BACKGROUND The Warburg effect is common in cancers.Lactate and its receptor GPR81 play an important role in cancer progression.It is widely accepted that membrane receptor nuclear translocation plays some novel role i...BACKGROUND The Warburg effect is common in cancers.Lactate and its receptor GPR81 play an important role in cancer progression.It is widely accepted that membrane receptor nuclear translocation plays some novel role in cancer pathology.The mechanism by which the lactate/GPR81 axis regulates cancer malignancy remains unclear.AIM To elucidate the mechanism of GPR81 nuclear transportation promoted by exogenous lactate.METHODS Lung cancer cells were stimulated with exogenous lactate and GPR81 levels were measured by immunofluoresence and western blot analysis in membrane,cytoplasmic,and nuclear fractions.Lung cancer cells were transduced with a mutant GPR81 nuclear localization signal(NLS)construct,wild type GPR81 or empty vector and used to examine how GPR81 nuclear transportation affects lung cancer cells malignancy in vitro and in vivo.Immunoprecipitation Proteomics analysis and Chromatin immunoprecipitation(ChIP)sequencing were used to determine GPR81 interacting proteins and genes.RESULTS In response to hypoxia/Lactate stimulation,GPR81 translocates and accumulates in the nucleus of lung cancer cells.Functionally,GPR81 nuclear translocation promotes cancer cell proliferation and motility.Depletion of the GPR81 NLS depletes GPR81 nuclear levels and decreases cancer cell growth and invasion in vitro,as well as cancer cell malignancy in vivo.Proteomics analysis revealed a set of proteins including SFPQ,that interact with GPR81 in the cancer cell nucleus.Notably,the interaction of GPR81 with SFPQ promotes cancer cell growth and motility.ChIP sequencing analysis discovered that there is a set of genes targeted by GPR81.CONCLUSION The interaction of GPR81 with SFPQ promotes cancer cell malignancy.GPR81 nuclear translocation is critical in conferring cancer progression and may be a potential therapeutic target for limiting cancer progression.展开更多
The inexhaustible heat deposit in great depths (5-10 km) is a scientific fact. Such deposit occurs around the globe. Thereby, everybody is enabled to generate autonomously clean and renewable energy, ample electrici...The inexhaustible heat deposit in great depths (5-10 km) is a scientific fact. Such deposit occurs around the globe. Thereby, everybody is enabled to generate autonomously clean and renewable energy, ample electricity and heat. The economical exploration and exploitation of this superdeep geothermal heat deposit requires a novel drilling technique, because the currently only deep drilling method (Rotary) is limited to about 5 km, due to the rising costs, depending exponentially on depth. Electro-pulse-boring (EPB) is a valuable option to Rotary drilling. EPB, originally investigated in Russia, is ready to be developed for industrialization. The feasibility of EPB is proven by many boreholes drilled up to 200 m in granite (crystalline). Estimates show outstanding low costs for drilling by EPB: 100 E/m for a borehole with a large diameter (φ) such as 20 (50 cm), independent on depth and applicable likewise for sediments and crystalline rocks, such as granite. The current rate of penetration (ROP) of 3 m per hour is planned to be augmented up to 35 m per hour, and again, irrespective whether in sedimentary or crystalline formations. Consequently, a 10 km deep borehole with φ 50 cm will ultimately be drilled within 12 days. EPB will create new markets, such as: (i) EPB shallow drilling for geotechnics, energy piles, measures in order to mitigate natural hazards, etc., (ii) EPB deep drilling (3-5 km) for hydro-geothermics, exploration campaigns etc. and (iii) EPB super-deep drilling (5-10 km) for petro-geothermies, enabling the economic generation of electricity. The autonomous and unlimited supply with cost efficient electricity, besides ample heat, ensures reliably clean and renew- able energy, thus, high supply security. Such development will provide a substantial relief to cope with the global challenge to limit the climate change below 2 ℃. The diminution of fossil fuels, due to the energy transition in order to mitigate the climate change, implies likewise the decrease of air pollution.展开更多
Numerical modelling of geological processes, such as mantle convection, flow in porous media, and geothermal heat transfer, has become quite common with the increase in computing and the availability of usable softwar...Numerical modelling of geological processes, such as mantle convection, flow in porous media, and geothermal heat transfer, has become quite common with the increase in computing and the availability of usable software. Today modelling these dynamical processes entails the solving of the governing equations involving the mass, momentum, energy and chemical transport. These equations represent partial differential equations and must be solved on powerful enough computers because they require sufficient spatial and temporal resolution to be useful. We describe here the salient and outstanding features of the SEPRAN software package, developed in the Netherlands, as a case study for a robust and user-friendly soft- ware, which the geological community can utilize in handling many thermal-mechanical-chemical problems found in geology, which will include geothermal situations, where many types of partial differential equations must be solved at the same time with thermodynamical input parameters.展开更多
Breakthroughs in the generation of programmable sequence-specific nucleases (SSNs), such as zinc finger nucleases (ZFNs),TAL effector nucleases (TALENs) and the RNA-directed nuclease CRISPR-associated protein 9 (Cas9)...Breakthroughs in the generation of programmable sequence-specific nucleases (SSNs), such as zinc finger nucleases (ZFNs),TAL effector nucleases (TALENs) and the RNA-directed nuclease CRISPR-associated protein 9 (Cas9), have greatly increased the ease of plant genome engineering (Voytas, 2013; Malzahn et al.,2017). Programmable SSNs introduce a DNA double-strand break展开更多
