To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-minin...To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-mining technology system with non-pillar in mines(ETSNM)in recent years.The petal warning criterion for the stability of the surrounding rock of the roadway at the end-mining stage was obtained by studying the inverse problem of the petal theorem.A conformal mathematical model of the end-mining stage was established using the conformal mapping method,and the limit theorem of the peak point of mine pressure(LTPPMP)in the end-mining stage was demonstrated.Based on the cross-fusion of the above basic mathematical theory and the LTPPMP,a new ETSNM model was proposed,which includes no coal pillar,no dedicated retracement roadways,and fast retracement equipment(NNF).The mathematical principles of engineering technology for height control,speed limit,and roof cutting in the end-mining stage with non-pillar were revealed.The scientific and application values of the ETSNM were confirmed through engineering applications.Based on this,a new non-pillar control technology for dynamic disasters in the end-mining stage was proposed.The above research will play an active role in promoting the engineering application of ETSNM driven by mathematical theory.展开更多
Discrete element method(DEM)-based simulations are crucial for bridging macro and micro research,particularly owing to the limitations of experimental methods.This paper reviews the simulation techniques used for part...Discrete element method(DEM)-based simulations are crucial for bridging macro and micro research,particularly owing to the limitations of experimental methods.This paper reviews the simulation techniques used for particle breakage in DEM,summarizes the research status,and discusses pertinent issues to outline future prospects for particle breakage simulation.Fragment replacement method(FRM)and bonded particle method(BPM)are widely used to simulate particle breakage based on DEM.In BPM models,sub-particle size selection,particle cluster generation mode,and bonding parameters are crucial considerations.Although BPM can simulate the breakage of particles with complex shapes,it cannot re-simulate them,posing difficulties in coordinating calculation load and simulation accuracy.For FRM,the fragment replacement mode and particle breakage criteria are critical.The number and size of replacement particles are difficult to match with actual conditions,and ensuring mass conservation is significantly challenging.Although the initial computational load in FRM is relatively low,it increases significantly as the simulation progresses.To address these issues,we propose a simulation method that integrates BPM and FRM,allowing sub-particle breakage in BPM to be realized by FRM.展开更多
The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instabili...The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instability mechanisms.Focusing on the Level VI stope sublayers in the Jinchuan#2 mining area,this study constructs a 24-parameter index system encompassing time-domain features,frequency-domain features,and multifractal characteristics.Through manifold learning,clustering analysis,and hybrid feature selection,15 key indicators were extracted to construct a classification framework for failure responses.Integrated with focal mechanism inversion and numerical simulation,the failure patterns and corresponding instability mechanisms across different structural zones were further identified.The results reveal that multiscale microseismic characteristics exhibit clear regional similarities.Based on the morphological features of radar plots derived from the 15 indicators,acoustic responses were classified into four typical types,each reflecting distinct local failure mechanisms,stress conditions,and plastic zone evolution.Moreover,considering dominant instability factors and rupture modes,four representative rock mass instability models were proposed for typical failure zones within the stope.These findings provide theoretical guidance and methodological support for hazard prediction,structural optimization,and disturbance control in deep metal mining areas.展开更多
To promote the achievement of high-quality and full employment goals for students in higher education,this paper analyzes the integration path of practical education and teaching in civil engineering and transportatio...To promote the achievement of high-quality and full employment goals for students in higher education,this paper analyzes the integration path of practical education and teaching in civil engineering and transportation majors,guided by surveying employment.This paper proposes three integration paths for practical teaching and education in civil engineering and transportation majors under the employment orientation.The first path is to create a modularized and informatized curriculum system.The second path is to deepen diverse cooperative practices between schools and enterprises.The third path is to construct a diversified quality evaluation system for academic achievement.To ensure the quality of education and employment,schools should continuously evaluate and reflect on the practical effects of these three paths to further optimize them.展开更多
Rib spalling is a highly severe issue during mining in deep-buried large-mining-height working faces.This study takes Zhaogu No.2 Coal Mine in Jiaozuo Coalfield,China,as the research background and carries out three f...Rib spalling is a highly severe issue during mining in deep-buried large-mining-height working faces.This study takes Zhaogu No.2 Coal Mine in Jiaozuo Coalfield,China,as the research background and carries out three focused works to address this problem.Firstly,field measurements were conducted to clarify rib spalling characteristics:the coal wall is dominated by shear failure,internal cracks are mainly distributed 3–6 m above the coal wall surface,and the maximum depth of crack development reaches 3 m.Secondly,Universal Distinct Element Code(UDEC)numerical simulation software was used to build a rib spalling model,with the Trigon model adopted to divide the coal wall into blocks.Analysis of four key factors shows that increased buried depth and mining height significantly raise the total length of coal wall internal cracks,increasing rib spalling risk,while higher coal body strength and support strength effectively alleviate this phenomenon.Finally,an orthogonal experiment was designed to quantitatively determine the influence degree of the four factors on rib spalling.Results show that coal body strength has the greatest impact,followed by support strength,mining height,and mining depth in order of influence.This study provides valuable theoretical guidance for on-site prevention and control of coal wall rib spalling.展开更多
