Homojunction engineering is a promising modification strategy to improve charge carrier separation and photocatalytic performance of carbon nitrides.Leveraging intrinsic heptazine/triazine phase and face-to-face conta...Homojunction engineering is a promising modification strategy to improve charge carrier separation and photocatalytic performance of carbon nitrides.Leveraging intrinsic heptazine/triazine phase and face-to-face contact,crystalline C_(3)N_(5)(CC3N5)was combined with protonated g-C_(3)N_(4)(pgCN)through electrostatic self-assembly to achieve robust 2D/2D homojunction interfaces.The highest photocatalytic performance was obtained through crystallinity and homojunction engineering,by controlling the pgCN:CC3N5 ratio.The 25:100 pgCN:CC3N5 homo-junction(25CgCN)had the highest hydrogen production(1409.51 μmol h^(-1))and apparent quantum efficiency(25.04%,420 nm),8-fold and 180-fold higher than CC3N5 and pgCN,respectively.This photocatalytic homojunction improves benzaldehyde and hydrogen production activity,retaining 89%performance after 3 cycles(12 h)on a 3D-printed substrate.Electron paramagnetic resonance demonstrated higher·OH,·O_(2) and hole production of irradiated 25CgCN,attributed to crystallinity and homojunction interaction.Thus,electrostatic self-assembly to couple CC3N5 and pgCN in a 2D/2D homojunction interface ameliorates the performance of multifunctional solar-driven applications.展开更多
Professor Kazunari Domen at the Shinshu University and the University of Tokyo has pioneered materials and techniques for solar-driven water splitting using photocatalysts,a promising technology for contributing to th...Professor Kazunari Domen at the Shinshu University and the University of Tokyo has pioneered materials and techniques for solar-driven water splitting using photocatalysts,a promising technology for contributing to the construction of a sustainable and carbon-neutral society.In this paper,we summarize his groundbreaking contributions to photocatalytic water splitting and,more broadly,photocatalytic research.We highlight various novel functional photocatalytic materials,including oxides,(oxy)nitrides,and oxysulfides,along with innovative techniques such as cocatalyst engineering and Z-scheme system construction developed by the Domen Group.His team has also pioneered readily accessible and cost-effective photo(electro)chemical device fabrication methods,such as the particle-transfer method and thin-film-transfer method.Furthermore,their research has made significant contributions to understanding the(photo)catalytic mechanisms using advanced characterization techniques.Together with his research team,Professor Domen has set many milestones in the field of photocatalytic overall water splitting,notably demonstrating the first scalable and stable 100 m^(2)solar H_(2)production system using only water and sunlight.His work has revealed the potential for practical solar H2 production from water and sunlight,and highlighted the application of fundamental principles,combined with chemical and materials science tools,to design effective photocatalytic systems.Through this review,we focus on his research and the foundational design principles that can inspire the development of efficient photocatalytic systems for water splitting and solar fuel production.By building on his contributions,we anticipate a significant impact on addressing major global energy challenges.展开更多
Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of...Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of catalytical materials.In 2019,we discussed the development trend of this field,and wrote a roadmap on this topic in Chinese Chemical Letters(30(2019)2065-2088).Nowadays,we discuss it again from a new viewpoint along this road.In this paper,several subtopics are discussed,e.g.,photocatalysis based on titanium dioxide,violet phosphorus,graphitic carbon and covalent organic frameworks,electrocatalysts based on carbon,metal-and covalent-organic framework.Finally,we hope that this roadmap can enrich the development of two-dimensional materials in environmental catalysis with novel understanding,and give useful inspiration to explore new catalysts for practical applications.展开更多