The distribution and amount of ground ice on Mars is an important issue to be addressed for the future exploration of the planet.The occurrence of interstitial ice in Martian frozen ground is indicated by landforms,su...The distribution and amount of ground ice on Mars is an important issue to be addressed for the future exploration of the planet.The occurrence of interstitial ice in Martian frozen ground is indicated by landforms,such as fluidized ejecta craters,softened terrain,and fretted channels.How-ever,experimental data on the rheology of ice-rock mixture under Martian physical conditions are sparse,and the amount of ground ice that is required to produce the viscous deformation observed in Martian ice-related landforms is still unknown.In our study,we put forward a three-dimensional non-Newtonian viscous finite element model to investigate the behavior of ice-rock mixtures numeri-cally.The randomly distributed tetrahedral elements are generated in regular domain to represent the natural distribution of ice-rock materials.Numerical simulation results show that when the volume of rock is less than 40%,the rheology of the mixture is dominated by ice,and there is occurrence of a brittle-ductile transition when ice fraction reaches a certain value.Our preliminary results contribute to the knowledge of the determination of the rheology and ice content in Martian ice-rock mixture.The presented model can also be utilized to evaluate the amount of ground ice on Mars.展开更多
Dehydration of the subducting slab favors the melting of the surrounding mantle. Water content and melt evolution atop a spontaneously retreating subducting slab are reported in a three- dimensional (3-D) model. We ...Dehydration of the subducting slab favors the melting of the surrounding mantle. Water content and melt evolution atop a spontaneously retreating subducting slab are reported in a three- dimensional (3-D) model. We find that fluids, including water and melts in the rocks, vary substantially along the trench, which cannot be found in two-dimensional (2-D) models. Their maxima along the subducting slab are mainly located at about 50 to 70 and 120 to 140 kin. Volumetric melt production rate changes spatially and episodically atop the slab, which may reflect the intensity and variations of volcanoes.展开更多
Asthenosphere is a venerable concept based on geological intuition of Reginald Daly nearly 100 years ago. There have been various explanations for the existence of the asthenosphere. The concept of a plume-fed astheno...Asthenosphere is a venerable concept based on geological intuition of Reginald Daly nearly 100 years ago. There have been various explanations for the existence of the asthenosphere. The concept of a plume-fed asthenosphere has been around for a few years due to the ideas put forth by Yamamoto et al.. Using a two-dimensional Cartesian code based on finite-volume method, we have investigated the influences of lower-mantle physical properties on the formation of a low-viscosity zone in the oceanic upper mantle in regions close to a large mantle upwelUng. The rheological law is Newtonian and depends on both temperature and depth. An extended-Boussinesq model is assumed for the energetics and the olivine to spinel, the spinel to perovskite and perovskite to post-perovskite (ppv) phase transitions are considered. We have compared the differences in the behavior of hot upweilings passing through the transition zone in the mid-mantle for a variety of models, starting with constant physical properties in the lower-mantle and culminating with complex models which have the post-perovskite phase transition and depth-dependent coefficient of thermal expansion and thermal conductivity. We found that the formation of the asthenosphere in the upper mantle in the vicinity of large upwellings is facilitated in models where both depth-dependent thermal expansivity and conductivity are included. Models with constant thermal expansivity and thermal conductivity do not produce a hot low-viscosity zone, resembling the asthenosphere. We have also studied the influences of a cylindrical model and found similar results as the Cartesian model with the important difference that upper-mantle temperatures were much cooler than the Cartesian model by about 600 to 700 K. Our findings argue for the potentially important role played by lower-mantle material properties on the development of a plume-fed asthenosphere in the oceanic upper mantle.展开更多
Tibetan area is the most active continental collision zone on earth. Several major earthquakes occurred around the boundaries of Tibetan plateau and caused massive damages and casualties. The dynamics of this area is ...Tibetan area is the most active continental collision zone on earth. Several major earthquakes occurred around the boundaries of Tibetan plateau and caused massive damages and casualties. The dynamics of this area is not well understood due to the complex structure of Tibet and its surrounding area. In this study, a 3D global flow simulation with only viscous rheology is applied to studying the stress distribution in this area, and the interaction between Tibet and its surrounding areas is investigated. Finally, the possibility of combining regional modeling with global models is also discussed.展开更多
A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at lar...A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at large temporal-spatial scale(LTSTMR), the ratio of observed current sheets thickness to electron characteristic length, electron Larmor radius for low-β and electron inertial length for high-β, is on the order of 10^(10)–10^(11); the ratio of observed evolution time to electron gyroperiod is on the order of 10~7–10~9).The original combined acceleration model is known to be one of greatest importance in the interaction of magnetic islands; it assumes that the continuous kinetic-dynamic temporal-spatial scale evolution occurs as two separate independent processes.In this paper, we reconsider the combined acceleration mechanism by introducing a kinetic-dynamic-hydro full-coupled model instead of the original micro-kinetic or macro-dynamic model.We investigate different acceleration mechanisms in the vicinity of neutral points in magnetic islands evolution, from the stage of shrink and breakup into smaller islands(kinetic scale), to the stage of coalescence and growth into larger islands(dynamic scale), to the stages of constant and quasi-constant(contracting-expanding) islands(hydro scale).As a result, we give for the first time the acceleration efficiencies of different types of acceleration mechanisms in magnetic islands' interactions in solar atmosphere LTSTMR activities(pico-, 10^(–2)–10~5 m; nano-, 10~5–10~6 m; micro-, 10~6–10~7 m; macro-, 10~7–10~8 m; large-,10~8–10~9 m).展开更多
Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surf...Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 μs) macro-normal stress (18-300 MPa) and slip rate (0.25-7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.展开更多
Metal–organic frameworks (MOFs) as photocatalysts and photocatalyst supports combine several advantages of homogeneous and heterogeneous catalyses, including stability, post-reaction separation, catalyst reusability,...Metal–organic frameworks (MOFs) as photocatalysts and photocatalyst supports combine several advantages of homogeneous and heterogeneous catalyses, including stability, post-reaction separation, catalyst reusability,and tunability, and they have been intensively studied for photocatalytic applications. There are several reviews that focus mainly or even entirely on experimental work. The present review is intended to complement those reviews by focusing on computational work that can provide a further understanding of the photocatalytic properties of MOF photocatalysts. We first present a summary of computational methods, including density functional theory, combined quantum mechanical and molecular mechanical methods, and force fields for MOFs. Then, computational investigations on MOF-based photocatalysis are briefly discussed. The discussions focus on the electronic structure, photoexcitation, charge mobility, and photoredox catalysis of MOFs, especially the widely studied Ui O-66-based MOFs.展开更多
Small-scale heterogeneity in the deep mantle is concentrated in the upper-mantle transition zone (TZ), in the depth range 410-660 km and also at the bottom 250 km D" region. This encourages a more detailed investig...Small-scale heterogeneity in the deep mantle is concentrated in the upper-mantle transition zone (TZ), in the depth range 410-660 km and also at the bottom 250 km D" region. This encourages a more detailed investigation of the potential for seismic reflectivity imaging by modelling heterogeneous structures in mantle convection models including phase transitions of the TZ and D" regions. We applied finite elements with variable spacing near the boundary layers in 2-D cylindrical geometry that allow for sufficient spatial resolution. We investigated several models including an extended Boussinesq (EBA) model, focused on the D" region, and a compressible (ALA) model for the TZ region. The results for the D" region show typical lens-shaped structures of post-perovskite (PPV) embedded in the perovskite (PV) background mantle, where the thickness of the lenses, at 200-400 km, strongly depends on the Clapeyron slope of the PV-PPV transition. A second phase transition (double crossing) occurs in case the core temperature is higher than the intercept temperature Ti. Our phase-dependent rheology results in contrasting effective viscosity between PV and PPV. Our model results reveal a distinctly clear mechanical weakening of the PPV lenses with about an order of magnitude lower viscosity. The shear wave-speed distributions computed from our convection results are strongly correlated with the heterogeneous distribution of the mineral phase. Gradients in the seismic wave-speed that are the target of seismological reflectivity imaging are clearly revealed. The wave-speed results show a clear resolution of the top and bottom interfaces of the PPV lenses. Our ALA model for the TZ is based on a thermodynamical model for the magnesium end- member of an olivine-pyroxene mantle. The model predicts a much more complex distribution of mineral phases, compared to our D" results, in agreement with the greater number of mineral phases involved in the olivine-pyroxene phase diagram for the P, T conditions of the transition zone. Near cold downwelling flows representing subducting lithospheric slabs, where the local geotherm can differ by up to 1 000 K from the horizontal average, and small-scale lateral variations in the mineral phases can occur.展开更多
Our planet, Earth, contains an enormous amount of heat just right under our feet. Harnessing this heat from 2 to 5 krn below is one of the great challenges of the 21st century, because this can solve many of the curre...Our planet, Earth, contains an enormous amount of heat just right under our feet. Harnessing this heat from 2 to 5 krn below is one of the great challenges of the 21st century, because this can solve many of the currently urgent problems in mega-cities, such as inexpensive domestic heating and airconditioning, electric power consumption and the cure of ram- pant air pollution. Around 40 TW heat are released at a steady rate by the Earth partly due to natural radioactive decay and partly due to the action inside the core. We would like to stress here that the depth of the isotherm of 200℃ (minimum tem- perature for efficient generation of electricity) varies around the globe. In general, this depth would be less than 10 km deep. Therefore these heat sources would provide ubiquitous ample, clean and sustainable electricity. In addition to this sustainable resource the potential of geothermal energy use is much greater, because it allows effective heat mining of the Earth. Geothermal energy is most commonly exploited in volcanic areas where magma is close to the surface and brings up the heat from deeper down. The largest geothermal power plant of this style is the Geysers in California, which with 1 GW power production rivals nuclear power plants.展开更多
