This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects...This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces.展开更多
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous...The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.展开更多
In this study,the effect of Cu^(2+)on the cassiterite and calcite flotation using octanohydroxamic acid(OHA)as collector was investigated through flotation tests,solution reaction tests and calculation,zeta potential ...In this study,the effect of Cu^(2+)on the cassiterite and calcite flotation using octanohydroxamic acid(OHA)as collector was investigated through flotation tests,solution reaction tests and calculation,zeta potential measurements,XPS analysis and residual reagent concentration measurements.Results indicated that Cu^(2+)played an activation role on cassiterite flotation but a depression role on calcite flotation.The copper cations were adsorbed on the cassiterite surface by forming a Cu—O bond,and the pre-adsorbed copper cations and the OHA-Cu complexes promoted the adsorption of OHA on the cassiterite surface.Thus,cassiterite flotation was activated.The dissolved HCO_(3)-in the calcite pulp underwent a double hydrolysis reaction with copper cations(Cu^(2+),CuOH^(+),Cu_(2)(OH)_(2)^(2+)and Cu_(3)(OH)_(4)^(2+))to form CuCO_(3).Some copper cations were adsorbed on the calcite surface as well,but some adsorbed Cu^(2+)on the calcite surface was desorbed by bonding with OHA,and most of OHA was consumed by Cu^(2+),basic copper carbonate and copper hydroxide.The residual OHA in the pulp was not sufficient for flotation,so calcite flotation was depressed.Finally,a model of the reaction mechanism of Cu^(2+)and OHA on the cassiterite and calcite surfaces was established.展开更多
According to the coal or rock cutting theory, a mechanical model and computing formula for a pick and the drum load fluctuation model were established in order to obtain relationships between pick arrangements and dru...According to the coal or rock cutting theory, a mechanical model and computing formula for a pick and the drum load fluctuation model were established in order to obtain relationships between pick arrangements and drum fluctuation loads, drum rotary speeds and haulage speeds. Based on a minimum load fluctuation, an optimal mathematical model was established for drum pick arrangements. The effects of pick arrangements (including punnett square, sequence, aberrance Ⅰ and Ⅱ) on the drum load fluctuation coefficient are discussed. The relationships between the pick arrangements of the drum with different start vanes and the cutting load fluctuation coefficient, the drum rotary speed and haulage speed were also studied. The results indicate that the punnett square arrangement has a smaller cutting load fluctuation coefficient than other forms of arrangement and the drum with the 4-start vanes has the smallest coefficient. The drum rotary speed and haulage speed are affected not only by pick arrangements, but also by the number of vanes.展开更多
Hydraulic support is the primary equipment used for surrounding rock control at fully mechanized mining faces.The load,location,and attitude of the hydraulic support are important sets of basis data to predict roof di...Hydraulic support is the primary equipment used for surrounding rock control at fully mechanized mining faces.The load,location,and attitude of the hydraulic support are important sets of basis data to predict roof disasters.This paper summarized and analyzed the status of coal mine safety accidents and the primary influencing factors of roof disasters.This work also proposed monitoring characteristic parameters of roof disasters based on support posture-load changes,such as the support location and support posture.The data feature decomposition method of the additive model was used with the monitoring load data of the hydraulic support in the Yanghuopan coal mine to effectively extract the trend,cycle period,and residuals,which provided the period weighting characteristics of the longwall face.The autoregressive,long-short term memory,and support vector regression algorithms were used to model and analyze the monitoring data to realize single-point predictions.The seasonal autoregressive integrated moving average(SARIMA)and autoregressive integrated moving average(ARIMA)models were adopted to predict the support cycle load of the hydraulic support.The SARIMA model is shown to be better than the ARIMA model for load predictions in one support cycle,but the prediction effect of these two algorithms over a fracture cycle is poor.Therefore,we proposed a hydraulic support load prediction method based on multiple data cutting and a hydraulic support load template library.The constructed technical framework of the roof disaster intelligent prediction platform is based on this method to perform predictions and early warnings of roof disasters based on the load and posture monitoring information from the hydraulic support.展开更多
Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies f...Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways.展开更多
Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In thi...Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER.展开更多
Laser cladding of 316 L steel powders on pick substrate of coal mining machine was conducted, and microstructure of laser cladding coating was analyzed. The micro-hardness of laser cladding coating was examined. The r...Laser cladding of 316 L steel powders on pick substrate of coal mining machine was conducted, and microstructure of laser cladding coating was analyzed. The micro-hardness of laser cladding coating was examined. The results show that microstructure of laser cladding zone is exiguous dentrite, and there are hard spots dispersible distribution in the laser cladding zone. Performances of erode-resistant, surface micro-hardness and wear-resistant are improved obviously.展开更多
