The entry at Zhangcun coal mine in Lu'an coal mining area in Shanxi Province suffered from severe mining-induced stresses with the heading face driven oppositely to an adjacent working face. In this paper, the charac...The entry at Zhangcun coal mine in Lu'an coal mining area in Shanxi Province suffered from severe mining-induced stresses with the heading face driven oppositely to an adjacent working face. In this paper, the characteristics of deformation and failure of the entry were investigated in terms of the tempo-spatial relations between heading and working faces through field study and numerical modeling. The three-dimensional (3D) finite difference models were built to investigate stresses, displacements and damages in the surrounding rocks of the entry and the working face. The field study includes selection of reinforcing methods and materials, design parameters, and determination of cable prestress. The monitoring data of entry deformation and stress along the cables during every stage were presented. The state of the reinforced entry was evaluated based on the monitoring data. The results demonstrate that before the heading face of the entry crosses the adjacent working face, the influence of advanced abutment pressure caused by adjacent working face upon the entry is not significant. After they cross each other, however, the lateral abutment pressure will have an evident impact on the entry. The displacement rate of the entry will be greatly increased and reaches a certain value within a certain distance between the heading face and the working face. Then, it will increase again with the presence of secondary mining-induced pressure on the entry when the present working face advances. The fully-grouted cable with short length, high strength and high prestress is an effective way to reinforce the entry suffering from severe mining-induced stresses, which greatly reduces the displacement and failure possibility of the entry. Finally, the principles and recommendations for reinforcing design of entries suffering from severe mining-induced stresses were proposed according to field study, numerical modeling and experiences from other coal mines. Problems encountered in field study and suggestions for reinforcement were also discussed.展开更多
The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect o...The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines.展开更多
Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analy...Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analyzed.The recent developments of roadway support technologies were introduced abroad,based on the experiences of supports for deep and complex roadways from Germany,the United States and Australia.The history and achievements of roadway support technologies in China were detailed,including rock bolting,steel supports,grouting reinforcement and combined supports.Four typical support and reinforcement case studies were analyzed,including a high stressed roadway 1,000 m below the surface,a roadway surrounded by severely weak and broken rocks,a chamber surrounded by weak and broken rocks,and a roadway with very soft and swelling rocks.Based on studies and practices in many years,rock bolting has become the mainstream roadway support form in China coal mines,and steel supports,grouting reinforcement and combined supports have also been applied at proper occasions,which have provided reliable technical measures for the safe and high effective construction and mining of underground coal mines.展开更多
Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of...Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of laboratory pull-out tests were conducted to comprehensively investigate the effects of different pull-out loading rates on the mechanical performance and failure characteristics of fully grouted bolts.The results show that the mechanical performance of the anchored specimen presents obvious loading rate dependence and shear enhancement characteristics.With the increase of the pull-out loading rates,the maximum pull-out load increases,the displacement and time corresponding to the maximum pull-out load decrease.The accumulated acoustic emission(AE)counts,AE energy and AE events all decrease with the increase of the pull-out loading rates.The AE peak frequency has obvious divisional distribution characteristics and the amplitude is mainly distributed between 50-80 dB.With the increase of the pull-out loading rates,the local strain of the anchoring interface increases and the failure of the anchoring interface transfers to the interior of the resin grout.The accumulated AE counts are used to evaluate the damage parameter of the anchoring interface during the whole pull-out process.The analytical results are in good agreement with the experimental results.The research results may provide guidance for the support design and performance monitoring of fully grouted bolts.展开更多
During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa...During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.展开更多
The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical a...The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical analysis was carried out using FLAC3D and a special post-process methodology, using surfer, is proposed to process the numerical simulation results. The results indicate that pre-tensioned rock bolts have a significant effect on stress redistribution around a roadway. In the roof, pre-tensioned rock bolts greatly increase vertical stress; as a result, the strength of the rock mass increased significantly which results in a greater capacity of bearing a large horizontal stress. The horizontal stress decreases in the upper section of the roof, indicating that pre-tensioned rock bolts significantly reduce the coefficient and the size of the region concentration of horizontal stress. At the lat- eral side, pre-tensioned rock bolts greatly increase the horizontal stress; therefore, the rock mass strength significantly increases which results also in a greater capacity of bearing a large vertical stress. The greater the size of pre-tensioned force, the larger the region of stress redistribution around a roadway is affected and the higher the size of the stress on the roadway surface the more the rock mass strength increases.展开更多