Pedigree information is of fundamental importance in breeding programs and related genetics efforts.However,many individuals have unknown pedigrees.While methods to identify and confirm direct parent–offspring relati...Pedigree information is of fundamental importance in breeding programs and related genetics efforts.However,many individuals have unknown pedigrees.While methods to identify and confirm direct parent–offspring relationships are routine,those for other types of close relationships have yet to be effectively and widely implemented with plants,due to complications such as asexual propagation and extensive inbreeding.The objective of this study was to develop and demonstrate methods that support complex pedigree reconstruction via the total length of identical by state haplotypes(referred to in this study as“summed potential lengths of shared haplotypes”,SPLoSH).A custom Python script,HapShared,was developed to generate SPLoSH data in apple and sweet cherry.HapShared was used to establish empirical distributions of SPLoSH data for known relationships in these crops.These distributions were then used to estimate previously unknown relationships.Case studies in each crop demonstrated various pedigree reconstruction scenarios using SPLoSH data.For cherry,a full-sib relationship was deduced for‘Emperor Francis,and‘Schmidt’,a half-sib relationship for‘Van’and‘Windsor’,and the paternal grandparents of‘Stella’were confirmed.For apple,29 cultivars were found to share an unknown parent,the pedigree of the unknown parent of‘Cox’s Pomona’was reconstructed,and‘Fameuse’was deduced to be a likely grandparent of‘McIntosh’.Key genetic resources that enabled this empirical study were large genome-wide SNP array datasets,integrated genetic maps,and previously identified pedigree relationships.Crops with similar resources are also expected to benefit from using HapShared for empowering pedigree reconstruction.展开更多
Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach...Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.展开更多
Atmospheric oxidation processes are of central importance in atmospheric climate models.It is often considered that volatile organic molecules are mainly removed by hydroxyl radical;however,the kinetics of some reacti...Atmospheric oxidation processes are of central importance in atmospheric climate models.It is often considered that volatile organic molecules are mainly removed by hydroxyl radical;however,the kinetics of some reactions of hydroxyl radical with volatile organic molecules are slow.Here we report rate constants for rapid reactions of formyl fluoride with Criegee intermediates.These rate constants are calculated by dual-level multistructural canonical variational transition state theory with small-curvature tunneling(DL-MS-CVT/SCT).The treatment contains beyond-CCSD(T)electronic structure calculations for transition state theory,and it employs validated density functional input for multistructural canonical variational transition state theory with small-curvature tunneling and for variable-reaction-coordinate variational transition state theory.We find that the M11-L density functional has higher accuracy than CCSD(T)/CBS for the HC(O)F+CH2OO and HC(O)F+anti-CH_(3)CHOO reactions.We find significant negative temperature dependence in the ratios of the rate constants for HC(O)F+CH2OO/anti-CH_(3)CHOO to the rate constant for HC(O)F+OH.We also find that different Criegee intermediates have different rate-determining-steps in their reactions with formyl fluoride,and we find that the dominant gas-phase removal mechanism for HC(O)F in the atmosphere is the reaction with CH2OO and/or anti-CH_(3)CHOO Criegee intermediates.展开更多
In order to predict tsunami hazards through numerical simulation,by using the focal mechanisms as well as fault parameters of Japan's 2011 Tohoku Earthquake provided by National Geological Survey(referred to as US...In order to predict tsunami hazards through numerical simulation,by using the focal mechanisms as well as fault parameters of Japan's 2011 Tohoku Earthquake provided by National Geological Survey(referred to as USGS),we proposed a numerical model to simulate the Honshu,Japan tsunami.Numerical computing is conducted to investigate the security along the coast.We also analyzed the simulation results and distribution of tsunami disaster,trying to achieve a more reasonable tsunami warning program.Our numerical model is composed of simulation of surface deformation after the earthquake and the tsunami propagation process which is based on two dimensional shallow water equations.The simulation results show the characteristics of the tsunami propagation,and arrival times on recorder points are consistent with tsunami observation.This model can be applied to evaluate the security of the coastal area and obtain more accurate tsunami warning.展开更多
文摘BACKGROUND The Warburg effect is common in cancers.Lactate and its receptor GPR81 play an important role in cancer progression.It is widely accepted that membrane receptor nuclear translocation plays some novel role in cancer pathology.The mechanism by which the lactate/GPR81 axis regulates cancer malignancy remains unclear.AIM To elucidate the mechanism of GPR81 nuclear transportation promoted by exogenous lactate.METHODS Lung cancer cells were stimulated with exogenous lactate and GPR81 levels were measured by immunofluoresence and western blot analysis in membrane,cytoplasmic,and nuclear fractions.Lung cancer cells were transduced with a mutant GPR81 nuclear localization signal(NLS)construct,wild type GPR81 or empty vector and used to examine how GPR81 nuclear transportation affects lung cancer cells malignancy in vitro and in vivo.Immunoprecipitation Proteomics analysis and Chromatin immunoprecipitation(ChIP)sequencing were used to determine GPR81 interacting proteins and genes.RESULTS In response to hypoxia/Lactate stimulation,GPR81 translocates and accumulates in the nucleus of lung cancer cells.Functionally,GPR81 nuclear translocation promotes cancer cell proliferation and motility.Depletion of the GPR81 NLS depletes GPR81 nuclear levels and decreases cancer cell growth and invasion in vitro,as well as cancer cell malignancy in vivo.Proteomics analysis revealed a set of proteins including SFPQ,that interact with GPR81 in the cancer cell nucleus.Notably,the interaction of GPR81 with SFPQ promotes cancer cell growth and motility.ChIP sequencing analysis discovered that there is a set of genes targeted by GPR81.CONCLUSION The interaction of GPR81 with SFPQ promotes cancer cell malignancy.GPR81 nuclear translocation is critical in conferring cancer progression and may be a potential therapeutic target for limiting cancer progression.