By analysing the hydrogeological conditions of this region and the coal mines hereof, together with the water hazards troubled Shennan mine area in recent years, this paper summarized six types of mine water hazards. ...By analysing the hydrogeological conditions of this region and the coal mines hereof, together with the water hazards troubled Shennan mine area in recent years, this paper summarized six types of mine water hazards. As per the basic characteristics, geological distribution, threat degree and difficulty of prevention of various water hazards, along with the practice of water prevention in the mining area, this article proposed effective technical measures for the prevention and control of different water hazards and laid a solid foundation for the safe production in the mining area.展开更多
A set of adaptable conditions classification of aquifer-protective mining in the Iongwall coalface for shallow coal seams with thin bedrock was put forward to deal with the conflict between water protection and high e...A set of adaptable conditions classification of aquifer-protective mining in the Iongwall coalface for shallow coal seams with thin bedrock was put forward to deal with the conflict between water protection and high efficiency for the mining field in west China. This classification was suitable for shallow coal seams with different thickness and was beneficial to the local environmental protection. Using the 3-Universal Distinct Element Code (3DEC) numerical software, the height of the fractured zones for shallow coal seams with thin bedrock was calculated and analyzed, and its predicting formula was achieved. Meanwhile, according to the lithology and the weathering degree of the shallow coal seam the thickness of the protective layer was determined as 10 m and the overlying water body of loose water-bearing sand for shallow coal seams with thin bedrock was divided into three types, namely, weak, medium and strong. Based on these, the necessary bedrock thickness of the Iongwall coalface for shallow coal seams with thin bedrock was confined according to the different mining height and water yield nature of the overlying loose water-bearing sand. Combined with the present mining status, a set of new methods of adaptable conditions classification of aquifer-protective mining technology in the Iongwall coalface for shallow coal seams with thin bedrock was put forward.展开更多
Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted ...Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted with several predefined modular cells according to various numbers of passengers.Aiming at the shortage of guidance rules for the modular combination design of mine rescue capsule,the configuration situations of survival cells are experimented with static and impact load analysis in ANSYS Workbench.The length range of a single cell,the combination schemes of miner survival section,and the effectiveness proof of assembled rescue capsules were solved sequentially by simulated load analysis on constructed structural models.The modular combination rules of the survival section are developed for variant passenger number ranging from 8 to 20.It also provides a reference for the optimal selection of rescue capsules with the same capacity.The proposed modular rules are effective for the rapid configuration design for mine rescue capsule driven by the number of passengers.展开更多
With the rapid growth of the overall social economy and the continuous development in the field of science and technology provide good support for the application of artificial intelligence technology, which making th...With the rapid growth of the overall social economy and the continuous development in the field of science and technology provide good support for the application of artificial intelligence technology, which making the application value of artificial intelligence technology grow continuously. Especially under the background of current events, the requirements for product quality and efficiency are higher. As an emerging discipline, electrical automation control is gradually rising in the industrial field. The basic part focuses on the specific ideas and strategies on the application of artificial intelligence technology in electrical automation control, so as to better highlight the advantages of artificial intelligence technology, with the integration of artificial intelligence technology, promote the growth of electrical automation control level, and provide assistance for China's industry development and socio-economic growth.展开更多
With the development and progress of science and technology, mechanized equipment has gradually replaced manual work in coal mining and transportation. In coal mine machinery manufacturing, mechanical automation techn...With the development and progress of science and technology, mechanized equipment has gradually replaced manual work in coal mining and transportation. In coal mine machinery manufacturing, mechanical automation technology is mainly used. Therefore, increasing the application research of mechanical automation technology in coal mine machinery manufacturing is helpful to promote the promotion and popularization of coal mine mechanization.展开更多