In the gas-coal integrated mining field,the conventional design method of pipeline coal pillars leads to a large amount of coal pillars being unrecovered and overlooks the pipeline's safety requirements.Considerin...In the gas-coal integrated mining field,the conventional design method of pipeline coal pillars leads to a large amount of coal pillars being unrecovered and overlooks the pipeline's safety requirements.Considering the coal pillar recovery rate and pipeline's safety requirements,two new shaped coal pillar design approaches for subsurface pipelines were developed.Firstly,the deformation limitations for measuring pipeline safety are categorized into two:no deformation is permitted,and deformation is acceptable within elastic limits.Subsequently,integrating the key stratum theory(KST)and cave angle,a fishbone-shaped coal pillar design approach that does not permit pipeline deformation is established.Meanwhile,combined with the ground subsidence and the pipeline's elastic deformation limit,a grille-shaped coal pillar design approach that accepts deformation pipelines within elastic limits is established.Those two new approaches clarify parameters including mined width,coal pillar width and mined length.Finally,the case study shows that the designed mined width,coal pillar width and mined length of the fishbone-shaped coal pillar are 90,80,and 130 m,while those of the grille-shaped are 320,370,and640 m.Compared with the conventional method,the fishbone-shaped and grille-shaped coal pillar design approaches recovered coal pillar resources of 2.65×10~6and 5.81×10~6t on the premise of meeting the pipeline safety requirements,and the recovery rates increased by 20.5%and 45.0%,with expenditures representing only 56.46%and 20.02%of the respective benefits.These new approaches provide managers with diverse options for protecting pipeline safety while promoting coal pillar recovery,which is conducive to the harmonic mining of gas-coal resources.展开更多
The complex and diverse nature of coal mining sites,including different landforms and working conditions,presents challenges for rehabilitation efforts.To address this,we conducted a comprehensive experimental study f...The complex and diverse nature of coal mining sites,including different landforms and working conditions,presents challenges for rehabilitation efforts.To address this,we conducted a comprehensive experimental study focusing on microbially induced calcium carbonate precipitation(MICP)remediation,considering the fracture characteristics of coal mining sites.The MICP-restored samples were subjected to confined/unconfined compressive strength,uniaxial/triaxial permeability,and souring tests to assess their restoration efficacy.The results showed that under similar mining conditions,the average depth of parallel fractures was 0.185 m for loess ridges,0.16 m for the valley,and 0.146 m for the blown-sand region,while the average depth for boundary fractures was 0.411 m for loess ridges,0.178 m for the valley,and 0.268 m for the blown-sand region.Notably,parallel fractures showed negligible filling in all landforms,whereas boundary fractures in the blown-sand region were completely filled with wind-deposited sand.The valley landform was filled with alluvium and wind-deposited sand,whereas the loess landform was filled with wind-deposited sand and loess.MICP-restored soil samples in all landforms achieved a strength comparable to remolded fracture-free soil samples.Across all landforms,the maximum permeability coefficient of MICP-restored soil samples closely matched that of remolded fracture-free soil samples.Under similar topographic and rainfall conditions MICP restorations scoured 31.3 g on blown-sand region,19.3 g on loess ridges,and 17.6 g on valleys.These research findings provide an experimental foundation for MICP repair of coal mining ground fractures.展开更多
To address issues such as inefficient top-coal drawing,challenges in simultaneously mining and drawing,and the need for intelligent control in extra-thick coal seams,this study examines the principles of top-coal draw...To address issues such as inefficient top-coal drawing,challenges in simultaneously mining and drawing,and the need for intelligent control in extra-thick coal seams,this study examines the principles of top-coal drawing and explores automation and intelligent equipment solutions within the framework of the group coal drawing method.Numerical simulations were performed to investigate the impact of the Number of Drawing Openings(NDO)and rounds on top-coal recovery,coal draw-ing efficiency,and Top Coal Loss(TCL)mechanism.Subsequently,considering the recovery and coal drawing efficiency and by introducing the instantaneous gangue content and cumulative gangue content in simulations,the top-coal recovery,gangue content,and coal loss distribution when considering excessive coal drawing were analyzed.This established a foun-dation for determining the optimal NDO and shutdown timing.Finally,the key technical principle and automated control of a shock vibration and hyperspectral fusion recognition device were detailed,and an intelligent coal drawing control method based on this technology was developed.This technology enabled the precise control of the instantaneous gangue content(35%)during coal drawing.The top-coal recovery at the Tashan Mine 8222 working face increased by 14.78%,and the gangue content was controlled at~9%,consistent with the numerical simulation results.Thus,the reliability of the numerical simulation results was confirmed to a certain extent.Meanwhile,the single-group drawing method significantly enhanced the production capacity of the 8222 working face,achieving an annual output of 15 million tons.展开更多
The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying t...The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.展开更多
Underground coal mining induces significant surface deformation and environmental damage,particularly in deeply buried mining areas with thin bedrock and thick alluvial layers.Based on the case study of the Zhaogu No....Underground coal mining induces significant surface deformation and environmental damage,particularly in deeply buried mining areas with thin bedrock and thick alluvial layers.Based on the case study of the Zhaogu No.2 coal mine in Xinxiang City,Henan Province,China,this study employs a comprehensive research methodology,integrating field investigations,numerical simulations,and theoretical analyses,to explore the surface subsidence features at deeply buried mining areas with thin bedrock and thick alluvial layers,to reveal the effect of alluvial thickness on the surface subsidence characteristics.The findings indicate that the surface subsidence areas span 4.2 km2 with an advanced influence distance of 540 m.The rate of surface subsidence primarily depends on the panel's position and its advancing rate.Moreover,the thickness of the alluvial layer amplifies both the extent and magnitude of surface deformation.The displacement of overlying rock primarily exhibits a two-stage progression:the thin bedrock control stage and the alluvial control stage.In the thin bedrock control stage,surface subsidence initiates with relatively low subsidence values and amplitudes.Subsequently,in the alluvial control stage,surface subsidence accelerates,leading to a rapid increase in both subsidence values and amplitudes.These characteristics of rock formation displacement result in distinct phases of surface subsidence.Furthermore,the paper addresses the utilization of surface subsidence areas and proposes a method for calculating reservoir storage capacity in these areas.According to calculations,the storage capacity amounts to 1.05e7 m^(3).The research findings provide valuable insights into the surface subsidence laws in regions with similar geological conditions and practical implications for the management and utilization of subsided areas.展开更多
Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep ch...Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep chambers.Therefore,previous residual strength models of rocks established were reviewed.And corresponding related problems were stated.Subsequently,starting from the effects of bedding and whole life-cycle evolution process,series of triaxial mechanical tests of deep bedded sandstone with five bedding angles were conducted under different confining pressures.Then,six residual strength models considering the effects of bedding and whole life-cycle evolution process were established and evaluated.Finally,a cohesion loss model for determining residual strength of deep bedded sandstone was verified.The results showed that the effects of bedding and whole life-cycle evolution process had both significant influences on the evolution characteristic of residual strength of deep bedded sandstone.Additionally,residual strength parameters:residual cohesion and residual internal friction angle of deep bedded sandstone were not constant,which both significantly changed with increasing bedding angle.Besides,the cohesion loss model was the most suitable for determining and estimating the residual strength of bedded rocks,which could provide more accurate theoretical guidance for the stability control of deep chambers.展开更多
Cross roadway collapses are a common occurrence in underground mining operations.While the influence of mining blasts on the stability of surrounding rock is acknowledged,the underlying mechanisms remain inadequately ...Cross roadway collapses are a common occurrence in underground mining operations.While the influence of mining blasts on the stability of surrounding rock is acknowledged,the underlying mechanisms remain inadequately understood.This study investigates the characteristics and mechanisms of collapse in a shallow buried cross roadway subjected to mining blast disturbances,drawing insights from an engineering project in Anshan City,Northeast China.A strain-softening model based on unified strength theory was developed to effectively calculate and analyze the loosened zone thickness and surrounding rock displacement.The PFC3D-FLAC3D coupling method was employed to clarify the concentrated collapse area within the cross roadway,providing insight into the collapse mechanism through a cross-sectional model of the concentrated region.Results demonstrate that 50%of the cross roadway collapsed following the mining blast.Subsidence at the intersection was approximately one-fifth(0.66 m)of cross roadway’s net height,exceeding subsidence in other areas by 1.3.Under the action of repeated mining blasting,the cross section of the connection roadway forms a semi-elliptical high tensile stress zone.After the cumulative damage of the surrounding rock of the connection roadway exceeds the ultimate yield strength,the cumulative stress release causes the tensile failure of the surrounding rock.The plastic zone of the connecting roadway expands to three times of the initial,and continues to develop.The surrounding rock on both sides experienced tensile stress,cumulative stress release,and the vertical propagation of tensile cracks.展开更多
In the underhand cut-and-fill mining method,a sill mat(i.e.an artificial horizontal pillar)constructed by cemented backfill is essential to prevent mine workers from being directly exposed under problematic rock roofs...In the underhand cut-and-fill mining method,a sill mat(i.e.an artificial horizontal pillar)constructed by cemented backfill is essential to prevent mine workers from being directly exposed under problematic rock roofs.A critical issue is to determine the minimum required strength of the sill mat to ensure a safe and cost-effective design.Until now,Mitchell’s analytical solution is the only available option,considering two stiff and immobile rock walls.Unavoidable rock wall closure associated with stope excavation below the sill mat was neglected.This,along with other undefined parameters,explains why Mitchell’s solution is rarely used in sill mat design.A new analytical solution for determining the minimum required strength of the sill mat accounting for wall closure is necessary.In this study,a closed-form analytical solution for estimating rock wall closure generated by stope excavation below a sill mat is developed by using Salamon’s and Flamant’s models.The proposed analytical solution does not contain any coefficients of correction or calibration.Despite several assumptions(or somewhat of oversimplifications)necessary to render a simple analytical solution possible,good agreements are obtained between the rock wall closures predicted by applying the proposed analytical solution and those obtained numerically with FLAC3D for many cases with arbitrarily chosen geometrical and material parameters.The proposed analytical solution is therefore validated and can be used to evaluate the rock wall closure generated by stope excavation below a sill mat.展开更多
Soft rock is one of the common geological conditions in coal mine underground water reservoir engineering.The cross-scale correlation analysis of water erosion soft lithology deterioration is very important for the sa...Soft rock is one of the common geological conditions in coal mine underground water reservoir engineering.The cross-scale correlation analysis of water erosion soft lithology deterioration is very important for the safety and stability of coal mine underground reservoir(CMUR)engineering.To address the issues of grain crowding and segmentation difficulties in cross-scale corelation analysis,as well as the limitations of traditional etching methods,this study proposes an image grain segmentation method based on deep learning algorithms,utilizing scanning electron microscopy and image process-ing techniques.The method successfully segments crowded grains and eliminates the interference from misplaced particles.In addition,indoor uniaxial compression tests were conducted to obtain the mechanical properties of sandstone samples with different water content.By quantitatively characterizing the macroscopic and microscopic deterioration degree of red sandstone samples with different water contents,the relationship between the strength changes of rock samples and the pet-rographic parameters such as grain size and grain shape is analyzed,and the influence law of soft lithology deterioration in CMUR engineering is revealed.The results indicate:(1)Water significantly weakens the mechanical properties and stability of soft rock.With increasing water content,the strength of sandstone samples continuously decreases,and the failure mode transitions from brittle to ductile failure.(2)The deterioration of micro-micro structures is the main cause of the decrease in mechanical properties of water-eroded soft rock.Grain size,grain area,and aspect ratio are negatively correlated with water content,indicating that hydrophilic minerals in soft rock dissolve under the action of water,leading to rock damage.(3)Grain size,area,and aspect ratio can serve as significant indicators for quantifying the strength changes of water-eroded soft rock.The research findings can be applied to stability assessment and disaster prevention in CMUR engineering.展开更多