文摘The inexhaustible heat deposit in great depths (5-10 km) is a scientific fact. Such deposit occurs around the globe. Thereby, everybody is enabled to generate autonomously clean and renewable energy, ample electricity and heat. The economical exploration and exploitation of this superdeep geothermal heat deposit requires a novel drilling technique, because the currently only deep drilling method (Rotary) is limited to about 5 km, due to the rising costs, depending exponentially on depth. Electro-pulse-boring (EPB) is a valuable option to Rotary drilling. EPB, originally investigated in Russia, is ready to be developed for industrialization. The feasibility of EPB is proven by many boreholes drilled up to 200 m in granite (crystalline). Estimates show outstanding low costs for drilling by EPB: 100 E/m for a borehole with a large diameter (φ) such as 20 (50 cm), independent on depth and applicable likewise for sediments and crystalline rocks, such as granite. The current rate of penetration (ROP) of 3 m per hour is planned to be augmented up to 35 m per hour, and again, irrespective whether in sedimentary or crystalline formations. Consequently, a 10 km deep borehole with φ 50 cm will ultimately be drilled within 12 days. EPB will create new markets, such as: (i) EPB shallow drilling for geotechnics, energy piles, measures in order to mitigate natural hazards, etc., (ii) EPB deep drilling (3-5 km) for hydro-geothermics, exploration campaigns etc. and (iii) EPB super-deep drilling (5-10 km) for petro-geothermies, enabling the economic generation of electricity. The autonomous and unlimited supply with cost efficient electricity, besides ample heat, ensures reliably clean and renew- able energy, thus, high supply security. Such development will provide a substantial relief to cope with the global challenge to limit the climate change below 2 ℃. The diminution of fossil fuels, due to the energy transition in order to mitigate the climate change, implies likewise the decrease of air pollution.
基金CMG and Geochemistry programs of the National Science foundationThe Netherlands Research Center for Integrated Solid Earth Science (ISES) project ME-2.7
文摘Numerical modelling of geological processes, such as mantle convection, flow in porous media, and geothermal heat transfer, has become quite common with the increase in computing and the availability of usable software. Today modelling these dynamical processes entails the solving of the governing equations involving the mass, momentum, energy and chemical transport. These equations represent partial differential equations and must be solved on powerful enough computers because they require sufficient spatial and temporal resolution to be useful. We describe here the salient and outstanding features of the SEPRAN software package, developed in the Netherlands, as a case study for a robust and user-friendly soft- ware, which the geological community can utilize in handling many thermal-mechanical-chemical problems found in geology, which will include geothermal situations, where many types of partial differential equations must be solved at the same time with thermodynamical input parameters.
基金supported by a Collaborative Funding Grant from North Carolina Biotechnology Center and Syngenta Biotechnology (2016-CFG-8003)startup funds provided by East Carolina University and University of Maryland to Y.Q.a grant from the National Science Foundation (IOS-1339209)
文摘Breakthroughs in the generation of programmable sequence-specific nucleases (SSNs), such as zinc finger nucleases (ZFNs),TAL effector nucleases (TALENs) and the RNA-directed nuclease CRISPR-associated protein 9 (Cas9), have greatly increased the ease of plant genome engineering (Voytas, 2013; Malzahn et al.,2017). Programmable SSNs introduce a DNA double-strand break
基金supported by the National Basic Research Pro-gram of China (No. 2008CB425701)the National Natural Science Foundation of China (No. 40774049)+2 种基金the National Science and Technology Project (No. SinoProbe-07)Institute of Earthquake Science,China Earthquake Administration,and Senior Visiting Professorship of Chinese Academy of SciencesCMG Program of the U.S. National Science Foundation
文摘The distribution and amount of ground ice on Mars is an important issue to be addressed for the future exploration of the planet.The occurrence of interstitial ice in Martian frozen ground is indicated by landforms,such as fluidized ejecta craters,softened terrain,and fretted channels.How-ever,experimental data on the rheology of ice-rock mixture under Martian physical conditions are sparse,and the amount of ground ice that is required to produce the viscous deformation observed in Martian ice-related landforms is still unknown.In our study,we put forward a three-dimensional non-Newtonian viscous finite element model to investigate the behavior of ice-rock mixtures numeri-cally.The randomly distributed tetrahedral elements are generated in regular domain to represent the natural distribution of ice-rock materials.Numerical simulation results show that when the volume of rock is less than 40%,the rheology of the mixture is dominated by ice,and there is occurrence of a brittle-ductile transition when ice fraction reaches a certain value.Our preliminary results contribute to the knowledge of the determination of the rheology and ice content in Martian ice-rock mixture.The presented model can also be utilized to evaluate the amount of ground ice on Mars.