With the advent of the information age, information technology has been widely used in various fields of society and has achieved remarkable results. It has become the core force to promote social development. As a tr...With the advent of the information age, information technology has been widely used in various fields of society and has achieved remarkable results. It has become the core force to promote social development. As a traditional industry, coal mine production, supported by information technology, has witnessed the emergence and application of various new production technologies and intelligent equipment, which has become the key technological support to promote industrial upgrading and production transformation. In coal mine production, the introduction of modern intelligent equipment and technology can significantly improve production efficiency and ensure production safety, especially for fully mechanized working face to achieve intrinsically safe production and to achieve staff reduction and efficiency improvement work has significant practical significance.展开更多
With the progress of science and technology, mechanical equipment has been widely used in coal mining, greatly improving the safety and efficiency of coal mining. In coal mining, not only safety and efficiency but als...With the progress of science and technology, mechanical equipment has been widely used in coal mining, greatly improving the safety and efficiency of coal mining. In coal mining, not only safety and efficiency but also mining cost should be considered. Therefore, it is necessary to carry out operation maintenance and fault diagnosis on mechanical equipment. In the process of operation, mechanical equipment is prone to performance degradation and failure, which requires operation and maintenance. Mechanical equipment will have various failures due to various reasons, which requires maintenance of mechanical equipment. The fault diagnosis can be used to find out the faults of the equipment, so as to eliminate the faults in time and resume the coal mine production. Based on this, the paper discusses the application of fault diagnosis technology in coal mine machinery and equipment.展开更多
In the world, the coal industry has always been the foundation and important basic energy, and its production and consumption occupy the forefront of the world. With the rapid development of social economy, people hav...In the world, the coal industry has always been the foundation and important basic energy, and its production and consumption occupy the forefront of the world. With the rapid development of social economy, people have more and more demand for coal, but the production situation of the industry can not match the market development, especially for some old coal mines. For old coal mines, the phenomena such as obsolete equipment, mining difficulties and increasing mining difficulties occur frequently, which greatly reduces the production efficiency of enterprises and has a great impact on the smooth development of enterprises. At the same time, it is difficult for enterprises to obtain economic and social benefits. Based on this situation, enterprises actively invest funds to realize automation upgrading and development. The paper discusses the key application of electrical automation technology of coal mine mechanical equipment.展开更多
Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were c...Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were constructed by biomimetic extracellular matrix of collagen I/hyaluronic acid complex conjugated with doxorubicin/lapatinib(Dox/Lap)-loaded nanoparticles.The HCNPs sponge exhibited excellent clotting ability and blood absorption rate.Worthily,Dox/Lap-loaded nanoparticles were synchronously endowed with a large number of oligo hyaluronic acid segments after degradation,which thus enhanced the ability of targeting into CD44-overexpressed tumor cells.The implantable HCNPs sponge in resected cavity of postoperative 4T1 models inhibited the spread of scattered tumor cells by absorbing the inevitable bleeding.More importantly,CD44 targeted nanoparticle with suitable Dox/Lap proportion continuously released from sponge to kill tumor cells of surrounding HCNPs and those remaining at surgical margin,thus prevented local recurrence as well as distant metastasis.Therefore,the functional HCNPs sponge might provide a safer and more effective strategy for postoperative treatment of cancer.展开更多
Communication is a major barrier in using the results of environmental geoscience to inform public debate and policy.The results of an international survey of environmental geoscientists on communication issues are di...Communication is a major barrier in using the results of environmental geoscience to inform public debate and policy.The results of an international survey of environmental geoscientists on communication issues are discussed.The results suggest that environmental geoscientists recognize that communicating with media and public is important.They believe that their research is not too complex or difficult for the public to understand,and they generally feel well equipped to engage the public.Few of them,however,are trained in this area,and most are interested in taking courses to improve their skills.Their research is important in developing policy but often they find it challenging to communicate with policy makers and politicians.Thus their research is not always used effectively in developing policy.展开更多
基金This work has been supported by the National Key Research and Development Program(Grant No.2017YFC0603000)which was jointly completed by the Coal Mining Research Branch of CCRI,China University of Mining and Technology(Xuzhou and Beijing),Henan Polytechnic UniversityXinji Energy Company Limited of China Coal Energy Group.This work was also supported by the National Natural Science Foundation of China(Grant No.51927807)。
文摘This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces.