The topic of ground movements in Germany has been studied extensively in the past,especially in the field of active mines.The active hard coal mines in Germany were finally shut down in 2018 and lignite mining is expe...The topic of ground movements in Germany has been studied extensively in the past,especially in the field of active mines.The active hard coal mines in Germany were finally shut down in 2018 and lignite mining is expected to take place only until 2038.The so-called long-term liabilities of the mine operators in Germany include,among other things,the long-term guarantee of stability and thus the monitoring of ground motion.So far,the economic use of underground mining in Germany was mainly the supply of raw materials.In the future,the underground storage of compressed air,methane or hydrogen will play an important role in renewable energy supply and climate change.Therefore,the underground storage space will become more important and the spatial planning is essential to ensure availability of safe underground openings for the various options of environmentally friendly energy storage.However,this renewed usage of underground openings may also bring new and sometimes unknown challenges of geomechanical influence.The aftermath of hard coal and lignite mining will be an increasing challenge in mining subsidence engineering.On the other hand,new possibilities due to underground spatial planning may lead to subsidence and/or heaving of the upper surface.展开更多
A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the conc...A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.展开更多
In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by con...In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.展开更多
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi...The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.展开更多
Background Traditional methods for monitoring mining equipment rely primarily on visual inspections,which are time-consuming,inefficient,and hazardous.This article introduces a novel approach to monitoring mission-cri...Background Traditional methods for monitoring mining equipment rely primarily on visual inspections,which are time-consuming,inefficient,and hazardous.This article introduces a novel approach to monitoring mission-critical systems and services in the mining industry by integrating virtual reality(VR)and digital twin(DT)technologies.VR-based DTs enable remote equipment monitoring,advanced analysis of machine health,enhanced visualization,and improved decision making.Methods This article presents an architecture for VR-based DT development,including the developmental stages,activities,and stakeholders involved.A case study on the condition monitoring of a conveyor belt using real-time synthetic vibration sensor data was conducted using the proposed methodology.The study demonstrated the application of the methodology in remote monitoring and identified the need for further development for implementation in active mining operations.The article also discusses interdisciplinarity,choice of tools,computational resources,time and cost,human involvement,user acceptance,frequency of inspection,multiuser environment,potential risks,and applications beyond the mining industry.Results The findings of this study provide a foundation for future research in the domain of VR-based DTs for remote equipment monitoring and a novel application area for VR in mining.展开更多
The complex stress environment in deep roadways,often exacerbated by thick and hard strata,frequently precipitates coal bursts,posing significant safety hazards.This paper investigates the mechanisms and preventive me...The complex stress environment in deep roadways,often exacerbated by thick and hard strata,frequently precipitates coal bursts,posing significant safety hazards.This paper investigates the mechanisms and preventive methods for coal bursts in the gob-side roadway floor(GSRF)under thick and hard roof in the Ordos region,China.First,the stress-distributing characters of GSRF were analyzed then a stress calculation formula was derived.A mechanical model was developed to determine the critical stress for buckling failure of the roadway floor strata.Criteria for the bursting instability of GSRF were then established.The lateral static load from the adjacent gob,the advancing static load from the working face,and the disturbance load from overlying thick and hard roof fractures combine to transmit high loads and energy to the roadway floor via the“roof→rib→floor”pathway,causing increased stress concentration and energy accumulation.When the conditions satisfy the criteria for bursting instability,coal bursts can occur on the roadway floor.To mitigate dynamic load disturbances,the paper proposes roof regional fracturing and abrasive water jet axial roof cutting.Hydraulic reaming of gutters in the roadway ribs and deep hole blasting at the roadway bottom corners are offered to alleviate the static loads on the surrounding rock.The implementation of targeted prevention measures for dynamic and static loads effectively reduces coal bursts in GSRF.These findings offer an example of preventing and controlling coal bursts in other mines of the Ordos region with comparable geological conditions.展开更多
基金supported by the National Natural Science Foundation of China(No.12071047,51774289,52074291).
文摘To ameliorate the difficulties of on-site dynamic disaster control in the end-mining stage of traditional mining engineering,this paper introduces the mathematical research and engineering application of the end-mining technology system with non-pillar in mines(ETSNM)in recent years.The petal warning criterion for the stability of the surrounding rock of the roadway at the end-mining stage was obtained by studying the inverse problem of the petal theorem.A conformal mathematical model of the end-mining stage was established using the conformal mapping method,and the limit theorem of the peak point of mine pressure(LTPPMP)in the end-mining stage was demonstrated.Based on the cross-fusion of the above basic mathematical theory and the LTPPMP,a new ETSNM model was proposed,which includes no coal pillar,no dedicated retracement roadways,and fast retracement equipment(NNF).The mathematical principles of engineering technology for height control,speed limit,and roof cutting in the end-mining stage with non-pillar were revealed.The scientific and application values of the ETSNM were confirmed through engineering applications.Based on this,a new non-pillar control technology for dynamic disasters in the end-mining stage was proposed.The above research will play an active role in promoting the engineering application of ETSNM driven by mathematical theory.