基金supported by the SNF (Nos. 200021-116381/1,200020-126832/1)
文摘Dehydration of the subducting slab favors the melting of the surrounding mantle. Water content and melt evolution atop a spontaneously retreating subducting slab are reported in a three- dimensional (3-D) model. We find that fluids, including water and melts in the rocks, vary substantially along the trench, which cannot be found in two-dimensional (2-D) models. Their maxima along the subducting slab are mainly located at about 50 to 70 and 120 to 140 kin. Volumetric melt production rate changes spatially and episodically atop the slab, which may reflect the intensity and variations of volcanoes.
基金supported by the CMG Program of the National Science Foundationthe Senior Visiting Professorship Program of the Chinese Academy of Sciences,the Helmholtz Association through the Research Alliance "Planetary Evolution and Life",and the European Commission through the Marie Curie Research Training Network c2c (No. MRTN-CT-2006-035957)
文摘Asthenosphere is a venerable concept based on geological intuition of Reginald Daly nearly 100 years ago. There have been various explanations for the existence of the asthenosphere. The concept of a plume-fed asthenosphere has been around for a few years due to the ideas put forth by Yamamoto et al.. Using a two-dimensional Cartesian code based on finite-volume method, we have investigated the influences of lower-mantle physical properties on the formation of a low-viscosity zone in the oceanic upper mantle in regions close to a large mantle upwelUng. The rheological law is Newtonian and depends on both temperature and depth. An extended-Boussinesq model is assumed for the energetics and the olivine to spinel, the spinel to perovskite and perovskite to post-perovskite (ppv) phase transitions are considered. We have compared the differences in the behavior of hot upweilings passing through the transition zone in the mid-mantle for a variety of models, starting with constant physical properties in the lower-mantle and culminating with complex models which have the post-perovskite phase transition and depth-dependent coefficient of thermal expansion and thermal conductivity. We found that the formation of the asthenosphere in the upper mantle in the vicinity of large upwellings is facilitated in models where both depth-dependent thermal expansivity and conductivity are included. Models with constant thermal expansivity and thermal conductivity do not produce a hot low-viscosity zone, resembling the asthenosphere. We have also studied the influences of a cylindrical model and found similar results as the Cartesian model with the important difference that upper-mantle temperatures were much cooler than the Cartesian model by about 600 to 700 K. Our findings argue for the potentially important role played by lower-mantle material properties on the development of a plume-fed asthenosphere in the oceanic upper mantle.
基金supported by the National Natural Science Foundation of China (Nos. 90814014,40728004)the National Science and Technology Project (No. SinoProbe-07)+1 种基金the Visiting Senior Professorship from the Chinese Academy of Sciencesthe CMG Program from the U.S. National Science Foundation
文摘Tibetan area is the most active continental collision zone on earth. Several major earthquakes occurred around the boundaries of Tibetan plateau and caused massive damages and casualties. The dynamics of this area is not well understood due to the complex structure of Tibet and its surrounding area. In this study, a 3D global flow simulation with only viscous rheology is applied to studying the stress distribution in this area, and the interaction between Tibet and its surrounding areas is investigated. Finally, the possibility of combining regional modeling with global models is also discussed.
基金supported by the strategic priority research program of CAS (XDA17040507, XDA15010900)the national basic research program of China (2013CBA01503)+5 种基金the key program of NSFC (11333007)joint funds of NSFC(U1631130)frontier science key programs of CAS (QYZDJ-SSWSLH012)the program for innovation team of Yunnan Provincethe program for Guangdong introducing Innovative and entrepreneurial teams (2016ZT06D211)the special program for applied research on super computation of the NSFC-Guangdong joint fund (second phase) under No.U1501501
文摘A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at large temporal-spatial scale(LTSTMR), the ratio of observed current sheets thickness to electron characteristic length, electron Larmor radius for low-β and electron inertial length for high-β, is on the order of 10^(10)–10^(11); the ratio of observed evolution time to electron gyroperiod is on the order of 10~7–10~9).The original combined acceleration model is known to be one of greatest importance in the interaction of magnetic islands; it assumes that the continuous kinetic-dynamic temporal-spatial scale evolution occurs as two separate independent processes.In this paper, we reconsider the combined acceleration mechanism by introducing a kinetic-dynamic-hydro full-coupled model instead of the original micro-kinetic or macro-dynamic model.We investigate different acceleration mechanisms in the vicinity of neutral points in magnetic islands evolution, from the stage of shrink and breakup into smaller islands(kinetic scale), to the stage of coalescence and growth into larger islands(dynamic scale), to the stages of constant and quasi-constant(contracting-expanding) islands(hydro scale).As a result, we give for the first time the acceleration efficiencies of different types of acceleration mechanisms in magnetic islands' interactions in solar atmosphere LTSTMR activities(pico-, 10^(–2)–10~5 m; nano-, 10~5–10~6 m; micro-, 10~6–10~7 m; macro-, 10~7–10~8 m; large-,10~8–10~9 m).
