Longwall mining has a significant influence on gas wells located within longwall chain pillars.Subsurface subsidence and abutment pressure induced by longwall mining can cause excessive stresses and deformations in ga...Longwall mining has a significant influence on gas wells located within longwall chain pillars.Subsurface subsidence and abutment pressure induced by longwall mining can cause excessive stresses and deformations in gas well casings.If the gas well casings are compromised or ruptured,natural gas could migrate into the mine workings,potentially causing a fire or explosion.By the current safety regulations,the gas wells in the chain pillars have to be either plugged or protected by adequate coal pillars.The current regulations for gas well pillar design are based on the 1957 Pennsylvania gas well pillar study.The study provided guidelines for gas well pillars by considering their support area and overburden depth as well as the location of the gas wells within the pillars.As the guidelines were developed for room-andpillar mining under shallow cover,they are no longer applicable to modern longwall coal mining,particularly,under deep cover.Gas well casing of failures have occurred even though the chain pillars for the gas wells met the requirements by the 1957 study.This study,conducted by the National Institute for Occupational Safety and Health(NIOSH),presents seven cases of conventional gas wells penetrating through longwall chain pillars in the Pittsburgh Coal Seam.The study results indicate that overburden depth and pillar size are not the only determining factors for gas well stability.The other important factors include subsurface ground movement,overburden geology,weak floor,as well as the type of the construction of gas wells.Numerical modeling was used to model abutment pressure,subsurface deformations,and the response of gas well casings.The study demonstrated that numerical models are able to predict with reasonable accuracy the subsurface deformations in the overburden above,within,and below the chain pillars,and the potential location and modes of gas well failures,thereby providing a more quantifiable approach to assess the stability of the gas wells in longwall chain pillars.展开更多
This paper presents the results of a unique study conducted by the National Institute for Occupational Safety and Health(NIOSH)from 2016 to 2019 to evaluate the effects of longwall-induced subsurface deformations on s...This paper presents the results of a unique study conducted by the National Institute for Occupational Safety and Health(NIOSH)from 2016 to 2019 to evaluate the effects of longwall-induced subsurface deformations on shale gas well casing integrity and underground miner safety and health.At both deep-cover and shallow-cover instrumentation sites,surface subsidence measurements,subsurface inplace inclinometer measurements,and underground pillar pressure measurements were conducted as longwall panels were mined.Comparisons of the deep-cover and shallow-cover test site results with those from a similar study under medium cover reveal an interesting longwall-induced response scenario.Under shallow and medium covers,measured horizontal displacements within the abutment pillar are one order of magnitude higher than those measured under deep cover.On the other hand,measured vertical compressions under deep cover are one order of magnitude higher than those under shallow and medium covers.However,FLAC3 Dsimulations of the casings indicate that,in all three cases,the P-110 production casings remain intact under longwall-induced deformations and compressions,which has serious implications for future mine design in areas where shale gas wells have been drilled ahead of mining.展开更多
While faults are commonly simulated as a single planar or non-planar interface for a safety or stability analysis in underground mining excavation, the real 3D structure of a fault is often very complex, with differen...While faults are commonly simulated as a single planar or non-planar interface for a safety or stability analysis in underground mining excavation, the real 3D structure of a fault is often very complex, with different branches that reactivate at different times. Furthermore, these branches are zones of nonzero thickness where material continuously undergoes damage even during interseismic periods. In this study, the initiation and the initial evolution of a strike-slip fault was modeled using the FLAC3D software program. The initial and boundary conditions are simplified, and mimic the Riedel shear experiment and the constitutive model in the literature. The FLAC3D model successfully replicates and creates the 3D fault zone as a strike-slip type structure in the entire thickness of the model. The strike-slip fault structure and normal displacement result in the formation of valleys in the model. Three panels of a longwall excavation are virtually placed and excavated beneath a main valley. The characteristics of stored and dissipated energy associated with the panel excavations are examined and observed at different stages of shear strain in the fault to evaluate bump potential. Depending on the shear strain in the fault, the energy characteristics adjacent to the longwall panels present different degrees of bump potential, which is not possible to capture by conventional fault simulation using an interface.展开更多
In 2016, room-and-pillar mining provided nearly 40% of underground coal production in the United States.Over the past decade, rib falls have resulted in 12 fatalities, representing 28% of the ground fall fatalities in...In 2016, room-and-pillar mining provided nearly 40% of underground coal production in the United States.Over the past decade, rib falls have resulted in 12 fatalities, representing 28% of the ground fall fatalities in U.S.underground coal mines.Nine of these 12 fatalities(75%) have occurred in room-andpillar mines.The objective of this research is to study the geomechanics of bench room-and-pillar mining and the associated response of high pillar ribs at overburden depths greater than 300 m.This paper provides a definition of the bench technique, the pillar response due to loading, observational data for a case history, a calibrated numerical model of the observed rib response, and application of this calibrated model to a second site.展开更多
Ground control is the science of studying and controlling the behavior of rock strata in response to mining operations. Ground control-related research has seen significant advancements over the last 37 years, and the...Ground control is the science of studying and controlling the behavior of rock strata in response to mining operations. Ground control-related research has seen significant advancements over the last 37 years, and these accomplishments are well documented in the proceedings of the annual International Conference on Ground Control in Mining (ICGCM)(1)The ICGCM is a forum to promote closer communication among researchers, consultants。展开更多