基金financially supported by the National Natural Science Foundation of China (No.52104155)the China Postdoctoral Science Foundation (No.2023M733778)the Fundamental Research Funds for the Central Universities,China (No.2024ZKPYNY01)。
文摘Discrete element method(DEM)-based simulations are crucial for bridging macro and micro research,particularly owing to the limitations of experimental methods.This paper reviews the simulation techniques used for particle breakage in DEM,summarizes the research status,and discusses pertinent issues to outline future prospects for particle breakage simulation.Fragment replacement method(FRM)and bonded particle method(BPM)are widely used to simulate particle breakage based on DEM.In BPM models,sub-particle size selection,particle cluster generation mode,and bonding parameters are crucial considerations.Although BPM can simulate the breakage of particles with complex shapes,it cannot re-simulate them,posing difficulties in coordinating calculation load and simulation accuracy.For FRM,the fragment replacement mode and particle breakage criteria are critical.The number and size of replacement particles are difficult to match with actual conditions,and ensuring mass conservation is significantly challenging.Although the initial computational load in FRM is relatively low,it increases significantly as the simulation progresses.To address these issues,we propose a simulation method that integrates BPM and FRM,allowing sub-particle breakage in BPM to be realized by FRM.
基金financial support from the Distinguished Youth Funds of the National Natural Science Foundation of China(No.52425403)the Hunan Province Graduate Research Innovation Project of China(No.CX20230168)。
文摘The rock mass failure induced by deep mining exhibits pronounced spatial heterogeneity and diverse mechanisms,with its microseismic responses serving as effective indicators of regional failure evolution and instability mechanisms.Focusing on the Level VI stope sublayers in the Jinchuan#2 mining area,this study constructs a 24-parameter index system encompassing time-domain features,frequency-domain features,and multifractal characteristics.Through manifold learning,clustering analysis,and hybrid feature selection,15 key indicators were extracted to construct a classification framework for failure responses.Integrated with focal mechanism inversion and numerical simulation,the failure patterns and corresponding instability mechanisms across different structural zones were further identified.The results reveal that multiscale microseismic characteristics exhibit clear regional similarities.Based on the morphological features of radar plots derived from the 15 indicators,acoustic responses were classified into four typical types,each reflecting distinct local failure mechanisms,stress conditions,and plastic zone evolution.Moreover,considering dominant instability factors and rupture modes,four representative rock mass instability models were proposed for typical failure zones within the stope.These findings provide theoretical guidance and methodological support for hazard prediction,structural optimization,and disturbance control in deep metal mining areas.
基金Ministry of Education Supply and Demand Matching Employment Education Project,“Exploration and Practice of School-Enterprise Co-Education of Surveying and Mapping Professionals Under the Background of Industry-Education Integration”(Project No.:2024010250340)。
文摘To promote the achievement of high-quality and full employment goals for students in higher education,this paper analyzes the integration path of practical education and teaching in civil engineering and transportation majors,guided by surveying employment.This paper proposes three integration paths for practical teaching and education in civil engineering and transportation majors under the employment orientation.The first path is to create a modularized and informatized curriculum system.The second path is to deepen diverse cooperative practices between schools and enterprises.The third path is to construct a diversified quality evaluation system for academic achievement.To ensure the quality of education and employment,schools should continuously evaluate and reflect on the practical effects of these three paths to further optimize them.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907501)the National Natural Science Foundation of China(No.52374106)+1 种基金the China Postdoctoral Science Foundation(Grant no.2024T171006)the National Natural Science Foundation of China(Grant no.52204163).
文摘Rib spalling is a highly severe issue during mining in deep-buried large-mining-height working faces.This study takes Zhaogu No.2 Coal Mine in Jiaozuo Coalfield,China,as the research background and carries out three focused works to address this problem.Firstly,field measurements were conducted to clarify rib spalling characteristics:the coal wall is dominated by shear failure,internal cracks are mainly distributed 3–6 m above the coal wall surface,and the maximum depth of crack development reaches 3 m.Secondly,Universal Distinct Element Code(UDEC)numerical simulation software was used to build a rib spalling model,with the Trigon model adopted to divide the coal wall into blocks.Analysis of four key factors shows that increased buried depth and mining height significantly raise the total length of coal wall internal cracks,increasing rib spalling risk,while higher coal body strength and support strength effectively alleviate this phenomenon.Finally,an orthogonal experiment was designed to quantitatively determine the influence degree of the four factors on rib spalling.Results show that coal body strength has the greatest impact,followed by support strength,mining height,and mining depth in order of influence.This study provides valuable theoretical guidance for on-site prevention and control of coal wall rib spalling.
基金funded by the National Natural Science Foundation of China (No.52225402)Inner Mongolia Research Institute,China University of Mining and Technology-Beijing (IMRI23003)。
文摘In the gas-coal integrated mining field,the conventional design method of pipeline coal pillars leads to a large amount of coal pillars being unrecovered and overlooks the pipeline's safety requirements.Considering the coal pillar recovery rate and pipeline's safety requirements,two new shaped coal pillar design approaches for subsurface pipelines were developed.Firstly,the deformation limitations for measuring pipeline safety are categorized into two:no deformation is permitted,and deformation is acceptable within elastic limits.Subsequently,integrating the key stratum theory(KST)and cave angle,a fishbone-shaped coal pillar design approach that does not permit pipeline deformation is established.Meanwhile,combined with the ground subsidence and the pipeline's elastic deformation limit,a grille-shaped coal pillar design approach that accepts deformation pipelines within elastic limits is established.Those two new approaches clarify parameters including mined width,coal pillar width and mined length.Finally,the case study shows that the designed mined width,coal pillar width and mined length of the fishbone-shaped coal pillar are 90,80,and 130 m,while those of the grille-shaped are 320,370,and640 m.Compared with the conventional method,the fishbone-shaped and grille-shaped coal pillar design approaches recovered coal pillar resources of 2.65×10~6and 5.81×10~6t on the premise of meeting the pipeline safety requirements,and the recovery rates increased by 20.5%and 45.0%,with expenditures representing only 56.46%and 20.02%of the respective benefits.These new approaches provide managers with diverse options for protecting pipeline safety while promoting coal pillar recovery,which is conducive to the harmonic mining of gas-coal resources.