To investigate the resist-decreasing effects of rock bolts on the strength of the rock mass around a roadway, a compara- tive study has been carded out using the numerical analysis code FLAC3D. An unsupported and a ro...To investigate the resist-decreasing effects of rock bolts on the strength of the rock mass around a roadway, a compara- tive study has been carded out using the numerical analysis code FLAC3D. An unsupported and a rock bolt supported model have been built for comparison. Two types of rock mass strength, the uniaxial compressive strength (UCS) and the wiaxial compressive strength (TCS) of rock mass have been obtained from each model, using a prepared Fish based on the Mohr-Coulomb criterion. The results indicate that when a roadway is excavated, both the UCS and TCS in a definite local rock mass around the roadway would inevitably decrease, no matter whether the roadway is supported or not. The major decreasing region did not settle in the middle of the roadway surface, but within a deeper horizon into the rock mass. The resist-decreasing effects of rock bolts both on the UCS and the TCS of rock mass around roadway are significant.展开更多
Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thicknes...Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thickness,dip angle,uniaxial compressing strength of roof,mudstone proportion in overlying rock,and structure of overlying rock. The height-forecasting model of WFF was established based on the Artificial Neural Net-work techniques,and was applied in the first fully mechanized top coal caving face under sea in China.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2008AA062102)the National Science and Technology Program in the 11th Five-year Plan of China (2008BAB36B07)
文摘The entry at Zhangcun coal mine in Lu'an coal mining area in Shanxi Province suffered from severe mining-induced stresses with the heading face driven oppositely to an adjacent working face. In this paper, the characteristics of deformation and failure of the entry were investigated in terms of the tempo-spatial relations between heading and working faces through field study and numerical modeling. The three-dimensional (3D) finite difference models were built to investigate stresses, displacements and damages in the surrounding rocks of the entry and the working face. The field study includes selection of reinforcing methods and materials, design parameters, and determination of cable prestress. The monitoring data of entry deformation and stress along the cables during every stage were presented. The state of the reinforced entry was evaluated based on the monitoring data. The results demonstrate that before the heading face of the entry crosses the adjacent working face, the influence of advanced abutment pressure caused by adjacent working face upon the entry is not significant. After they cross each other, however, the lateral abutment pressure will have an evident impact on the entry. The displacement rate of the entry will be greatly increased and reaches a certain value within a certain distance between the heading face and the working face. Then, it will increase again with the presence of secondary mining-induced pressure on the entry when the present working face advances. The fully-grouted cable with short length, high strength and high prestress is an effective way to reinforce the entry suffering from severe mining-induced stresses, which greatly reduces the displacement and failure possibility of the entry. Finally, the principles and recommendations for reinforcing design of entries suffering from severe mining-induced stresses were proposed according to field study, numerical modeling and experiences from other coal mines. Problems encountered in field study and suggestions for reinforcement were also discussed.
基金We gratefully acknowledge financial support from the National Natural Science Foundation of China(NSFC)(No.51704097)Science Foundation of Henan Polytechnic University(No.J2021–2)+1 种基金Key Research and Development Program of Henan Province,China(No.202102310244)“Science and Technology to Help the Economy 2020”Key Project(No.SQ2020YFF0426364).
文摘The wide pillars are generally popular due to the high productivity and efficiency in Northwest China.The distribution of lateral abutment pressure in coal pillars is important for mining safety.To reveal the effect of the first mining on the lateral abutment pressure distribution and evolution in wide pillars,an in-situ experiment,theoretical analysis and numerical simulation were performed.First,the field monitoring of lateral abutment pressure was conducted from the perspective of time and space in the Chahasu Coal Mine,Huangling No.2 Coal Mine and Lingdong Coal Mine during the first mining.Based on the field monitoring stress,a theoretical model was proposed to reveal the lateral abutment pressure distribution.The methodology was demonstrated through a case study.Aiming at the distribution mechanism,a numerical experiment was conducted through the finite-discrete element method(FDEM).Last,field observations of borehole fractures were performed to further study the damage distribution.In addition,two types of lateral abutment pressure evolution with mining advance were discussed.Suggestions on the stress monitoring layout were proposed as well.The results could provide foundations for strata control and disaster prevention in wide pillars in underground coal mines.