Ground control is the science of studying and controlling the behavior of rock strata in response to mining operations.Ground control-related research has seen significant advancements over the last 36 years,and these...Ground control is the science of studying and controlling the behavior of rock strata in response to mining operations.Ground control-related research has seen significant advancements over the last 36 years,and these accomplishments are well documented in the proceedings of the annual International Conference on Ground Control in Mining(ICGCM)[1].The ICGCM is a forum to promote closer communication among researchers,consultants,regulators,manufacturers,and mine operators to expedite solutions to ground control problems in mining[2–8].Fundamental research and advancements in ground control science define the central core of the conference mission.Providing information to mine operators is a priority,as the conference goal is to offer solution-oriented information.In addition,the conference has included innovative technologies and ideas in mining-related fields such as exploration,geology,and surface and underground mining.Many new ground control technologies and design standards adopted by the mining industry were first discussed at ICGCM.Therefore,this conference is recognized as the best forum for introducing new ground control-related research and products.展开更多
Ground control is the science of studying and controlling the behavior of rock strata in response to mining operations.Ground-control-related research has seen significant advancements over the last 39 years,and these...Ground control is the science of studying and controlling the behavior of rock strata in response to mining operations.Ground-control-related research has seen significant advancements over the last 39 years,and these accomplishments are well documented in the proceedings of the annual International Conference on Ground Control in Mining(ICGCM)[1].The ICGCM is a forum to promote closer communication among researchers,consultants,regulators,manufacturers,and mine operators to expedite solutions to ground control problems in mining[2–7].Fundamental research and advancements in ground control science define the central core of the conference mission.Providing information to mine operators is a priority,as the conference goal is to offer solutions-oriented information.In addition,the conference has included innovative technologies and ideas in miningrelated fields such as exploration,geology,and surface and underground mining in all commodities.Many new ground control technologies and design standards adopted by the mining industry were first discussed at ICGCM.Therefore,this conference is recognized as the best international forum for introducing new groundcontrol-related research and products.展开更多
Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentia...Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software.展开更多
Accumulation of float coal dust(FCD)in underground mines is an explosion hazard that affects all underground coal mine workers.While this hazard is addressed by the application of rock dust,inadequate rock dusting pra...Accumulation of float coal dust(FCD)in underground mines is an explosion hazard that affects all underground coal mine workers.While this hazard is addressed by the application of rock dust,inadequate rock dusting practices can leave miners exposed to an explosion risk.Researchers at the National Institute for Occupational Safety and Health(NIOSH)have focused on developing a water curtain that removes FCD from the airstream,thereby reducing the buildup of FCD in mine airways.In this study,the number and spacing of the active sprays in the water curtain were varied to determine the optimal configuration to obtain peak knockdown efficiency(KE)while minimizing water consumption.展开更多
Roof falls in longwall headgate can occur when weak roof and high horizontal stress are present. To prevent roof falls in the headgate under high horizontal stress, it is important to understand the ground response to...Roof falls in longwall headgate can occur when weak roof and high horizontal stress are present. To prevent roof falls in the headgate under high horizontal stress, it is important to understand the ground response to high horizontal stress in the longwall headgate and the requirements for supplemental roof support. In this study, a longwall headgate under high horizontal stress was instrumented to monitor stress change in the pillars, deformations in the roof, and load in the cable bolts. The conditions in the headgate were monitored for about six months as the longwall face passed by the instrumented site.The roof behavior in the headgate near the face was carefully observed during longwall retreat.Numerical modeling was performed to correlate the modeling results with underground observation and instrumentation data and to quantify the effect of high horizontal stress on roof stability in the longwall headgate. This paper discusses roof support requirements in the longwall headgate under high horizontal stress in regard to the pattern of supplemental cable bolts and the critical locations where additional supplemental support is necessary.展开更多
This study explores the flotation behavior of chalcopyrite in the presence of different concentrations of sodium sulfide (Na2S·9H2O) at pH 12 under controlled potential conditions. It was observed that the flot...This study explores the flotation behavior of chalcopyrite in the presence of different concentrations of sodium sulfide (Na2S·9H2O) at pH 12 under controlled potential conditions. It was observed that the flotation of chalcopyrite is not depressed completely when the pulp potential is low, even at high concentrations of sodium sulfide, i.e., 10-1-10-2 mol/L. However, a partial and controlled oxidation of pulp does enhance the effectiveness of sodium sulfide on the depression of chalcopyrite. Characterization of the chalcopyrite particle surface by X-ray photoelectron spectroscopy allowed the identification of hydrophilic and hydrophobic surface species, which are responsible for the depression and flotation of chalcopyrite. Changes in pulp potential were found to be an effective float controlling parameter, by which Na2S can be used to initiate or depress the flotation behavior of chalcopyrite.展开更多