文摘Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 μs) macro-normal stress (18-300 MPa) and slip rate (0.25-7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.
基金supported as part of the Nanoporous Materials Genome Center by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Award No. DE-FG0217ER16362
文摘Metal–organic frameworks (MOFs) as photocatalysts and photocatalyst supports combine several advantages of homogeneous and heterogeneous catalyses, including stability, post-reaction separation, catalyst reusability,and tunability, and they have been intensively studied for photocatalytic applications. There are several reviews that focus mainly or even entirely on experimental work. The present review is intended to complement those reviews by focusing on computational work that can provide a further understanding of the photocatalytic properties of MOF photocatalysts. We first present a summary of computational methods, including density functional theory, combined quantum mechanical and molecular mechanical methods, and force fields for MOFs. Then, computational investigations on MOF-based photocatalysis are briefly discussed. The discussions focus on the electronic structure, photoexcitation, charge mobility, and photoredox catalysis of MOFs, especially the widely studied Ui O-66-based MOFs.
基金supported by the CMG Program of NSF,Senior Visiting Professorship by the Chinese Academy of SciencesThe Netherlands Research Center for Integrated Solid Earth Science (ISES 3.2.5) and the 216 through ISES Project ME-2.7.
文摘Small-scale heterogeneity in the deep mantle is concentrated in the upper-mantle transition zone (TZ), in the depth range 410-660 km and also at the bottom 250 km D" region. This encourages a more detailed investigation of the potential for seismic reflectivity imaging by modelling heterogeneous structures in mantle convection models including phase transitions of the TZ and D" regions. We applied finite elements with variable spacing near the boundary layers in 2-D cylindrical geometry that allow for sufficient spatial resolution. We investigated several models including an extended Boussinesq (EBA) model, focused on the D" region, and a compressible (ALA) model for the TZ region. The results for the D" region show typical lens-shaped structures of post-perovskite (PPV) embedded in the perovskite (PV) background mantle, where the thickness of the lenses, at 200-400 km, strongly depends on the Clapeyron slope of the PV-PPV transition. A second phase transition (double crossing) occurs in case the core temperature is higher than the intercept temperature Ti. Our phase-dependent rheology results in contrasting effective viscosity between PV and PPV. Our model results reveal a distinctly clear mechanical weakening of the PPV lenses with about an order of magnitude lower viscosity. The shear wave-speed distributions computed from our convection results are strongly correlated with the heterogeneous distribution of the mineral phase. Gradients in the seismic wave-speed that are the target of seismological reflectivity imaging are clearly revealed. The wave-speed results show a clear resolution of the top and bottom interfaces of the PPV lenses. Our ALA model for the TZ is based on a thermodynamical model for the magnesium end- member of an olivine-pyroxene mantle. The model predicts a much more complex distribution of mineral phases, compared to our D" results, in agreement with the greater number of mineral phases involved in the olivine-pyroxene phase diagram for the P, T conditions of the transition zone. Near cold downwelling flows representing subducting lithospheric slabs, where the local geotherm can differ by up to 1 000 K from the horizontal average, and small-scale lateral variations in the mineral phases can occur.
文摘Our planet, Earth, contains an enormous amount of heat just right under our feet. Harnessing this heat from 2 to 5 krn below is one of the great challenges of the 21st century, because this can solve many of the currently urgent problems in mega-cities, such as inexpensive domestic heating and airconditioning, electric power consumption and the cure of ram- pant air pollution. Around 40 TW heat are released at a steady rate by the Earth partly due to natural radioactive decay and partly due to the action inside the core. We would like to stress here that the depth of the isotherm of 200℃ (minimum tem- perature for efficient generation of electricity) varies around the globe. In general, this depth would be less than 10 km deep. Therefore these heat sources would provide ubiquitous ample, clean and sustainable electricity. In addition to this sustainable resource the potential of geothermal energy use is much greater, because it allows effective heat mining of the Earth. Geothermal energy is most commonly exploited in volcanic areas where magma is close to the surface and brings up the heat from deeper down. The largest geothermal power plant of this style is the Geysers in California, which with 1 GW power production rivals nuclear power plants.