CONSPECTUS:Imitating the natural carbon cycle,the utilization of the carbon-based greenhouse gases(i.e.,carbon dioxide(CO_(2))and methane(CH_(4)))from the atmosphere as the carbon feedstocks for valuable fuel and chem...CONSPECTUS:Imitating the natural carbon cycle,the utilization of the carbon-based greenhouse gases(i.e.,carbon dioxide(CO_(2))and methane(CH_(4)))from the atmosphere as the carbon feedstocks for valuable fuel and chemical production represents a prospective strategy for achieving the sustainable development of human society.In light of this,photocatalytic CO_(2)/CH_(4)conversions,which can directly harvest solar energy for the production of valuable fuels and chemicals,show gigantic potential for closing the loop of the artificial carbon cycle.In the past several decades,immense progress has been made in this field,showing its practical feasibility.However,the photocatalytic conversion efficiency and selectivity of such reactions remain discouraging.Considering that the photocatalytic reaction is intimately related to the surface catalytic reaction on the active sites of the photocatalysts,the active site design has been proven to be effective for optimizing photocatalytic performance,yet the lack of effective techniques for the identification of the active sites,which is normally at the molecular level,greatly limits its potential in photocatalysis.Fortunately,with the rapid expansion in the field of materials science,a large number of advanced characterization techniques have been developed,equipping the materials scientist and chemist with powerful tools for unveiling the mask of the active sites on the photocatalysts.Concomitantly,the active site design for the photocatalysts has undergone a revival.Today,the identification and design of active sites have emerged as hot topics in catalysis and are expected to push forward development in the field of the artificial carbon cycle.展开更多
The photocatalytic reduction of CO2 to energy-rich hydrocarbon fuels is a promising and sustainable method of addressing global warming and the imminent energy crisis concomitantly. However, a vast majority of the exi...The photocatalytic reduction of CO2 to energy-rich hydrocarbon fuels is a promising and sustainable method of addressing global warming and the imminent energy crisis concomitantly. However, a vast majority of the existing photocatalysts are only capable of harnessing ultraviolet (UV) or/and visible light (Vis), whereas the near-infrared (NIR) region still remains unexplored. In this study, carbon quantum dots (CQDs)-decorated ultrathin BizWO6 nanosheets (UBW) were demonstrated to be an efficient photocatalyst for CO2 photoreduction over the Vis-NIR broad spectrum. It is noteworthy that the synthesis procedure of the CQDs/UBW hybrid nanocomposites was highly facile, involving a one-pot hexadecyltrimethylammonium bromide (CTAB)-assisted hydrothermal process. Under visible light irradiation, the optimized 1CQDsAJBW (1 wt.% CQD content) exhibited a remarkable 9.5-fold and 3.1-fold enhancement of CH4 production over pristine Bi2WO6 nanoplatelets (PBW) and bare UBW, respectively. More importantly, the photocatalytic responsiveness of CQDs/UBW was successfully extended to the NIR region, which was achieved without involving any rare earth or noble metals. The realization of NIR-driven CO2 reduction could be attributed to the synergistic effects of (i) the ultrathin nanostructures and highly exposed {001} active facets of UBW, (ii) the excellent spectral coupling of UBW and CQDs, where UBW could be excited by the up-converted photoluminescence of CQDs, and (iii) the electron-withdrawing nature of the CQDs to trap the photogenerated electrons and retard the recombination of charge carriers.展开更多
In this work, we demonstrated the successful construction of metal-free zero- dimensional/two-dimensional carbon nanodot (CND)-hybridized protonatedg=C3N4 (pCN) (CND/pCN) heterojunction photocatalysts b; means o...In this work, we demonstrated the successful construction of metal-free zero- dimensional/two-dimensional carbon nanodot (CND)-hybridized protonatedg=C3N4 (pCN) (CND/pCN) heterojunction photocatalysts b; means of electrostatic attraction. We experimentally found that CNDs with an average diameter of 4.4 nm were uniformly distributed on the surface of pCN using electron microscopy analysis. The CND/pCN-3 sample with a CND content of 3 wt.% showed thehighest catalytic activity in the CO2 photoreduction process under visible and simulated solar light. This process results in the evolution of CH4 and CO. Thetotal amounts of CH4 and CO generated by the CND/pCN-3 photocatalyst after 10 h of visible-light activity were found to be 29.23 and 58.82 molgcatalyst-1, respectively. These values were 3.6 and 2.28 times higher, respectively, than thearn*ounts generated when using pCN alone. The corresponding apparent quantum efficiency (AQE) was calculated to be 0.076%. Furthermore, the CND/pCN-3 sample demonstrated high stability and durability after four consecutive photoreaction cycles, with no significant decrease in the catalytic activity.展开更多