Bumps and other types of dynamic failure have been a persistent, worldwide problem in the underground coal mining industry, spanning decades.For example, in just five states in the U.S.from 1983 to 2014,there were 388...Bumps and other types of dynamic failure have been a persistent, worldwide problem in the underground coal mining industry, spanning decades.For example, in just five states in the U.S.from 1983 to 2014,there were 388 reportable bumps.Despite significant advances in mine design tools and mining practices,these events continue to occur.Many conditions have been associated with bump potential, such as the presence of stiff units in the local geology.The effect of a stiff sandstone unit on the potential for coal bumps depends on the location of the stiff unit in the stratigraphic column, the relative stiffness and strength of other structural members, and stress concentrations caused by mining.This study describes the results of a robust design to consider the impact of different lithologic risk factors impacting dynamic failure risk.Because the inherent variability of stratigraphic characteristics in sedimentary formations,such as thickness, engineering material properties, and location, is significant and the number of influential parameters in determining a parametric study is large, it is impractical to consider every simulation case by varying each parameter individually.Therefore, to save time and honor the statistical distributions of the parameters, it is necessary to develop a robust design to collect sufficient sample data and develop a statistical analysis method to draw accurate conclusions from the collected data.In this study,orthogonal arrays, which were developed using the robust design, are used to define the combination of the(a) thickness of a stiff sandstone inserted on the top and bottom of a coal seam in a massive shale mine roof and floor,(b) location of the stiff sandstone inserted on the top and bottom of the coal seam,and(c) material properties of the stiff sandstone and contacts as interfaces using the 3-dimensional numerical model, FLAC3D.After completion of the numerical experiments, statistical and multivariate analysis are performed using the calculated results from the orthogonal arrays to analyze the effect of these variables.As a consequence, the impact of each of the parameters on the potential for bumps is quantitatively classified in terms of a normalized intensity of plastic dissipated energy.By multiple regression, the intensity of plastic dissipated energy and migration of the risk from the roof to the floor via the pillars is predicted based on the value of the variables.The results demonstrate and suggest a possible capability to predict the bump potential in a given rock mass adjacent to the underground excavations and pillars.Assessing the risk of bumps is important to preventing fatalities and injuries resulting from bumps.展开更多
A numerical-model-based approach was recently developed for estimating the changes in both the horizontal and vertical loading conditions induced by an approaching longwall face.In this approach, a systematic procedur...A numerical-model-based approach was recently developed for estimating the changes in both the horizontal and vertical loading conditions induced by an approaching longwall face.In this approach, a systematic procedure is used to estimate the model's inputs.Shearing along the bedding planes is modeled with ubiquitous joint elements and interface elements.Coal is modeled with a newly developed coal mass model.The response of the gob is calibrated with back analysis of subsidence data and the results of previously published laboratory tests on rock fragments.The model results were verified with the subsidence and stress data recently collected from a longwall mine in the eastern United States.展开更多
The purpose of this study is to explore how the geochemical and petrographic components of coal may impact its physical properties and how these correlate with a history of reportable dynamic failure in coal mines.Dyn...The purpose of this study is to explore how the geochemical and petrographic components of coal may impact its physical properties and how these correlate with a history of reportable dynamic failure in coal mines.Dynamic failure events,also termed bumps,bounces,or bursts,are the explosive failures of rock in a mining environment.These events occur suddenly and often with no warning,resulting in worker injury up to and including fatality in greater than 60%of reportable cases through the Mine Safety and Health Administration(MSHA).A database of variables was compiled using publicly available datasets,which includes compositional geographic,strength,and Hardgrove grindability index(HGI)data.Results indicated that bumping coals were less mature,lower in carbon,higher in oxygen,softer,and less well cleated than coals that did not bump.High liptinite content was found to correlate with higher average uniaxial compressive strength(UCS)values.However,no clear and direct correlation between UCS and dynamic failure status was observed.The findings of this study established that differences existed between coals that had versus had not experienced reportable dynamic failure accidents.These differences were inherent to the coal itself and were independent of mining-induced risk factors.Results further illuminated how compositional attribute of coal influenced physical properties and began to clarify potential links between geochemistry and dynamic failure status.Only through the better understanding of risk can more effective mitigating strategies be enacted.展开更多
A comprehensive monitoring program was conducted to measure the rock mass displacements, support response, and stress changes at a longwall tailgate entry in West Virginia.Monitoring was initiated a few days after dev...A comprehensive monitoring program was conducted to measure the rock mass displacements, support response, and stress changes at a longwall tailgate entry in West Virginia.Monitoring was initiated a few days after development of the gateroad entries and continued during passage of the longwall panels on both sides of the entry.Monitoring included overcore stress measurements of the initial stress within the rock mass, changes in cable bolt loading, standing support pressure, roof deformation, rib deformation,stress changes in the coal pillar, and changes in the full three-dimensional stress tensor within the rock mass at six locations around the monitoring site.During the passage of the first longwall, stress measurements in the rock and coal detected minor changes in loading while minor changes were detected in roof deformation.As a result of the relatively favorable stress and geological conditions, the support systems did not experience severe loading or rock deformation until the second panel approached within 10–15 m of the instrumented locations.After reaching the peak loading at about 50–75 mm of roof sag, the cable bolts started to unload, and load was transferred to the standing supports.The standing support system was able to maintain an adequate opening inby the shields to provide ventilation to the first crosscut inby the face, as designed.The results were used to calibrate modeled cable bolt response to field data, and to validate numerical modeling procedures that have been developed to evaluate entry support systems.It is concluded that the support system was more than adequate to control the roof of the tailgate up to the longwall face location.The monitoring results have provided valuable data for the development and validation of support design strategies for longwall tailgate entries.展开更多
Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recov...Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.展开更多
1.Introduction Climate change has become a global nontraditional security challenge,and achieving carbon neutrality is the global trend of the era that will determine the future of humanity[1-5].So far,more than 137 c...1.Introduction Climate change has become a global nontraditional security challenge,and achieving carbon neutrality is the global trend of the era that will determine the future of humanity[1-5].So far,more than 137 countries have set goals or pledged to achieve carbon neutrality.In September 2020,China committed itself to peak carbon emissions by 2030 and to achieve carbon neutrality by 2060,in what are known as China’s“dual carbon goals”[6].展开更多
Accurately estimating load distributions and ground responses around underground openings play a significant role in the safety of the operations in underground mines.Adequately designing pillars and other support mea...Accurately estimating load distributions and ground responses around underground openings play a significant role in the safety of the operations in underground mines.Adequately designing pillars and other support measures relies highly on the accurate assessment of the loads that will be carried by them,as well as the load-bearing capacities of the supports.There are various methods that can be used to approximate mining-induced loads in stratified rock masses to be used in pillar design.The empirical methods are based on equations derived from large databases of various case studies.They are implemented in government approved design tools and are widely used.There are also analytical and numerical techniques used for more detailed analysis of the induced loads.In this study,two different longwall mines with different panel width-to-depth ratios are analyzed using different methods.The empirical method used in the analysis is the square-decay stress function that uses the abutment angle concept,implemented in pillar design software developed by the National Institute for Occupational Safety and Health(NIOSH).The first numerical method used in the analysis is a displacement-discontinuity(DD)variation of the boundary element method,LaModel,which utilizes the laminated overburden model.The second numerical method used in the analysis is Fast Lagrangian Analysis of Continua(FLAC)with the numerical modeling approach recently developed at West Virginia University which is based on the approach developed by NIOSH.The model includes the 2D slice of a cross-section along the width of the panel with the chain pillar system that also includes the different stratigraphic layers of the overburden.All three methods gave similar results for the shallow mine,both in terms of load percentages and distribution where the variation was more obvious for the deep cover mine.The FLAC3D model was observed to better capture the stress changes observed during the field measurements for both the shallow and deep cover cases.This study allowed us to see the shortcomings of each of these different methods.It was concluded that a numerical model which incorporates the site-specific geology would provide the most precise estimate for complex loading conditions.展开更多
Longwall abutment loads are influenced by several factors,including depth of cover,pillar sizes,panel dimensions,geological setting,mining height,proximity to gob,intersection type,and size of the gob.How does proximi...Longwall abutment loads are influenced by several factors,including depth of cover,pillar sizes,panel dimensions,geological setting,mining height,proximity to gob,intersection type,and size of the gob.How does proximity to the gob affect pillar loading and entry condition?Does the gob influence depend on whether the abutment load is a forward,side,or rear loading?Do non-typical bleeder entry systems follow the traditional front and side abutment loading and extent concepts?If not,will an improved understanding of the combined abutment extent warrant a change in pillar design or standing support in bleeder entries?This paper details observations made in the non-typical bleeder entries of a moderate depth longwall panel—specifically,data collected from borehole pressure cells and roof extensometers,observations of the conditions of the entries,and numerical modeling of the bleeder entries during longwall extraction.The primary focus was on the extent and magnitude of the abutment loading experienced due to the extraction of the longwall panels.Due to the layout of the longwall panels and bleeder entries,the borehole pressure cells(BPCs)and roof extensometers did not show much change due to the advancing of the first longwall.However,they did show a noticeable increase due to the second longwall advancement,with a maximum of about 4 MPa of pressure increase and 5mmof roof deformation.The observations of the conditions showed little to no change from before the first longwall panel extraction began to when the second longwall panel had been advanced more than 915 m.Localized pillar spalling was observed on the corners of the pillars closest to the longwall gob as well as an increase in water in the entries.In addition to the observations and instrumentation,numerical modeling was performed to validate modeling procedures against the monitoring results and evaluate the bleeder design.ITASCA Consulting Group’s FLAC3D numerical modeling software was used to evaluate the bleeder entries.The results of the models indicated only a minor increase in load during the extraction of the longwall panels.These models showed a much greater increase in stress due to the development of the gateroad and bleeder entries--about 80%development and 20%longwall extraction.The FLAC3D model showed very good correlation between modeled and expected gateroad loading during panel extraction.The front and side abutment extent modeled was very similar to observations from this and previous panels.展开更多