基金Funding for this research was in part provided by the Niedersächsisches Ministerium für Wissenschaft und Kultur through the EGON project:“Research for a sustainable agricultural production:Development of organically bred fruit cultivars in creative commons initiatives”,the USDA NIFA Specialty Crop Research Initiative projects,“RosBREED:Enabling marker-assisted breeding in Rosaceae”(2009-51181-05808)“RosBREED 2:Combining disease resistance with horticultural quality in new rosaceous cultivars”(2014-51181-22378),USDA NIFA Hatch project 1014919,and State Agricultural Experiment Station-University of Minnesota Project MIN-21-040.Part of the 20K Infinium SNP data came from the FruitBreedomics project no 265582:“Integrated approach for increasing breeding efficiency in fruit tree crops”50,which was co-funded by the EU seventh Framework Programme.
文摘Pedigree information is of fundamental importance in breeding programs and related genetics efforts.However,many individuals have unknown pedigrees.While methods to identify and confirm direct parent–offspring relationships are routine,those for other types of close relationships have yet to be effectively and widely implemented with plants,due to complications such as asexual propagation and extensive inbreeding.The objective of this study was to develop and demonstrate methods that support complex pedigree reconstruction via the total length of identical by state haplotypes(referred to in this study as“summed potential lengths of shared haplotypes”,SPLoSH).A custom Python script,HapShared,was developed to generate SPLoSH data in apple and sweet cherry.HapShared was used to establish empirical distributions of SPLoSH data for known relationships in these crops.These distributions were then used to estimate previously unknown relationships.Case studies in each crop demonstrated various pedigree reconstruction scenarios using SPLoSH data.For cherry,a full-sib relationship was deduced for‘Emperor Francis,and‘Schmidt’,a half-sib relationship for‘Van’and‘Windsor’,and the paternal grandparents of‘Stella’were confirmed.For apple,29 cultivars were found to share an unknown parent,the pedigree of the unknown parent of‘Cox’s Pomona’was reconstructed,and‘Fameuse’was deduced to be a likely grandparent of‘McIntosh’.Key genetic resources that enabled this empirical study were large genome-wide SNP array datasets,integrated genetic maps,and previously identified pedigree relationships.Crops with similar resources are also expected to benefit from using HapShared for empowering pedigree reconstruction.
基金support from the China University of Geosciences (CUG) for visiting the conference in Wuhan in 2012
文摘Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.
基金supported in part by the National Natural Science Foundation of China(42120104007 and 41775125)by Guizhou Provincial Science and Technology Projects,China(CXTD[2022]001 and GCC[2023]026)+1 种基金by the Science and Technology Foundation of Guizhou Provincial Department of Education,China(KY[2021]014 and KY[2021]107)supported in part by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences under Award DE-SC0015997.
文摘Atmospheric oxidation processes are of central importance in atmospheric climate models.It is often considered that volatile organic molecules are mainly removed by hydroxyl radical;however,the kinetics of some reactions of hydroxyl radical with volatile organic molecules are slow.Here we report rate constants for rapid reactions of formyl fluoride with Criegee intermediates.These rate constants are calculated by dual-level multistructural canonical variational transition state theory with small-curvature tunneling(DL-MS-CVT/SCT).The treatment contains beyond-CCSD(T)electronic structure calculations for transition state theory,and it employs validated density functional input for multistructural canonical variational transition state theory with small-curvature tunneling and for variable-reaction-coordinate variational transition state theory.We find that the M11-L density functional has higher accuracy than CCSD(T)/CBS for the HC(O)F+CH2OO and HC(O)F+anti-CH_(3)CHOO reactions.We find significant negative temperature dependence in the ratios of the rate constants for HC(O)F+CH2OO/anti-CH_(3)CHOO to the rate constant for HC(O)F+OH.We also find that different Criegee intermediates have different rate-determining-steps in their reactions with formyl fluoride,and we find that the dominant gas-phase removal mechanism for HC(O)F in the atmosphere is the reaction with CH2OO and/or anti-CH_(3)CHOO Criegee intermediates.
基金supported by the Industry Fund Crustal Deep Exploration Project of the Ministry of Land and Resources (SinoProbe-07)the National Basic Research Program of China (2008CB425701)+2 种基金the National High-tech R&D Program of China,High Performance Computing Software System for Earth System Model (2010AA012402)the National Natural Science Foundation of China (10872098)K. C. Wong Magna Fund in Ningbo University
文摘In order to predict tsunami hazards through numerical simulation,by using the focal mechanisms as well as fault parameters of Japan's 2011 Tohoku Earthquake provided by National Geological Survey(referred to as USGS),we proposed a numerical model to simulate the Honshu,Japan tsunami.Numerical computing is conducted to investigate the security along the coast.We also analyzed the simulation results and distribution of tsunami disaster,trying to achieve a more reasonable tsunami warning program.Our numerical model is composed of simulation of surface deformation after the earthquake and the tsunami propagation process which is based on two dimensional shallow water equations.The simulation results show the characteristics of the tsunami propagation,and arrival times on recorder points are consistent with tsunami observation.This model can be applied to evaluate the security of the coastal area and obtain more accurate tsunami warning.