基金funded by Guizhou Provincial Science and Technology Project,Qiankehejichu-ZK[2022]-YB529Guizhou Education Department(Youth Science and Technology Topnotch Talent Project)QJJ[2024]345+1 种基金Guizhou Provincial Science and Technology Project,QKHJC-ZK[2023]-YBGuizhou Education Department Youth Science and Technology Talents Growth Project,QJHKY[2020]122.
文摘The complex and diverse nature of coal mining sites,including different landforms and working conditions,presents challenges for rehabilitation efforts.To address this,we conducted a comprehensive experimental study focusing on microbially induced calcium carbonate precipitation(MICP)remediation,considering the fracture characteristics of coal mining sites.The MICP-restored samples were subjected to confined/unconfined compressive strength,uniaxial/triaxial permeability,and souring tests to assess their restoration efficacy.The results showed that under similar mining conditions,the average depth of parallel fractures was 0.185 m for loess ridges,0.16 m for the valley,and 0.146 m for the blown-sand region,while the average depth for boundary fractures was 0.411 m for loess ridges,0.178 m for the valley,and 0.268 m for the blown-sand region.Notably,parallel fractures showed negligible filling in all landforms,whereas boundary fractures in the blown-sand region were completely filled with wind-deposited sand.The valley landform was filled with alluvium and wind-deposited sand,whereas the loess landform was filled with wind-deposited sand and loess.MICP-restored soil samples in all landforms achieved a strength comparable to remolded fracture-free soil samples.Across all landforms,the maximum permeability coefficient of MICP-restored soil samples closely matched that of remolded fracture-free soil samples.Under similar topographic and rainfall conditions MICP restorations scoured 31.3 g on blown-sand region,19.3 g on loess ridges,and 17.6 g on valleys.These research findings provide an experimental foundation for MICP repair of coal mining ground fractures.
基金the Fundamental Research Funds for the Central Universities(2023YQTD02)National Key R&D Program of China(2023YFC2907501)。
文摘To address issues such as inefficient top-coal drawing,challenges in simultaneously mining and drawing,and the need for intelligent control in extra-thick coal seams,this study examines the principles of top-coal drawing and explores automation and intelligent equipment solutions within the framework of the group coal drawing method.Numerical simulations were performed to investigate the impact of the Number of Drawing Openings(NDO)and rounds on top-coal recovery,coal draw-ing efficiency,and Top Coal Loss(TCL)mechanism.Subsequently,considering the recovery and coal drawing efficiency and by introducing the instantaneous gangue content and cumulative gangue content in simulations,the top-coal recovery,gangue content,and coal loss distribution when considering excessive coal drawing were analyzed.This established a foun-dation for determining the optimal NDO and shutdown timing.Finally,the key technical principle and automated control of a shock vibration and hyperspectral fusion recognition device were detailed,and an intelligent coal drawing control method based on this technology was developed.This technology enabled the precise control of the instantaneous gangue content(35%)during coal drawing.The top-coal recovery at the Tashan Mine 8222 working face increased by 14.78%,and the gangue content was controlled at~9%,consistent with the numerical simulation results.Thus,the reliability of the numerical simulation results was confirmed to a certain extent.Meanwhile,the single-group drawing method significantly enhanced the production capacity of the 8222 working face,achieving an annual output of 15 million tons.
基金Project(52204164)supported by the National Natural Science Foundation of ChinaProject(2021QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.
基金supported by the National Natural Science Foundation of China(Grant Nos.5193400852374106+5 种基金5220416352404159)China Postdoctoral Science Foundation(Grant no.2024T171006)the Fundamental Research Funds for the Central Universities(Grant Nos.2024ZKPYNY042023ZKPYNY012023YQTD02)。
文摘Underground coal mining induces significant surface deformation and environmental damage,particularly in deeply buried mining areas with thin bedrock and thick alluvial layers.Based on the case study of the Zhaogu No.2 coal mine in Xinxiang City,Henan Province,China,this study employs a comprehensive research methodology,integrating field investigations,numerical simulations,and theoretical analyses,to explore the surface subsidence features at deeply buried mining areas with thin bedrock and thick alluvial layers,to reveal the effect of alluvial thickness on the surface subsidence characteristics.The findings indicate that the surface subsidence areas span 4.2 km2 with an advanced influence distance of 540 m.The rate of surface subsidence primarily depends on the panel's position and its advancing rate.Moreover,the thickness of the alluvial layer amplifies both the extent and magnitude of surface deformation.The displacement of overlying rock primarily exhibits a two-stage progression:the thin bedrock control stage and the alluvial control stage.In the thin bedrock control stage,surface subsidence initiates with relatively low subsidence values and amplitudes.Subsequently,in the alluvial control stage,surface subsidence accelerates,leading to a rapid increase in both subsidence values and amplitudes.These characteristics of rock formation displacement result in distinct phases of surface subsidence.Furthermore,the paper addresses the utilization of surface subsidence areas and proposes a method for calculating reservoir storage capacity in these areas.According to calculations,the storage capacity amounts to 1.05e7 m^(3).The research findings provide valuable insights into the surface subsidence laws in regions with similar geological conditions and practical implications for the management and utilization of subsided areas.