Since the first discovery of solar-driven water splitting catalyzed by TiO_(2) semiconductors,extensive research works have been devoted over the decades.Currently,the design of a photocatalyst with dual redox potenti...Since the first discovery of solar-driven water splitting catalyzed by TiO_(2) semiconductors,extensive research works have been devoted over the decades.Currently,the design of a photocatalyst with dual redox potential is of prominent interest to fully utilize both photogenerated electrons and holes in the redox reactions.Among all,the coproduction of H_(2) and O_(2) from water using metal-free carbon nitride(g-C_(3)N_(4))has been viewed as a rising star in this field.However,the hole-mediated oxidation reaction is commonly recognized as the rate-determining step,which drastically leads to poor overall water splitting efficiency.On top of that,rapid recombination and undesirable back reaction appeared as one of the challenging parts in overall water splitting.In this review,the up-to-date advances in modified g-C_(3)N_(4)-based photocatalysts toward efficient overall water splitting are summarized,which are mainly classified into structural and defect engineering,single-atom catalysis,cocatalyst loading,and heterojunction construction.This review also addresses the underlying idea and concept to tackle the aforementioned problem with the use of emerging modification strategies,hence serving as the guiding star for future research.Despite the outstanding breakthrough thus far,critical recommendations related to g-C_(3)N_(4) photocatalytic systems are prospected to pave the way toward the implementation in the practical energy production process.展开更多
基金the financial support provided by the Ministry of Higher Education(MOHE)Malaysia under the Fundamental Research Grant Scheme(FRGS)(Ref no:FRGS/1/2020/TK0/XMU/02/1)The authors would like to thank the Ministry of Science,Technology and Innovation(MOSTI)Malaysia under the Strategic Research Fund(SRF-APP NanoMalaysia BICEP Project 4,S.22015)+5 种基金The authors gratefully acknowledge Agilent Technologies Malaysia Sdn.Bhd.for their contribution through chromatography.This research was supported by the National Natural Science Foundation of China(Ref no:22202168)Guangdong Basic and Applied Basic Research Foundation(Ref no:2021A1515111019)We would also like to acknowledge the financial support from the State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University(Ref.no:2023X11)The authors are thankful to the Embassy of the People's Republic of China in Malaysia for the financial support(Grant no:EENG/0045)This work was also funded by Xiamen University Malaysia Investigatorship Grant(Grant no:IENG/0038)Xiamen University Malaysia Research Fund(ICOE/0001 and XMUMRF/2021-C8/IENG/0041).
文摘Homojunction engineering is a promising modification strategy to improve charge carrier separation and photocatalytic performance of carbon nitrides.Leveraging intrinsic heptazine/triazine phase and face-to-face contact,crystalline C_(3)N_(5)(CC3N5)was combined with protonated g-C_(3)N_(4)(pgCN)through electrostatic self-assembly to achieve robust 2D/2D homojunction interfaces.The highest photocatalytic performance was obtained through crystallinity and homojunction engineering,by controlling the pgCN:CC3N5 ratio.The 25:100 pgCN:CC3N5 homo-junction(25CgCN)had the highest hydrogen production(1409.51 μmol h^(-1))and apparent quantum efficiency(25.04%,420 nm),8-fold and 180-fold higher than CC3N5 and pgCN,respectively.This photocatalytic homojunction improves benzaldehyde and hydrogen production activity,retaining 89%performance after 3 cycles(12 h)on a 3D-printed substrate.Electron paramagnetic resonance demonstrated higher·OH,·O_(2) and hole production of irradiated 25CgCN,attributed to crystallinity and homojunction interaction.Thus,electrostatic self-assembly to couple CC3N5 and pgCN in a 2D/2D homojunction interface ameliorates the performance of multifunctional solar-driven applications.
基金supported by the Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization(NEDO),the JST Fusion Oriented Research for disruptive Science and Technology Program(JPMJFR213D)JSPS KAKENHI(JP24K17774)Domen for his guidance during their PhD studies at the University of Tokyo,as well as for his ongoing support,encouragement,and mentorship.