This paper presents the results of a 2017 study conducted by the National Institute for Occupational Safety and Health(NIOSH), Pittsburgh Mining Research Division(PMRD), to evaluate the effects of longwall-induced sub...This paper presents the results of a 2017 study conducted by the National Institute for Occupational Safety and Health(NIOSH), Pittsburgh Mining Research Division(PMRD), to evaluate the effects of longwall-induced subsurface deformations within a longwall abutment pillar under deep cover. The 2017 study was conducted in a southwestern Pennsylvania coal mine, which extracts 457 m-wide longwall panels under 361 m of cover. One 198 m-deep, in-place inclinometer monitoring well was drilled and installed over a 45 m by 84 m center abutment pillar. In addition to the monitoring well, surface subsidence measurements and underground coal pillar pressure measurements were conducted as the 457 m-wide longwall panel on the south side of the abutment pillar was being mined. Prior to the first longwall excavation, a number of simulations using FLAC3D^(TM) were conducted to estimate surface subsidence, increases in underground coal pillar pressure, and subsurface horizontal displacements in the monitoring well. Comparisons of the pre-mining FLAC3D simulation results and the surface, subsurface,and underground instrumentation results show that the measured in-place inclinometer casing deformations are in reasonable agreement with those predicted by the 3D finite difference models. The measured surface subsidence and pillar pressure are in excellent agreement with those predicted by the 3D models.Results from this 2017 research clearly indicate that, under deep cover, the measured horizontal displacements within the abutment pillar are approximately one order of magnitude smaller than those measured in a 2014 study under medium cover.展开更多
文摘Longwall mining has a significant influence on gas wells located within longwall chain pillars.Subsurface subsidence and abutment pressure induced by longwall mining can cause excessive stresses and deformations in gas well casings.If the gas well casings are compromised or ruptured,natural gas could migrate into the mine workings,potentially causing a fire or explosion.By the current safety regulations,the gas wells in the chain pillars have to be either plugged or protected by adequate coal pillars.The current regulations for gas well pillar design are based on the 1957 Pennsylvania gas well pillar study.The study provided guidelines for gas well pillars by considering their support area and overburden depth as well as the location of the gas wells within the pillars.As the guidelines were developed for room-andpillar mining under shallow cover,they are no longer applicable to modern longwall coal mining,particularly,under deep cover.Gas well casing of failures have occurred even though the chain pillars for the gas wells met the requirements by the 1957 study.This study,conducted by the National Institute for Occupational Safety and Health(NIOSH),presents seven cases of conventional gas wells penetrating through longwall chain pillars in the Pittsburgh Coal Seam.The study results indicate that overburden depth and pillar size are not the only determining factors for gas well stability.The other important factors include subsurface ground movement,overburden geology,weak floor,as well as the type of the construction of gas wells.Numerical modeling was used to model abutment pressure,subsurface deformations,and the response of gas well casings.The study demonstrated that numerical models are able to predict with reasonable accuracy the subsurface deformations in the overburden above,within,and below the chain pillars,and the potential location and modes of gas well failures,thereby providing a more quantifiable approach to assess the stability of the gas wells in longwall chain pillars.
文摘This paper presents the results of a unique study conducted by the National Institute for Occupational Safety and Health(NIOSH)from 2016 to 2019 to evaluate the effects of longwall-induced subsurface deformations on shale gas well casing integrity and underground miner safety and health.At both deep-cover and shallow-cover instrumentation sites,surface subsidence measurements,subsurface inplace inclinometer measurements,and underground pillar pressure measurements were conducted as longwall panels were mined.Comparisons of the deep-cover and shallow-cover test site results with those from a similar study under medium cover reveal an interesting longwall-induced response scenario.Under shallow and medium covers,measured horizontal displacements within the abutment pillar are one order of magnitude higher than those measured under deep cover.On the other hand,measured vertical compressions under deep cover are one order of magnitude higher than those under shallow and medium covers.However,FLAC3 Dsimulations of the casings indicate that,in all three cases,the P-110 production casings remain intact under longwall-induced deformations and compressions,which has serious implications for future mine design in areas where shale gas wells have been drilled ahead of mining.
文摘While faults are commonly simulated as a single planar or non-planar interface for a safety or stability analysis in underground mining excavation, the real 3D structure of a fault is often very complex, with different branches that reactivate at different times. Furthermore, these branches are zones of nonzero thickness where material continuously undergoes damage even during interseismic periods. In this study, the initiation and the initial evolution of a strike-slip fault was modeled using the FLAC3D software program. The initial and boundary conditions are simplified, and mimic the Riedel shear experiment and the constitutive model in the literature. The FLAC3D model successfully replicates and creates the 3D fault zone as a strike-slip type structure in the entire thickness of the model. The strike-slip fault structure and normal displacement result in the formation of valleys in the model. Three panels of a longwall excavation are virtually placed and excavated beneath a main valley. The characteristics of stored and dissipated energy associated with the panel excavations are examined and observed at different stages of shear strain in the fault to evaluate bump potential. Depending on the shear strain in the fault, the energy characteristics adjacent to the longwall panels present different degrees of bump potential, which is not possible to capture by conventional fault simulation using an interface.
文摘In 2016, room-and-pillar mining provided nearly 40% of underground coal production in the United States.Over the past decade, rib falls have resulted in 12 fatalities, representing 28% of the ground fall fatalities in U.S.underground coal mines.Nine of these 12 fatalities(75%) have occurred in room-andpillar mines.The objective of this research is to study the geomechanics of bench room-and-pillar mining and the associated response of high pillar ribs at overburden depths greater than 300 m.This paper provides a definition of the bench technique, the pillar response due to loading, observational data for a case history, a calibrated numerical model of the observed rib response, and application of this calibrated model to a second site.
