrainment zone (5 </<15 Hz), and clustering (15<f< 145 Hz). The minimum spouting velocity was also measured experimentally. Effects of bed height, distanee of the entrainment zone, and distributor hole pitch on minimum spouting velocity were investigated. It was Found that the minimum spouting velocity increased with increasing bed height and distance of the entrainment zone while it decreased w ith in creasing distributor hole pitch. A correlation was developed for estimating the minimum spouting velocity in WFBs containing pharmaceutical pellets. The correlation fit the experimental data satisfactorily. Studying the WFB hydrodynamics and determining the minimum spouting velocity provides information that can be used to properly design, operate, and scale up such systems.展开更多
The hydrodynamics of a gas-liquid-solid fluidized bed was investigated by applying the S statistics method to pressure fluctuations measured under various operating conditions in a laboratory-scale bed. S statistics t...The hydrodynamics of a gas-liquid-solid fluidized bed was investigated by applying the S statistics method to pressure fluctuations measured under various operating conditions in a laboratory-scale bed. S statistics tests reveal the existence of three transition velocities, especially at low gas velocities. Four distinct fluidization regimes, namely, the compacted bed, agitated bed and coalesced and discrete bubble regimes were detected. A comparison of reconstructed attractors of pressure fluctuations measured at different axial positions along the riser and with various solid loadings showed significant differences in the signals compared before fluidization, especially at minimum liquid agitation velocity. Close to the minimum liquid fluidization velocity and high liquid velocities, the variation in particle size has an insignificant effect on the bed hydrodynamics. Therefore, S statistics is a reliable method to demar- cate different fluidization regimes and to characterize the influence of various operating conditions on the hydrodynamics of gas-liquid-solid fluidized beds. The method is applicable in large-scale industrial installations to detect dynamic changes within a bed, such as regime transitions or agglomeration.展开更多
文摘Spout-fluid beds are unique systems that require thorough study prior to their industrial application.In this study,the hydrodynamics of spout-fluid beds were investigated using 3D computational fluid dy-namics coupled with discrete element method(CFD-DEM).Three flow regimes,including jet-in-fluidized bed,spouting-with-aeration,and intermediate/spout-fluidization were studied,and the particle mixing was quantified in these regimes using the Lacey mixing index.The results showed that both axial and lateral mixing rates are better in jet-in-fluidized bed and the spouting-with-aeration flow regimes,with the axial mixing being superior to the lateral in all flow regimes.Examining the diffusivity coefficient revealed that mixing in the jet-in-fluidized bed flow regime is better due to the formation and eruption of bubbles in the annulus.Additionally,the granular temperature was analyzed in all flow regimes,and higher particle velocity fluctuations were observed in the spouting-with-aeration and the jet-in-fluidized bed flow regimes due to the higher spout gas velocity and formation of bubbles in the annulus.This study provides valuable insights into the hydrodynamics of spout-fluid beds in different flow regimes,which can aid in the design and optimization of spout-fluid bed reactors for various industrial applications.
基金supported by the Iranian National Science Foundation(Grant No.93/36348)
文摘Multi-scale analysis and non-linear analysis were combined to investigate the hydrodynamics of fluidized beds with and without horizontal tubes. Pressure fluctuations were measured and analyzed employing discrete wavelet analysis, recurrence plot analysis, and recurrence quantification analysis. A systematic procedure was followed to determine wavelet parameters. At low gas velocities, the energy of macro-structures reduces with the addition of the first tube and then increases with the addition of a second tube. However, there is no notable difference at high gas velocities. Determinism is high for the bed without tubes, which can be attributed to the periodic behavior of bubbles. Determinism decreases with the addition of tubes because the breakage of bubbles results in less periodic behavior. The three methods of analysis used in this study captured the effects of immersed tubes on the hydrodynamics of fluidized beds. Recurrence quantitative analysis was found to be a powerful and easy-to-use method that can capture the nonlinear characteristics of fluidized beds much more quickly than conventional methods of nonlinear analysis. This method can thus be effectively used for the online monitoring of hydrodynamic changes in fluidized beds.
文摘The dynamic features of an agglomerate bubbling fluidization of nanoparticles were investigated through the analysis of pressure fluctuations. Experiments were carried out in a lab-scale fluidized bed at ambient conditions using 10-15 nm silica nanoparticles without any surface modification. Pressure fluctuation signals were processed in both frequency and time-frequency domains to characterize the behavior of various scales of phenomena (i.e.. macro-, meso-, and micro-structures) during fluidization. Due to the aggregation of nanoparticles, three separate broad peaks were observed in the frequency spectra of the pressure signals measured in the bubbling fluidized bed of nanoparticles. A non-intrusive method based on the decoupling of pressure fluctuations recorded simultaneously in the plenum and in the bed was used to determine the approximate size of the bubbles in the bed.
基金supported by Iranian National Science Foundation(Grant No.91001766)
文摘The influence of temperature on fluidization was investigated by a statistical chaotic attractor comparison test known as S-statistic, After calibration of the variables used in this method, the S-test was applied to the radioactive particle tracking (RPT) data obtained from a lab-scale fluidized bed. Experiments were performed with sand as fluidized particles and in temperatures from ambient up to 600 ℃ with superficial gas velocities of 0.29, 0.38 and 0.52 m/s. Considering the behavior of bubbles and comparing with frequency domain analysis, it was concluded that S-statistic is a reliable method for characterization of fluidization process behavior at different temperatures.
文摘The flow of pharmaceutical pellets in a Wiirster fluid bed (WFB) was characterized by a frequency domain analysis of pressure fluctuations. Pellets with a diameter of 0.780 mm and density of 1.225 kg/m^3 were used in the experiments. Different flow structures were identified in the bed, including bulk movement of pellets in the annulus (f<5Hz), bulk movement of pellets inside the draft tube and bulk horizontal movement of pellets through the entrainment zone (5 </<15 Hz), and clustering (15<f< 145 Hz). The minimum spouting velocity was also measured experimentally. Effects of bed height, distanee of the entrainment zone, and distributor hole pitch on minimum spouting velocity were investigated. It was Found that the minimum spouting velocity increased with increasing bed height and distance of the entrainment zone while it decreased w ith in creasing distributor hole pitch. A correlation was developed for estimating the minimum spouting velocity in WFBs containing pharmaceutical pellets. The correlation fit the experimental data satisfactorily. Studying the WFB hydrodynamics and determining the minimum spouting velocity provides information that can be used to properly design, operate, and scale up such systems.
文摘The hydrodynamics of a gas-liquid-solid fluidized bed was investigated by applying the S statistics method to pressure fluctuations measured under various operating conditions in a laboratory-scale bed. S statistics tests reveal the existence of three transition velocities, especially at low gas velocities. Four distinct fluidization regimes, namely, the compacted bed, agitated bed and coalesced and discrete bubble regimes were detected. A comparison of reconstructed attractors of pressure fluctuations measured at different axial positions along the riser and with various solid loadings showed significant differences in the signals compared before fluidization, especially at minimum liquid agitation velocity. Close to the minimum liquid fluidization velocity and high liquid velocities, the variation in particle size has an insignificant effect on the bed hydrodynamics. Therefore, S statistics is a reliable method to demar- cate different fluidization regimes and to characterize the influence of various operating conditions on the hydrodynamics of gas-liquid-solid fluidized beds. The method is applicable in large-scale industrial installations to detect dynamic changes within a bed, such as regime transitions or agglomeration.