文摘Professor Kazunari Domen at the Shinshu University and the University of Tokyo has pioneered materials and techniques for solar-driven water splitting using photocatalysts,a promising technology for contributing to the construction of a sustainable and carbon-neutral society.In this paper,we summarize his groundbreaking contributions to photocatalytic water splitting and,more broadly,photocatalytic research.We highlight various novel functional photocatalytic materials,including oxides,(oxy)nitrides,and oxysulfides,along with innovative techniques such as cocatalyst engineering and Z-scheme system construction developed by the Domen Group.His team has also pioneered readily accessible and cost-effective photo(electro)chemical device fabrication methods,such as the particle-transfer method and thin-film-transfer method.Furthermore,their research has made significant contributions to understanding the(photo)catalytic mechanisms using advanced characterization techniques.Together with his research team,Professor Domen has set many milestones in the field of photocatalytic overall water splitting,notably demonstrating the first scalable and stable 100 m^(2)solar H_(2)production system using only water and sunlight.His work has revealed the potential for practical solar H2 production from water and sunlight,and highlighted the application of fundamental principles,combined with chemical and materials science tools,to design effective photocatalytic systems.Through this review,we focus on his research and the foundational design principles that can inspire the development of efficient photocatalytic systems for water splitting and solar fuel production.By building on his contributions,we anticipate a significant impact on addressing major global energy challenges.
基金supported by the National Natural Science Foundation of China(Nos.52272290,21972030,52073119,and 52373210)the Natural Science Foundation of Jilin Province(No.20230101029JC)+1 种基金the Fundamental Research Program of Shanxi Province(No.202303021212159)the Monash University Malaysia–ASEAN grant(No.ASE-000010)。
文摘Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of catalytical materials.In 2019,we discussed the development trend of this field,and wrote a roadmap on this topic in Chinese Chemical Letters(30(2019)2065-2088).Nowadays,we discuss it again from a new viewpoint along this road.In this paper,several subtopics are discussed,e.g.,photocatalysis based on titanium dioxide,violet phosphorus,graphitic carbon and covalent organic frameworks,electrocatalysts based on carbon,metal-and covalent-organic framework.Finally,we hope that this roadmap can enrich the development of two-dimensional materials in environmental catalysis with novel understanding,and give useful inspiration to explore new catalysts for practical applications.
基金This work was financially supported in part by the National Key R&D Program of China(no.2020YFA0406103)the National Natural Science Foundation of China(nos.21725102,91961106,and 22075267)+1 种基金the China Postdoctoral Science Foundation(nos.2019M652190 and 2020T130627)the DNL Cooperation Fund,CAS(no.DNL201922).
文摘CONSPECTUS:Imitating the natural carbon cycle,the utilization of the carbon-based greenhouse gases(i.e.,carbon dioxide(CO_(2))and methane(CH_(4)))from the atmosphere as the carbon feedstocks for valuable fuel and chemical production represents a prospective strategy for achieving the sustainable development of human society.In light of this,photocatalytic CO_(2)/CH_(4)conversions,which can directly harvest solar energy for the production of valuable fuels and chemicals,show gigantic potential for closing the loop of the artificial carbon cycle.In the past several decades,immense progress has been made in this field,showing its practical feasibility.However,the photocatalytic conversion efficiency and selectivity of such reactions remain discouraging.Considering that the photocatalytic reaction is intimately related to the surface catalytic reaction on the active sites of the photocatalysts,the active site design has been proven to be effective for optimizing photocatalytic performance,yet the lack of effective techniques for the identification of the active sites,which is normally at the molecular level,greatly limits its potential in photocatalysis.Fortunately,with the rapid expansion in the field of materials science,a large number of advanced characterization techniques have been developed,equipping the materials scientist and chemist with powerful tools for unveiling the mask of the active sites on the photocatalysts.Concomitantly,the active site design for the photocatalysts has undergone a revival.Today,the identification and design of active sites have emerged as hot topics in catalysis and are expected to push forward development in the field of the artificial carbon cycle.