文摘Ground control is the science of studying and controlling the behavior of rock strata in response to mining operations. Ground control-related research has seen significant advancements over the last 37 years, and these accomplishments are well documented in the proceedings of the annual International Conference on Ground Control in Mining (ICGCM)(1)The ICGCM is a forum to promote closer communication among researchers, consultants。
文摘Ground control is the science of studying and controlling the behavior of rock strata in response to mining operations.Ground control-related research has seen significant advancements over the last 36 years,and these accomplishments are well documented in the proceedings of the annual International Conference on Ground Control in Mining(ICGCM)[1].The ICGCM is a forum to promote closer communication among researchers,consultants,regulators,manufacturers,and mine operators to expedite solutions to ground control problems in mining[2–8].Fundamental research and advancements in ground control science define the central core of the conference mission.Providing information to mine operators is a priority,as the conference goal is to offer solution-oriented information.In addition,the conference has included innovative technologies and ideas in mining-related fields such as exploration,geology,and surface and underground mining.Many new ground control technologies and design standards adopted by the mining industry were first discussed at ICGCM.Therefore,this conference is recognized as the best forum for introducing new ground control-related research and products.
文摘Ground control is the science of studying and controlling the behavior of rock strata in response to mining operations.Ground-control-related research has seen significant advancements over the last 39 years,and these accomplishments are well documented in the proceedings of the annual International Conference on Ground Control in Mining(ICGCM)[1].The ICGCM is a forum to promote closer communication among researchers,consultants,regulators,manufacturers,and mine operators to expedite solutions to ground control problems in mining[2–7].Fundamental research and advancements in ground control science define the central core of the conference mission.Providing information to mine operators is a priority,as the conference goal is to offer solutions-oriented information.In addition,the conference has included innovative technologies and ideas in miningrelated fields such as exploration,geology,and surface and underground mining in all commodities.Many new ground control technologies and design standards adopted by the mining industry were first discussed at ICGCM.Therefore,this conference is recognized as the best international forum for introducing new groundcontrol-related research and products.
文摘Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software.
文摘Accumulation of float coal dust(FCD)in underground mines is an explosion hazard that affects all underground coal mine workers.While this hazard is addressed by the application of rock dust,inadequate rock dusting practices can leave miners exposed to an explosion risk.Researchers at the National Institute for Occupational Safety and Health(NIOSH)have focused on developing a water curtain that removes FCD from the airstream,thereby reducing the buildup of FCD in mine airways.In this study,the number and spacing of the active sprays in the water curtain were varied to determine the optimal configuration to obtain peak knockdown efficiency(KE)while minimizing water consumption.
文摘Roof falls in longwall headgate can occur when weak roof and high horizontal stress are present. To prevent roof falls in the headgate under high horizontal stress, it is important to understand the ground response to high horizontal stress in the longwall headgate and the requirements for supplemental roof support. In this study, a longwall headgate under high horizontal stress was instrumented to monitor stress change in the pillars, deformations in the roof, and load in the cable bolts. The conditions in the headgate were monitored for about six months as the longwall face passed by the instrumented site.The roof behavior in the headgate near the face was carefully observed during longwall retreat.Numerical modeling was performed to correlate the modeling results with underground observation and instrumentation data and to quantify the effect of high horizontal stress on roof stability in the longwall headgate. This paper discusses roof support requirements in the longwall headgate under high horizontal stress in regard to the pattern of supplemental cable bolts and the critical locations where additional supplemental support is necessary.
基金Tarbiat Modares University and the Sarcheshmeh Copper Complex of Kerman for their financial support
文摘This study explores the flotation behavior of chalcopyrite in the presence of different concentrations of sodium sulfide (Na2S·9H2O) at pH 12 under controlled potential conditions. It was observed that the flotation of chalcopyrite is not depressed completely when the pulp potential is low, even at high concentrations of sodium sulfide, i.e., 10-1-10-2 mol/L. However, a partial and controlled oxidation of pulp does enhance the effectiveness of sodium sulfide on the depression of chalcopyrite. Characterization of the chalcopyrite particle surface by X-ray photoelectron spectroscopy allowed the identification of hydrophilic and hydrophobic surface species, which are responsible for the depression and flotation of chalcopyrite. Changes in pulp potential were found to be an effective float controlling parameter, by which Na2S can be used to initiate or depress the flotation behavior of chalcopyrite.
文摘Bumps and other types of dynamic failure have been a persistent, worldwide problem in the underground coal mining industry, spanning decades.For example, in just five states in the U.S.from 1983 to 2014,there were 388 reportable bumps.Despite significant advances in mine design tools and mining practices,these events continue to occur.Many conditions have been associated with bump potential, such as the presence of stiff units in the local geology.The effect of a stiff sandstone unit on the potential for coal bumps depends on the location of the stiff unit in the stratigraphic column, the relative stiffness and strength of other structural members, and stress concentrations caused by mining.This study describes the results of a robust design to consider the impact of different lithologic risk factors impacting dynamic failure risk.Because the inherent variability of stratigraphic characteristics in sedimentary formations,such as thickness, engineering material properties, and location, is significant and the number of influential parameters in determining a parametric study is large, it is impractical to consider every simulation case by varying each parameter individually.Therefore, to save time and honor the statistical distributions of the parameters, it is necessary to develop a robust design to collect sufficient sample data and develop a statistical analysis method to draw accurate conclusions from the collected data.In this study,orthogonal arrays, which were developed using the robust design, are used to define the combination of the(a) thickness of a stiff sandstone inserted on the top and bottom of a coal seam in a massive shale mine roof and floor,(b) location of the stiff sandstone inserted on the top and bottom of the coal seam,and(c) material properties of the stiff sandstone and contacts as interfaces using the 3-dimensional numerical model, FLAC3D.After completion of the numerical experiments, statistical and multivariate analysis are performed using the calculated results from the orthogonal arrays to analyze the effect of these variables.As a consequence, the impact of each of the parameters on the potential for bumps is quantitatively classified in terms of a normalized intensity of plastic dissipated energy.By multiple regression, the intensity of plastic dissipated energy and migration of the risk from the roof to the floor via the pillars is predicted based on the value of the variables.The results demonstrate and suggest a possible capability to predict the bump potential in a given rock mass adjacent to the underground excavations and pillars.Assessing the risk of bumps is important to preventing fatalities and injuries resulting from bumps.