基金the National Natural Science Foundation of China(Nos.52304141 and 52074154)。
文摘The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated.
基金Project(52074355)supported by the National Natural Science Foundation of ChinaProject(2023JJ10070)supported by the Outstanding Youth Scientist Foundation of Hunan Province,China。
文摘In this study,the effect of Cu^(2+)on the cassiterite and calcite flotation using octanohydroxamic acid(OHA)as collector was investigated through flotation tests,solution reaction tests and calculation,zeta potential measurements,XPS analysis and residual reagent concentration measurements.Results indicated that Cu^(2+)played an activation role on cassiterite flotation but a depression role on calcite flotation.The copper cations were adsorbed on the cassiterite surface by forming a Cu—O bond,and the pre-adsorbed copper cations and the OHA-Cu complexes promoted the adsorption of OHA on the cassiterite surface.Thus,cassiterite flotation was activated.The dissolved HCO_(3)-in the calcite pulp underwent a double hydrolysis reaction with copper cations(Cu^(2+),CuOH^(+),Cu_(2)(OH)_(2)^(2+)and Cu_(3)(OH)_(4)^(2+))to form CuCO_(3).Some copper cations were adsorbed on the calcite surface as well,but some adsorbed Cu^(2+)on the calcite surface was desorbed by bonding with OHA,and most of OHA was consumed by Cu^(2+),basic copper carbonate and copper hydroxide.The residual OHA in the pulp was not sufficient for flotation,so calcite flotation was depressed.Finally,a model of the reaction mechanism of Cu^(2+)and OHA on the cassiterite and calcite surfaces was established.
文摘According to the coal or rock cutting theory, a mechanical model and computing formula for a pick and the drum load fluctuation model were established in order to obtain relationships between pick arrangements and drum fluctuation loads, drum rotary speeds and haulage speeds. Based on a minimum load fluctuation, an optimal mathematical model was established for drum pick arrangements. The effects of pick arrangements (including punnett square, sequence, aberrance Ⅰ and Ⅱ) on the drum load fluctuation coefficient are discussed. The relationships between the pick arrangements of the drum with different start vanes and the cutting load fluctuation coefficient, the drum rotary speed and haulage speed were also studied. The results indicate that the punnett square arrangement has a smaller cutting load fluctuation coefficient than other forms of arrangement and the drum with the 4-start vanes has the smallest coefficient. The drum rotary speed and haulage speed are affected not only by pick arrangements, but also by the number of vanes.
基金The study was supported by the National Natural Science Foundation of China of basic theory research on digital coal mine and intelligent mining(51834006)study on stress,cyclic osmotic pressure and corrosion coupling damage mechanism of coal pillar dam for coalmine underground reservoir(52004124)study on the progressive evolution mechanism of overburden fracture and ore pressure in fully mechanized mining with super high mining height under three field perspectives(51874175)。
文摘Hydraulic support is the primary equipment used for surrounding rock control at fully mechanized mining faces.The load,location,and attitude of the hydraulic support are important sets of basis data to predict roof disasters.This paper summarized and analyzed the status of coal mine safety accidents and the primary influencing factors of roof disasters.This work also proposed monitoring characteristic parameters of roof disasters based on support posture-load changes,such as the support location and support posture.The data feature decomposition method of the additive model was used with the monitoring load data of the hydraulic support in the Yanghuopan coal mine to effectively extract the trend,cycle period,and residuals,which provided the period weighting characteristics of the longwall face.The autoregressive,long-short term memory,and support vector regression algorithms were used to model and analyze the monitoring data to realize single-point predictions.The seasonal autoregressive integrated moving average(SARIMA)and autoregressive integrated moving average(ARIMA)models were adopted to predict the support cycle load of the hydraulic support.The SARIMA model is shown to be better than the ARIMA model for load predictions in one support cycle,but the prediction effect of these two algorithms over a fracture cycle is poor.Therefore,we proposed a hydraulic support load prediction method based on multiple data cutting and a hydraulic support load template library.The constructed technical framework of the roof disaster intelligent prediction platform is based on this method to perform predictions and early warnings of roof disasters based on the load and posture monitoring information from the hydraulic support.
