In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the...In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the morphology,crystallinity,grain size and specific surface area of each mineral varied upon different bacteria and culturing conditions.In addition,the formed minerals’elemental composition and group disparity lead to different morphology,crystallinity and subsequent adsorption performance.In particular,adsorption difference existed in iron minerals biosynthesized by different bacteria.The maximal adsorption capacities of Akaganéite,Schwertmannite and ammoniojarosite were 26.6 mg/g,17.5 mg/g and 3.90 mg/g respectively.Cr(VI)adsorption on iron-minerals involves hydrogen bonding,electrostatic interaction,and ligand exchange.The adsorption only occurred on the surface of ammoniojarosite,while for Akaganéite and Schwertmannite,the tunnel structure greatly facilitated the adsorption process and improved adsorption capacity.Thus,the molecular structure is the primary determining factor for adsorption performance.Collectively,the results can provide useful information in selecting suitable bacteria for synthesizing heavy-metal scavenging minerals according to different environmental conditions.展开更多
Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect t...Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect the comprehensive characteristics of natural rock,including mineral content and spatial distributions.This study employs the bubbling method to reconstruct granite containing multiple minerals in both two-(2D)and three-dimensions(3D),proposing a general procedure for granite structure reconstruction.The bubbling method utilizes numerous bubbles(hemispheres or spheres)of varying sizes and gradually changing properties,which are randomly overlapped to create a heterogeneous plane(2D)or space(3D).The properties of these overlapped areas are adjusted based on the sum of neighboring bubbles'properties,allowing specific regions with extreme properties to be selected and intercepted to form the desired mineral shapes.The results demonstrate that the reproduced granite samples can accurately exhibit the mineral distributions and sizes of real granite,quantified by fractal dimension(D)and the hourglass parameter(V_(Sum)=V_(Total)).The proposed method is also suitable for reconstructing anisotropic granite models,with anisotropy described by a fitted elliptic curve derived from ratios between directional mineral sizes and cross-sectional dimensions.Based on these findings,a series of numerical granite models with similar structures were reconstructed and tested.Results indicate that different mineral distributions significantly impact the macroscopic mechanical behaviors,but variability in numerical simulation results decreases with increasing specimen size.The compressive and tensile strength values of the reconstructed numerical models show less variation than those of natural granite specimens.This suggests that,beyond mineral distribution,other factors such as internal defects within natural granite contribute to the observed discrepancies.Additionally,the bubbling method shows great potential for modeling porous structures and offers high computational efficiency.展开更多
The similar floatabilities of calcium minerals and the huge difference between scheelite and wolframite have resulted in difficulties during their separation by flotation in Shizhuyuan Mine. In this study, novel colle...The similar floatabilities of calcium minerals and the huge difference between scheelite and wolframite have resulted in difficulties during their separation by flotation in Shizhuyuan Mine. In this study, novel collectors, lead complexes of benzohydroxamic acid(Pb-BHA),were introduced to modify the surface properties of scheelite and wolframite, thereby effectively and selectively improving floatability. The Pb-BHA complexes are found to be selective for the separation of scheelite and calcium minerals with little use of depressants and enable the synchronous flotation of scheelite and wolframite.Hence, a novel flotation process was developed for the recovery of tungsten minerals. The process is simplified greatly, and the recovery is improved by almost 10%.Removing or decreasing the amount of water glass contributes to the improvement of tungsten and fluorite recovery and the circulation of water and reagents, which benefits the environment.展开更多
The Suizhou meteorite is a heavily shock-met-amorphosed L6 chondrite which contains thin shock melt veins.So far,26 high-pressure phases have been identified from the meteorite.Among the high-pressure phases,ten of th...The Suizhou meteorite is a heavily shock-met-amorphosed L6 chondrite which contains thin shock melt veins.So far,26 high-pressure phases have been identified from the meteorite.Among the high-pressure phases,ten of them were approved as new minerals which include tuite,xieite,wangdaodeite,chenmingite,hemleyite,poirierite,asimowite,hiroseite,elgoresyite,and ohtaniite,by the Commission on New Minerals,Nomenclature and Classification of the International Mineralogical Association.Other high-pressure phases identified from the meteorite are ahrensite,akimotoite,bridgmanite,lingunite,magnesiowüstite,majorite,majorite-pyrope_(ss),maskelynite,riesite,ringwoodite,wadsleyite,and 5 other phases including phase A,vitrified phase B and phase C,phase D(Ca-rich majorite),and partly inverted ringwoodite.The occurrence and abundance of high-pressure phases makes this meteorite the one with the richest variety of high-pressure minerals to date.展开更多