文摘The photocatalytic reduction of CO2 to energy-rich hydrocarbon fuels is a promising and sustainable method of addressing global warming and the imminent energy crisis concomitantly. However, a vast majority of the existing photocatalysts are only capable of harnessing ultraviolet (UV) or/and visible light (Vis), whereas the near-infrared (NIR) region still remains unexplored. In this study, carbon quantum dots (CQDs)-decorated ultrathin BizWO6 nanosheets (UBW) were demonstrated to be an efficient photocatalyst for CO2 photoreduction over the Vis-NIR broad spectrum. It is noteworthy that the synthesis procedure of the CQDs/UBW hybrid nanocomposites was highly facile, involving a one-pot hexadecyltrimethylammonium bromide (CTAB)-assisted hydrothermal process. Under visible light irradiation, the optimized 1CQDsAJBW (1 wt.% CQD content) exhibited a remarkable 9.5-fold and 3.1-fold enhancement of CH4 production over pristine Bi2WO6 nanoplatelets (PBW) and bare UBW, respectively. More importantly, the photocatalytic responsiveness of CQDs/UBW was successfully extended to the NIR region, which was achieved without involving any rare earth or noble metals. The realization of NIR-driven CO2 reduction could be attributed to the synergistic effects of (i) the ultrathin nanostructures and highly exposed {001} active facets of UBW, (ii) the excellent spectral coupling of UBW and CQDs, where UBW could be excited by the up-converted photoluminescence of CQDs, and (iii) the electron-withdrawing nature of the CQDs to trap the photogenerated electrons and retard the recombination of charge carriers.
文摘In this work, we demonstrated the successful construction of metal-free zero- dimensional/two-dimensional carbon nanodot (CND)-hybridized protonatedg=C3N4 (pCN) (CND/pCN) heterojunction photocatalysts b; means of electrostatic attraction. We experimentally found that CNDs with an average diameter of 4.4 nm were uniformly distributed on the surface of pCN using electron microscopy analysis. The CND/pCN-3 sample with a CND content of 3 wt.% showed thehighest catalytic activity in the CO2 photoreduction process under visible and simulated solar light. This process results in the evolution of CH4 and CO. Thetotal amounts of CH4 and CO generated by the CND/pCN-3 photocatalyst after 10 h of visible-light activity were found to be 29.23 and 58.82 molgcatalyst-1, respectively. These values were 3.6 and 2.28 times higher, respectively, than thearn*ounts generated when using pCN alone. The corresponding apparent quantum efficiency (AQE) was calculated to be 0.076%. Furthermore, the CND/pCN-3 sample demonstrated high stability and durability after four consecutive photoreaction cycles, with no significant decrease in the catalytic activity.
基金The authors would like to acknowledge the financial support provided by the Ministry of Higher Education(MOHE)Malaysia under the Fundamental Research Grant Scheme(FRGS)(Ref no:FRGS/1/2020/TK0/XMU/02/1)The authors would also like to thank the Ministry of Science,Technology and Innovation(MOSTI)Malaysia under the Strategic Research Fund(SRF)(S.22015)+4 种基金The authors would also like to acknowledge the financial support provided by the National Natural Science Foundation of China(Ref no:22202168)Guangdong Basic and Applied Basic Research Foundation(Ref no:2021A1515111019)Xiamen University Malaysia Investigatorship Grant(Grant no:IENG/0038)Xiamen University Malaysia Research Fund(ICOE/0001,XMUMRF/2021-C8/IENG/0041,and XMUMRF/2019-C3/IENG/0013)Hengyuan International Sdn.Bhd.(Grant no:EENG/0003).
文摘Since the first discovery of solar-driven water splitting catalyzed by TiO_(2) semiconductors,extensive research works have been devoted over the decades.Currently,the design of a photocatalyst with dual redox potential is of prominent interest to fully utilize both photogenerated electrons and holes in the redox reactions.Among all,the coproduction of H_(2) and O_(2) from water using metal-free carbon nitride(g-C_(3)N_(4))has been viewed as a rising star in this field.However,the hole-mediated oxidation reaction is commonly recognized as the rate-determining step,which drastically leads to poor overall water splitting efficiency.On top of that,rapid recombination and undesirable back reaction appeared as one of the challenging parts in overall water splitting.In this review,the up-to-date advances in modified g-C_(3)N_(4)-based photocatalysts toward efficient overall water splitting are summarized,which are mainly classified into structural and defect engineering,single-atom catalysis,cocatalyst loading,and heterojunction construction.This review also addresses the underlying idea and concept to tackle the aforementioned problem with the use of emerging modification strategies,hence serving as the guiding star for future research.Despite the outstanding breakthrough thus far,critical recommendations related to g-C_(3)N_(4) photocatalytic systems are prospected to pave the way toward the implementation in the practical energy production process.