基金Innovation and Entrepreneurship Funds of Tiandi Science&Technology Co.Ltd.,Grant/Award Number:2022-2-TD-MS013。
文摘Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways.
基金supported by the Key Research and Development Program of Guangxi Province,China (No.AB23075174)the National Natural Science Foundation of China (No.52174386)the Science and Technology Plan Project of Sichuan Province,China (No.2022YFS0459).
文摘Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER.
文摘Laser cladding of 316 L steel powders on pick substrate of coal mining machine was conducted, and microstructure of laser cladding coating was analyzed. The micro-hardness of laser cladding coating was examined. The results show that microstructure of laser cladding zone is exiguous dentrite, and there are hard spots dispersible distribution in the laser cladding zone. Performances of erode-resistant, surface micro-hardness and wear-resistant are improved obviously.
文摘By analysing the hydrogeological conditions of this region and the coal mines hereof, together with the water hazards troubled Shennan mine area in recent years, this paper summarized six types of mine water hazards. As per the basic characteristics, geological distribution, threat degree and difficulty of prevention of various water hazards, along with the practice of water prevention in the mining area, this article proposed effective technical measures for the prevention and control of different water hazards and laid a solid foundation for the safe production in the mining area.
基金Supported by National Natural Science Foundation of China(50904063)the 2007 Research Fund of the State Key Laboratory of Coal Resources and Mine Safety(07KF09)Scientific Research Foundation of China University of Mining & Technology(2008A003,2005B002)
文摘A set of adaptable conditions classification of aquifer-protective mining in the Iongwall coalface for shallow coal seams with thin bedrock was put forward to deal with the conflict between water protection and high efficiency for the mining field in west China. This classification was suitable for shallow coal seams with different thickness and was beneficial to the local environmental protection. Using the 3-Universal Distinct Element Code (3DEC) numerical software, the height of the fractured zones for shallow coal seams with thin bedrock was calculated and analyzed, and its predicting formula was achieved. Meanwhile, according to the lithology and the weathering degree of the shallow coal seam the thickness of the protective layer was determined as 10 m and the overlying water body of loose water-bearing sand for shallow coal seams with thin bedrock was divided into three types, namely, weak, medium and strong. Based on these, the necessary bedrock thickness of the Iongwall coalface for shallow coal seams with thin bedrock was confined according to the different mining height and water yield nature of the overlying loose water-bearing sand. Combined with the present mining status, a set of new methods of adaptable conditions classification of aquifer-protective mining technology in the Iongwall coalface for shallow coal seams with thin bedrock was put forward.
基金National Natural Science Foundation of China(No.51475459)Fundamental Research Funds for the Central Universities of China(No.2017XKQY040)Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.PAPD)
文摘Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted with several predefined modular cells according to various numbers of passengers.Aiming at the shortage of guidance rules for the modular combination design of mine rescue capsule,the configuration situations of survival cells are experimented with static and impact load analysis in ANSYS Workbench.The length range of a single cell,the combination schemes of miner survival section,and the effectiveness proof of assembled rescue capsules were solved sequentially by simulated load analysis on constructed structural models.The modular combination rules of the survival section are developed for variant passenger number ranging from 8 to 20.It also provides a reference for the optimal selection of rescue capsules with the same capacity.The proposed modular rules are effective for the rapid configuration design for mine rescue capsule driven by the number of passengers.
文摘With the rapid growth of the overall social economy and the continuous development in the field of science and technology provide good support for the application of artificial intelligence technology, which making the application value of artificial intelligence technology grow continuously. Especially under the background of current events, the requirements for product quality and efficiency are higher. As an emerging discipline, electrical automation control is gradually rising in the industrial field. The basic part focuses on the specific ideas and strategies on the application of artificial intelligence technology in electrical automation control, so as to better highlight the advantages of artificial intelligence technology, with the integration of artificial intelligence technology, promote the growth of electrical automation control level, and provide assistance for China's industry development and socio-economic growth.