Lepidolite,feldspar,and quartz are silicate minerals with similar chemical properties,complicating their flotation separation.Current collector systems require strong acidic conditions for effective separation but sti...Lepidolite,feldspar,and quartz are silicate minerals with similar chemical properties,complicating their flotation separation.Current collector systems require strong acidic conditions for effective separation but still face challenges related to low separation efficiency and recovery rates.This study proposed a novel collector,ammonium dodecylsulfate(ALS),to selectively extract lepidolite from feldspar and quartz using highly selective flotation methods.Microflotation experiments showed that ALS significantly outperforms other collectors in collecting lepidolite compared to feldspar and quartz.At pH 7,lepidolite recovery reached 95%,while flotation recoveries for both feldspar and quartz were below 10%.Mixed pure mineral flotation tests revealed that at pH 7 and ALS concentration of 2.5×10^(-4) mol·L^(−1),the Li_(2)O content in the concentrate was 4.21%,with a recovery rate of 95.01%.Separation efficiency and Gaudin selectivity index values were recorded.Solution chemical analyses showed that at pH 7,ALS completely ionizes into NH_(4)^(+)and CH_(3)(CH_(2))_(11)OSO_(3)^(−).Various analytical techniques,including high-speed photography imaging,contact angle measurements,Fourier transform infrared spectroscopy,zeta potential analysis,and X-ray photoelectron spectroscopy,confirmed that the anion CH_(3)(CH_(2))_(11)OSO_(3)^(−)adsorbs chemically onto aluminum sites on lepidolite's surface,while the cation NH_(4)+binds through electrostatic interactions and hydrogen bonding.The combined adsorption of these ions on lepidolite's surface enhanced its hydrophobicity.In contrast,ALS showed minimal adsorption on feldspar and quartz surfaces,which remained hydrophilic,enabling efficient selective flotation separation of lepidolite from both feldspar and quartz.展开更多
Understanding the formation of lithium-rich pegmatites is critical for meeting global lithium demand.The 509 Daobanxi Li pegmatite deposit,located in the West Kunlun orogenic belt of northwestern China,represents a si...Understanding the formation of lithium-rich pegmatites is critical for meeting global lithium demand.The 509 Daobanxi Li pegmatite deposit,located in the West Kunlun orogenic belt of northwestern China,represents a significant example of an LCT-type(Li-Cs-Ta)pegmatite system.This study investigates the paragenetic sequence of lithium(Li)minerals and the factors controlling their crystallization,providing new insights into the magmatic-hydrothermal evolution of rare-element pegmatites.Pegmatite dikes exhibit distinct zonation,comprising a wall rock zone,a border zone(aplitic layer),and a core zone(pegmatitic layer),with Li mineralization concentrated in the pegmatitic and aplitic layers.The primary Li minerals include spodumene(Spd),montebrasite(Mbs),eucryptite(Ecr),elbaite(Elb),and lepidolite(Lpd),which crystallize in the order of spodumene→montebrasite→elbaite→lepidolite.Spodumene,the dominant Li-bearing mineral,crystallizes from a Li-saturated melt during the magmatic stage.Montebrasite,a Li-phosphate mineral,forms in P-rich environments,coexisting with spodumene and columbite-group minerals(CGM).During the magmatic-hydrothermal transition,elbaite crystallizes from a B-rich melt,exhibiting skeletal and patchy zoning due to undercooling and disequilibrium crystallization.Hydrothermal alteration leads to the breakdown of spodumene and the formation of secondary minerals such as eucryptite and lepidolite,with lepidolite being the final Li-bearing phase,enriched in fluorine.The coupled dissolution-precipitation processes during the magmatic-hydrothermal transition play a critical role in the remobilization and enrichment of rare elements such as Li,Nb,Ta,and Sn.This deposit,characterized by spodumene crystallization in the Spd+Quartz stability field(≥300 MPa,≤725℃)and subsequent alteration to Ecr+quartz assemblages(<270℃,<160 MPa),exhibits broader temperature-pressure conditions exceeding typical global pegmatites like Tanco,with no petalite formation observed due to its persistent exclusion from petalite stability fields throughout mineralization.The shear zone controls the pegmatite emplacement and lithium enrichment in the 509 Daobanxi lithium deposit,and its deformation-fluid coupling mechanism provides new insights for the exploration of LCT pegmatite deposits.The present study highlights the importance of understanding both magmatic and hydrothermal processes in the formation of LCT-type pegmatites and provides valuable insights for the exploration of critical metal resources in similar geological settings.展开更多
The effect of operating conditions on the time-dependent X-ray intensity variation is of great importance for the optimal EPMA conditions for accurate determinations of various elements in carbonate minerals. Beam dia...The effect of operating conditions on the time-dependent X-ray intensity variation is of great importance for the optimal EPMA conditions for accurate determinations of various elements in carbonate minerals. Beam diameters of 0, 1, 2, 5, 10, 15, and 20 μm, and beam currents of 3, 5, 10, 20,and 50 nA were tested. Ca, Mg, Zn, and Sr were found to be more sensitive to electron beam irradiation as compared to other elements, and small currents and large beam diameters minimized the timedependent X-ray intensity variations. We determined the optimal EPMA operating conditions for elements in carbonate: 10 μm and 5 nA for calcite;10 μm and 10 nA for dolomite;5 μm and 10 nA or 10 μm and 20 nA for strontianite;and 20 nA and 5 μm for other carbonate. Elements sensitive to electron beam irradiation should be determined first. In addition, silicate minerals are preferred as standards rather than carbonate minerals.展开更多