文摘A numerical-model-based approach was recently developed for estimating the changes in both the horizontal and vertical loading conditions induced by an approaching longwall face.In this approach, a systematic procedure is used to estimate the model's inputs.Shearing along the bedding planes is modeled with ubiquitous joint elements and interface elements.Coal is modeled with a newly developed coal mass model.The response of the gob is calibrated with back analysis of subsidence data and the results of previously published laboratory tests on rock fragments.The model results were verified with the subsidence and stress data recently collected from a longwall mine in the eastern United States.
文摘The purpose of this study is to explore how the geochemical and petrographic components of coal may impact its physical properties and how these correlate with a history of reportable dynamic failure in coal mines.Dynamic failure events,also termed bumps,bounces,or bursts,are the explosive failures of rock in a mining environment.These events occur suddenly and often with no warning,resulting in worker injury up to and including fatality in greater than 60%of reportable cases through the Mine Safety and Health Administration(MSHA).A database of variables was compiled using publicly available datasets,which includes compositional geographic,strength,and Hardgrove grindability index(HGI)data.Results indicated that bumping coals were less mature,lower in carbon,higher in oxygen,softer,and less well cleated than coals that did not bump.High liptinite content was found to correlate with higher average uniaxial compressive strength(UCS)values.However,no clear and direct correlation between UCS and dynamic failure status was observed.The findings of this study established that differences existed between coals that had versus had not experienced reportable dynamic failure accidents.These differences were inherent to the coal itself and were independent of mining-induced risk factors.Results further illuminated how compositional attribute of coal influenced physical properties and began to clarify potential links between geochemistry and dynamic failure status.Only through the better understanding of risk can more effective mitigating strategies be enacted.
文摘A comprehensive monitoring program was conducted to measure the rock mass displacements, support response, and stress changes at a longwall tailgate entry in West Virginia.Monitoring was initiated a few days after development of the gateroad entries and continued during passage of the longwall panels on both sides of the entry.Monitoring included overcore stress measurements of the initial stress within the rock mass, changes in cable bolt loading, standing support pressure, roof deformation, rib deformation,stress changes in the coal pillar, and changes in the full three-dimensional stress tensor within the rock mass at six locations around the monitoring site.During the passage of the first longwall, stress measurements in the rock and coal detected minor changes in loading while minor changes were detected in roof deformation.As a result of the relatively favorable stress and geological conditions, the support systems did not experience severe loading or rock deformation until the second panel approached within 10–15 m of the instrumented locations.After reaching the peak loading at about 50–75 mm of roof sag, the cable bolts started to unload, and load was transferred to the standing supports.The standing support system was able to maintain an adequate opening inby the shields to provide ventilation to the first crosscut inby the face, as designed.The results were used to calibrate modeled cable bolt response to field data, and to validate numerical modeling procedures that have been developed to evaluate entry support systems.It is concluded that the support system was more than adequate to control the roof of the tailgate up to the longwall face location.The monitoring results have provided valuable data for the development and validation of support design strategies for longwall tailgate entries.
文摘Room-and-pillar mining with pillar recovery has historically been associated with more than 25% of all ground fall fatalities in underground coal mines in the United States.The risk of ground falls during pillar recovery increases in multiple-seam mining conditions.The hazards associated with pillar recovery in multiple-seam mining include roof cutters, roof falls, rib rolls, coal outbursts, and floor heave.When pillar recovery is planned in multiple seams, it is critical to properly design the mining sequence and panel layout to minimize potential seam interaction.This paper addresses geotechnical considerations for concurrent pillar recovery in two coal seams with 21 m of interburden under about 305 m of depth of cover.The study finds that, for interburden thickness of 21 m, the multiple-seam mining influence zone in the lower seam is directly under the barrier pillar within about 30 m from the gob edge of the upper seam.The peak stress in the interburden transfers down at an angle of approximately 20°away from the gob, and the entries and crosscuts in the influence zone are subjected to elevated stress during development and retreat.The study also suggests that, for full pillar recovery in close-distance multiple-seam scenarios,it is optimal to superimpose the gobs in both seams, but it is not necessary to superimpose the pillars.If the entries and/or crosscuts in the lower seam are developed outside the gob line of the upper seam,additional roof and rib support needs to be considered to account for the elevated stress in the multiple-seam influence zone.