基金Projects(2024YFC3013801,2022YFC3004602)supported by the National Key R&D Program of ChinaProjects(U23B2093,52034009)supported by the National Natural Science Foundation of China。
文摘Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep chambers.Therefore,previous residual strength models of rocks established were reviewed.And corresponding related problems were stated.Subsequently,starting from the effects of bedding and whole life-cycle evolution process,series of triaxial mechanical tests of deep bedded sandstone with five bedding angles were conducted under different confining pressures.Then,six residual strength models considering the effects of bedding and whole life-cycle evolution process were established and evaluated.Finally,a cohesion loss model for determining residual strength of deep bedded sandstone was verified.The results showed that the effects of bedding and whole life-cycle evolution process had both significant influences on the evolution characteristic of residual strength of deep bedded sandstone.Additionally,residual strength parameters:residual cohesion and residual internal friction angle of deep bedded sandstone were not constant,which both significantly changed with increasing bedding angle.Besides,the cohesion loss model was the most suitable for determining and estimating the residual strength of bedded rocks,which could provide more accurate theoretical guidance for the stability control of deep chambers.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.51974187)Intelligent Mine Blasting and Innovative Technology Platform Construction(LJ232410146045)Liaoning Revitalization Talents Program(XLYC2203173).
文摘Cross roadway collapses are a common occurrence in underground mining operations.While the influence of mining blasts on the stability of surrounding rock is acknowledged,the underlying mechanisms remain inadequately understood.This study investigates the characteristics and mechanisms of collapse in a shallow buried cross roadway subjected to mining blast disturbances,drawing insights from an engineering project in Anshan City,Northeast China.A strain-softening model based on unified strength theory was developed to effectively calculate and analyze the loosened zone thickness and surrounding rock displacement.The PFC3D-FLAC3D coupling method was employed to clarify the concentrated collapse area within the cross roadway,providing insight into the collapse mechanism through a cross-sectional model of the concentrated region.Results demonstrate that 50%of the cross roadway collapsed following the mining blast.Subsidence at the intersection was approximately one-fifth(0.66 m)of cross roadway’s net height,exceeding subsidence in other areas by 1.3.Under the action of repeated mining blasting,the cross section of the connection roadway forms a semi-elliptical high tensile stress zone.After the cumulative damage of the surrounding rock of the connection roadway exceeds the ultimate yield strength,the cumulative stress release causes the tensile failure of the surrounding rock.The plastic zone of the connecting roadway expands to three times of the initial,and continues to develop.The surrounding rock on both sides experienced tensile stress,cumulative stress release,and the vertical propagation of tensile cracks.
基金financial support from the Young Scientist Project of the National Key Research and Development Program of China(Grant No.2021YFC2900600)the Beijing Nova Program(Grant No.20220484057)+1 种基金The authors acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada(Grant No.RGPIN-2018-06902)industrial partners of the Research Institute on Mines and the Environment(RIME UQAT-Polytechnique:https://irme.ca/en/).
文摘In the underhand cut-and-fill mining method,a sill mat(i.e.an artificial horizontal pillar)constructed by cemented backfill is essential to prevent mine workers from being directly exposed under problematic rock roofs.A critical issue is to determine the minimum required strength of the sill mat to ensure a safe and cost-effective design.Until now,Mitchell’s analytical solution is the only available option,considering two stiff and immobile rock walls.Unavoidable rock wall closure associated with stope excavation below the sill mat was neglected.This,along with other undefined parameters,explains why Mitchell’s solution is rarely used in sill mat design.A new analytical solution for determining the minimum required strength of the sill mat accounting for wall closure is necessary.In this study,a closed-form analytical solution for estimating rock wall closure generated by stope excavation below a sill mat is developed by using Salamon’s and Flamant’s models.The proposed analytical solution does not contain any coefficients of correction or calibration.Despite several assumptions(or somewhat of oversimplifications)necessary to render a simple analytical solution possible,good agreements are obtained between the rock wall closures predicted by applying the proposed analytical solution and those obtained numerically with FLAC3D for many cases with arbitrarily chosen geometrical and material parameters.The proposed analytical solution is therefore validated and can be used to evaluate the rock wall closure generated by stope excavation below a sill mat.
基金supported by the National Natural Science Foundation of China(51774196,52304093)China Postdoctoral Science Foundation(2023M741968)Shandong Provincial Natural Science Foundation(ZR2023ME086).
文摘Soft rock is one of the common geological conditions in coal mine underground water reservoir engineering.The cross-scale correlation analysis of water erosion soft lithology deterioration is very important for the safety and stability of coal mine underground reservoir(CMUR)engineering.To address the issues of grain crowding and segmentation difficulties in cross-scale corelation analysis,as well as the limitations of traditional etching methods,this study proposes an image grain segmentation method based on deep learning algorithms,utilizing scanning electron microscopy and image process-ing techniques.The method successfully segments crowded grains and eliminates the interference from misplaced particles.In addition,indoor uniaxial compression tests were conducted to obtain the mechanical properties of sandstone samples with different water content.By quantitatively characterizing the macroscopic and microscopic deterioration degree of red sandstone samples with different water contents,the relationship between the strength changes of rock samples and the pet-rographic parameters such as grain size and grain shape is analyzed,and the influence law of soft lithology deterioration in CMUR engineering is revealed.The results indicate:(1)Water significantly weakens the mechanical properties and stability of soft rock.With increasing water content,the strength of sandstone samples continuously decreases,and the failure mode transitions from brittle to ductile failure.(2)The deterioration of micro-micro structures is the main cause of the decrease in mechanical properties of water-eroded soft rock.Grain size,grain area,and aspect ratio are negatively correlated with water content,indicating that hydrophilic minerals in soft rock dissolve under the action of water,leading to rock damage.(3)Grain size,area,and aspect ratio can serve as significant indicators for quantifying the strength changes of water-eroded soft rock.The research findings can be applied to stability assessment and disaster prevention in CMUR engineering.