文摘With the development and progress of science and technology, mechanized equipment has gradually replaced manual work in coal mining and transportation. In coal mine machinery manufacturing, mechanical automation technology is mainly used. Therefore, increasing the application research of mechanical automation technology in coal mine machinery manufacturing is helpful to promote the promotion and popularization of coal mine mechanization.
文摘With the advent of the information age, information technology has been widely used in various fields of society and has achieved remarkable results. It has become the core force to promote social development. As a traditional industry, coal mine production, supported by information technology, has witnessed the emergence and application of various new production technologies and intelligent equipment, which has become the key technological support to promote industrial upgrading and production transformation. In coal mine production, the introduction of modern intelligent equipment and technology can significantly improve production efficiency and ensure production safety, especially for fully mechanized working face to achieve intrinsically safe production and to achieve staff reduction and efficiency improvement work has significant practical significance.
文摘With the progress of science and technology, mechanical equipment has been widely used in coal mining, greatly improving the safety and efficiency of coal mining. In coal mining, not only safety and efficiency but also mining cost should be considered. Therefore, it is necessary to carry out operation maintenance and fault diagnosis on mechanical equipment. In the process of operation, mechanical equipment is prone to performance degradation and failure, which requires operation and maintenance. Mechanical equipment will have various failures due to various reasons, which requires maintenance of mechanical equipment. The fault diagnosis can be used to find out the faults of the equipment, so as to eliminate the faults in time and resume the coal mine production. Based on this, the paper discusses the application of fault diagnosis technology in coal mine machinery and equipment.
文摘In the world, the coal industry has always been the foundation and important basic energy, and its production and consumption occupy the forefront of the world. With the rapid development of social economy, people have more and more demand for coal, but the production situation of the industry can not match the market development, especially for some old coal mines. For old coal mines, the phenomena such as obsolete equipment, mining difficulties and increasing mining difficulties occur frequently, which greatly reduces the production efficiency of enterprises and has a great impact on the smooth development of enterprises. At the same time, it is difficult for enterprises to obtain economic and social benefits. Based on this situation, enterprises actively invest funds to realize automation upgrading and development. The paper discusses the key application of electrical automation technology of coal mine mechanical equipment.
基金sponsored by the National Natural Science Foundation of China(Nos.51973136 and 32071352)the Open Project Program of the Third Affiliated Hospital of Xinxiang Medical University(No.KFKTZD202102).
文摘Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’survival.To address the clinical challenge,functional absorbable sponges(HA-SH/PP-Dox/Lap/COL I(HCNPs))were constructed by biomimetic extracellular matrix of collagen I/hyaluronic acid complex conjugated with doxorubicin/lapatinib(Dox/Lap)-loaded nanoparticles.The HCNPs sponge exhibited excellent clotting ability and blood absorption rate.Worthily,Dox/Lap-loaded nanoparticles were synchronously endowed with a large number of oligo hyaluronic acid segments after degradation,which thus enhanced the ability of targeting into CD44-overexpressed tumor cells.The implantable HCNPs sponge in resected cavity of postoperative 4T1 models inhibited the spread of scattered tumor cells by absorbing the inevitable bleeding.More importantly,CD44 targeted nanoparticle with suitable Dox/Lap proportion continuously released from sponge to kill tumor cells of surrounding HCNPs and those remaining at surgical margin,thus prevented local recurrence as well as distant metastasis.Therefore,the functional HCNPs sponge might provide a safer and more effective strategy for postoperative treatment of cancer.
文摘Communication is a major barrier in using the results of environmental geoscience to inform public debate and policy.The results of an international survey of environmental geoscientists on communication issues are discussed.The results suggest that environmental geoscientists recognize that communicating with media and public is important.They believe that their research is not too complex or difficult for the public to understand,and they generally feel well equipped to engage the public.Few of them,however,are trained in this area,and most are interested in taking courses to improve their skills.Their research is important in developing policy but often they find it challenging to communicate with policy makers and politicians.Thus their research is not always used effectively in developing policy.