文摘1.Introduction Climate change has become a global nontraditional security challenge,and achieving carbon neutrality is the global trend of the era that will determine the future of humanity[1-5].So far,more than 137 countries have set goals or pledged to achieve carbon neutrality.In September 2020,China committed itself to peak carbon emissions by 2030 and to achieve carbon neutrality by 2060,in what are known as China’s“dual carbon goals”[6].
文摘Accurately estimating load distributions and ground responses around underground openings play a significant role in the safety of the operations in underground mines.Adequately designing pillars and other support measures relies highly on the accurate assessment of the loads that will be carried by them,as well as the load-bearing capacities of the supports.There are various methods that can be used to approximate mining-induced loads in stratified rock masses to be used in pillar design.The empirical methods are based on equations derived from large databases of various case studies.They are implemented in government approved design tools and are widely used.There are also analytical and numerical techniques used for more detailed analysis of the induced loads.In this study,two different longwall mines with different panel width-to-depth ratios are analyzed using different methods.The empirical method used in the analysis is the square-decay stress function that uses the abutment angle concept,implemented in pillar design software developed by the National Institute for Occupational Safety and Health(NIOSH).The first numerical method used in the analysis is a displacement-discontinuity(DD)variation of the boundary element method,LaModel,which utilizes the laminated overburden model.The second numerical method used in the analysis is Fast Lagrangian Analysis of Continua(FLAC)with the numerical modeling approach recently developed at West Virginia University which is based on the approach developed by NIOSH.The model includes the 2D slice of a cross-section along the width of the panel with the chain pillar system that also includes the different stratigraphic layers of the overburden.All three methods gave similar results for the shallow mine,both in terms of load percentages and distribution where the variation was more obvious for the deep cover mine.The FLAC3D model was observed to better capture the stress changes observed during the field measurements for both the shallow and deep cover cases.This study allowed us to see the shortcomings of each of these different methods.It was concluded that a numerical model which incorporates the site-specific geology would provide the most precise estimate for complex loading conditions.
文摘Longwall abutment loads are influenced by several factors,including depth of cover,pillar sizes,panel dimensions,geological setting,mining height,proximity to gob,intersection type,and size of the gob.How does proximity to the gob affect pillar loading and entry condition?Does the gob influence depend on whether the abutment load is a forward,side,or rear loading?Do non-typical bleeder entry systems follow the traditional front and side abutment loading and extent concepts?If not,will an improved understanding of the combined abutment extent warrant a change in pillar design or standing support in bleeder entries?This paper details observations made in the non-typical bleeder entries of a moderate depth longwall panel—specifically,data collected from borehole pressure cells and roof extensometers,observations of the conditions of the entries,and numerical modeling of the bleeder entries during longwall extraction.The primary focus was on the extent and magnitude of the abutment loading experienced due to the extraction of the longwall panels.Due to the layout of the longwall panels and bleeder entries,the borehole pressure cells(BPCs)and roof extensometers did not show much change due to the advancing of the first longwall.However,they did show a noticeable increase due to the second longwall advancement,with a maximum of about 4 MPa of pressure increase and 5mmof roof deformation.The observations of the conditions showed little to no change from before the first longwall panel extraction began to when the second longwall panel had been advanced more than 915 m.Localized pillar spalling was observed on the corners of the pillars closest to the longwall gob as well as an increase in water in the entries.In addition to the observations and instrumentation,numerical modeling was performed to validate modeling procedures against the monitoring results and evaluate the bleeder design.ITASCA Consulting Group’s FLAC3D numerical modeling software was used to evaluate the bleeder entries.The results of the models indicated only a minor increase in load during the extraction of the longwall panels.These models showed a much greater increase in stress due to the development of the gateroad and bleeder entries--about 80%development and 20%longwall extraction.The FLAC3D model showed very good correlation between modeled and expected gateroad loading during panel extraction.The front and side abutment extent modeled was very similar to observations from this and previous panels.
文摘This paper presents the results of a 2017 study conducted by the National Institute for Occupational Safety and Health(NIOSH), Pittsburgh Mining Research Division(PMRD), to evaluate the effects of longwall-induced subsurface deformations within a longwall abutment pillar under deep cover. The 2017 study was conducted in a southwestern Pennsylvania coal mine, which extracts 457 m-wide longwall panels under 361 m of cover. One 198 m-deep, in-place inclinometer monitoring well was drilled and installed over a 45 m by 84 m center abutment pillar. In addition to the monitoring well, surface subsidence measurements and underground coal pillar pressure measurements were conducted as the 457 m-wide longwall panel on the south side of the abutment pillar was being mined. Prior to the first longwall excavation, a number of simulations using FLAC3D^(TM) were conducted to estimate surface subsidence, increases in underground coal pillar pressure, and subsurface horizontal displacements in the monitoring well. Comparisons of the pre-mining FLAC3D simulation results and the surface, subsurface,and underground instrumentation results show that the measured in-place inclinometer casing deformations are in reasonable agreement with those predicted by the 3D finite difference models. The measured surface subsidence and pillar pressure are in excellent agreement with those predicted by the 3D models.Results from this 2017 research clearly indicate that, under deep cover, the measured horizontal displacements within the abutment pillar are approximately one order of magnitude smaller than those measured in a 2014 study under medium cover.