文摘Based on geological and mining characteristics,coal mine roadways under complex conditions were divided into five types,for each type the deformation and damage characteristics of rocks surrounding roadways were analyzed.The recent developments of roadway support technologies were introduced abroad,based on the experiences of supports for deep and complex roadways from Germany,the United States and Australia.The history and achievements of roadway support technologies in China were detailed,including rock bolting,steel supports,grouting reinforcement and combined supports.Four typical support and reinforcement case studies were analyzed,including a high stressed roadway 1,000 m below the surface,a roadway surrounded by severely weak and broken rocks,a chamber surrounded by weak and broken rocks,and a roadway with very soft and swelling rocks.Based on studies and practices in many years,rock bolting has become the mainstream roadway support form in China coal mines,and steel supports,grouting reinforcement and combined supports have also been applied at proper occasions,which have provided reliable technical measures for the safe and high effective construction and mining of underground coal mines.
基金Projects(51925402,U1710258,52004172)supported by the National Natural Science Foundation of ChinaProject(20201102004)supported by the Science and Technology Department of Shanxi Province,China。
文摘Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of laboratory pull-out tests were conducted to comprehensively investigate the effects of different pull-out loading rates on the mechanical performance and failure characteristics of fully grouted bolts.The results show that the mechanical performance of the anchored specimen presents obvious loading rate dependence and shear enhancement characteristics.With the increase of the pull-out loading rates,the maximum pull-out load increases,the displacement and time corresponding to the maximum pull-out load decrease.The accumulated acoustic emission(AE)counts,AE energy and AE events all decrease with the increase of the pull-out loading rates.The AE peak frequency has obvious divisional distribution characteristics and the amplitude is mainly distributed between 50-80 dB.With the increase of the pull-out loading rates,the local strain of the anchoring interface increases and the failure of the anchoring interface transfers to the interior of the resin grout.The accumulated AE counts are used to evaluate the damage parameter of the anchoring interface during the whole pull-out process.The analytical results are in good agreement with the experimental results.The research results may provide guidance for the support design and performance monitoring of fully grouted bolts.
基金National Natural Science Foundation of China(Grant Nos.52174080 and 51974160)Science Foundation of Tiandi Technology Co.,Ltd.(2022-2-TD-ZD016).
文摘During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.
基金Projects 2006BAB16B02 and 2006BAK03B06 supported by the National Scientific & Technological Foundation of China
文摘The importance of the pre-tensioned force of rock bolts has been recognized by more and more researchers. To investi- gate the effect of pre-tensioned rock bolts on stress redistribution around roadways, a numerical analysis was carried out using FLAC3D and a special post-process methodology, using surfer, is proposed to process the numerical simulation results. The results indicate that pre-tensioned rock bolts have a significant effect on stress redistribution around a roadway. In the roof, pre-tensioned rock bolts greatly increase vertical stress; as a result, the strength of the rock mass increased significantly which results in a greater capacity of bearing a large horizontal stress. The horizontal stress decreases in the upper section of the roof, indicating that pre-tensioned rock bolts significantly reduce the coefficient and the size of the region concentration of horizontal stress. At the lat- eral side, pre-tensioned rock bolts greatly increase the horizontal stress; therefore, the rock mass strength significantly increases which results also in a greater capacity of bearing a large vertical stress. The greater the size of pre-tensioned force, the larger the region of stress redistribution around a roadway is affected and the higher the size of the stress on the roadway surface the more the rock mass strength increases.
基金Project 2006BAK04B02 supported by the National Key Technology Research & Development Program of China
文摘To investigate the resist-decreasing effects of rock bolts on the strength of the rock mass around a roadway, a compara- tive study has been carded out using the numerical analysis code FLAC3D. An unsupported and a rock bolt supported model have been built for comparison. Two types of rock mass strength, the uniaxial compressive strength (UCS) and the wiaxial compressive strength (TCS) of rock mass have been obtained from each model, using a prepared Fish based on the Mohr-Coulomb criterion. The results indicate that when a roadway is excavated, both the UCS and TCS in a definite local rock mass around the roadway would inevitably decrease, no matter whether the roadway is supported or not. The major decreasing region did not settle in the middle of the roadway surface, but within a deeper horizon into the rock mass. The resist-decreasing effects of rock bolts both on the UCS and the TCS of rock mass around roadway are significant.
基金National Science Support Plan of China(2006BAB16B04)
文摘Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thickness,dip angle,uniaxial compressing strength of roof,mudstone proportion in overlying rock,and structure of overlying rock. The height-forecasting model of WFF was established based on the Artificial Neural Net-work techniques,and was applied in the first fully mechanized top coal caving face under sea in China.