文摘The topic of ground movements in Germany has been studied extensively in the past,especially in the field of active mines.The active hard coal mines in Germany were finally shut down in 2018 and lignite mining is expected to take place only until 2038.The so-called long-term liabilities of the mine operators in Germany include,among other things,the long-term guarantee of stability and thus the monitoring of ground motion.So far,the economic use of underground mining in Germany was mainly the supply of raw materials.In the future,the underground storage of compressed air,methane or hydrogen will play an important role in renewable energy supply and climate change.Therefore,the underground storage space will become more important and the spatial planning is essential to ensure availability of safe underground openings for the various options of environmentally friendly energy storage.However,this renewed usage of underground openings may also bring new and sometimes unknown challenges of geomechanical influence.The aftermath of hard coal and lignite mining will be an increasing challenge in mining subsidence engineering.On the other hand,new possibilities due to underground spatial planning may lead to subsidence and/or heaving of the upper surface.
文摘A new approach for prediction of face advance rete (FAR) prior to mining operation and determination of the operation efficiency after mining operation in retreat longwall mining panel is presented based upon the concepts of rock engineering system (RES). For this purpose, six longwall panels considered in Parvadeh-I coal mine. Seven major effective parameters on FAR was selected including coal mine roof rating, gas propagation, safety factor of longwall face, ratio of joint spacing to cutting depth at longwall face, longwall face inclination, panel width, floor rock mass rating. To performance evaluation of the presented model, the relationship between the average vulnerability indexes of advance operation with FAR was determined in considered panels with coefficient of determination (R2) equal to 0.884 that indicate relatively acceptable correlation and compatibility. Investigations of the research indicated that it is possible to determine the actual operation efficiency under fair conditions by a RES-based model. The inevitable reduction of FAR for each longwall panel was determined by presented model that the difference amount between the maximum possible practical face advance rate (FARmpp) and recorded actual face advance rate (FARa) indicate the operation efficiency. Applied approach in this paper can be used to prediction of FAR in retreat longwall mining panel for same conditions that can have many benefits, including better and more accurate planning for the sales market and mine operation. Also, presented method in this paper can be applied as a useful tool to determination of actual operation efficiency for other sections and extraction methods in coal mines.
基金financial support from the National Key Research and Development Program of China (No.2023YFC2907501)the National Natural Science Foundation of China (No.52374106)the Fundamental Research Funds for the Central Universities (No.2023ZKPYNY01)。
文摘In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.
基金supported by the National Natural Science Foundation of China (No.52374124)National Youth Science Foundation of China (No.52204135)+3 种基金Xing Liao Talent Plan (No.XLYC2202004)Young Elite Scientists Sponsorship Program by CAST (No.2023QNRC001)Liaoning Province International Science and Technology Cooperation Plan (No.2022JH2/1070004)Liaoning Natural Science Foundation Program (No.2022-BS-327)。
文摘The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.
基金the Natural Sciences and Engineering Research Council of Canada(NSERC)under GR012389.
文摘Background Traditional methods for monitoring mining equipment rely primarily on visual inspections,which are time-consuming,inefficient,and hazardous.This article introduces a novel approach to monitoring mission-critical systems and services in the mining industry by integrating virtual reality(VR)and digital twin(DT)technologies.VR-based DTs enable remote equipment monitoring,advanced analysis of machine health,enhanced visualization,and improved decision making.Methods This article presents an architecture for VR-based DT development,including the developmental stages,activities,and stakeholders involved.A case study on the condition monitoring of a conveyor belt using real-time synthetic vibration sensor data was conducted using the proposed methodology.The study demonstrated the application of the methodology in remote monitoring and identified the need for further development for implementation in active mining operations.The article also discusses interdisciplinarity,choice of tools,computational resources,time and cost,human involvement,user acceptance,frequency of inspection,multiuser environment,potential risks,and applications beyond the mining industry.Results The findings of this study provide a foundation for future research in the domain of VR-based DTs for remote equipment monitoring and a novel application area for VR in mining.
基金financially supported by the National Key Research and Development Program of China(2022YFC3004604)National Natural Science Foundation of China(U23B2093).
文摘The complex stress environment in deep roadways,often exacerbated by thick and hard strata,frequently precipitates coal bursts,posing significant safety hazards.This paper investigates the mechanisms and preventive methods for coal bursts in the gob-side roadway floor(GSRF)under thick and hard roof in the Ordos region,China.First,the stress-distributing characters of GSRF were analyzed then a stress calculation formula was derived.A mechanical model was developed to determine the critical stress for buckling failure of the roadway floor strata.Criteria for the bursting instability of GSRF were then established.The lateral static load from the adjacent gob,the advancing static load from the working face,and the disturbance load from overlying thick and hard roof fractures combine to transmit high loads and energy to the roadway floor via the“roof→rib→floor”pathway,causing increased stress concentration and energy accumulation.When the conditions satisfy the criteria for bursting instability,coal bursts can occur on the roadway floor.To mitigate dynamic load disturbances,the paper proposes roof regional fracturing and abrasive water jet axial roof cutting.Hydraulic reaming of gutters in the roadway ribs and deep hole blasting at the roadway bottom corners are offered to alleviate the static loads on the surrounding rock.The implementation of targeted prevention measures for dynamic and static loads effectively reduces coal bursts in GSRF.These findings offer an example of preventing and controlling coal bursts in other mines of the Ordos region with comparable geological conditions.