The unique luminescent performance of lanthanide complexes/clay minerals hybrid materials has been fascinating many researchers for recent decades.It not only retains the excellent luminescent characteristics of lanth...The unique luminescent performance of lanthanide complexes/clay minerals hybrid materials has been fascinating many researchers for recent decades.It not only retains the excellent luminescent characteristics of lanthanide complexes but also improves the poor stability of the complexes.In this article,we introduce the luminescence mechanism of lanthanide complexes and point out the necessity of their combination with clay minerals.After the analysis of the structure and interlayer environment differences of 1:1-type and 2:1-type clay minerals,the intercalation methods(covalent grafting and ion exchange)appropriate for different clay minerals are summarized with examples.Based on the luminescence characteristics of the hybrid materials,the applications of these materials as luminescent probes in recognition of specific metal cations and molecules,detection of pH value,and temperature are reviewed.Finally,the current problems in the preparation of lanthanide complexes/clay minerals hybrid luminescent materials and shortcomings that need improvement in their performance are analyzed,and the application prospect is forecast.展开更多
The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debata...The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe-Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe-Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe-Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe-Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75-0.73 Ma B.P..展开更多
The effect of hydrated radius, cation valence, pH and solution concentration on the zeta potential of clay minerals was investigated, and the relation between zeta potential of clay minerals and swelling was discussed...The effect of hydrated radius, cation valence, pH and solution concentration on the zeta potential of clay minerals was investigated, and the relation between zeta potential of clay minerals and swelling was discussed in different leaching agents as well. The results show that the zeta potential of clay minerals decreases with the hydrated ionic radius increasing. It could be seen that the zeta potential of the clay minerals in AICl3 solution is positive,whereas that in NH4C1, KCl and MgCl2 solution is negative. And the zeta potential of clay minerals increases with the cation valence increasing. Moreover, the zeta potential of clay minerals decreases with the solution pH increasing,whereas that increases with the solution concentration increasing in different ammonium solutions. In addition,the swelling of clay minerals decreases while the zeta potential of clay minerals increasing in different ammonium solutions. The ability of compound ammonium to inhibit the swelling of clay minerals is lower than that of single ammonium solution.展开更多
Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processi...Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed.展开更多
In the past few decades,microbubble flotation has been widely studied in the separation and beneficiation of fine minerals.Compared with conventional flotation,microbubble flotation has obvious advantages,such as high...In the past few decades,microbubble flotation has been widely studied in the separation and beneficiation of fine minerals.Compared with conventional flotation,microbubble flotation has obvious advantages,such as high grade and recovery and low consumption of flotation reagents.This work systematically reviews the latest advances and research progress in the flotation of fine mineral particles by microbubbles.In general,microbubbles have small bubble size,large specific surface area,high surface energy,and good selectivity and can also easily be attached to the surface of hydrophobic particles or large bubbles,greatly reducing the detaching probability of particles from bubbles.Microbubbles can be prepared by pressurized aeration and dissolved air,electrolysis,ultrasonic cavitation,photocatalysis,solvent exchange,temperature difference method(TDM),and Venturi tube and membrane method.Correspondingly,equipment for fine-particle flotation is categorized as microbubble release flotation machine,centrifugal flotation column,packed flotation column,and magnetic flotation machine.In practice,microbubble flotation has been widely studied in the beneficiation of ultrafine coals,metallic minerals,and nonmetallic minerals and exhibited superiority over conventional flotation machines.Mechanisms underpinning the promotion of fine-particle flotation by nanobubbles include the agglomeration of fine particles,high stability of nanobubbles in aqueous solutions,and enhancement of particle hydrophobicity and flotation dynamics.展开更多
Minerals in the Late Permian coals from the Niuchang-Yigu mining area,Zhenxiong County,northeastern Yunnan,China,were investigated using optical microscopy and low temperature ashing plus X-ray diffraction(LTA?XRD).Th...Minerals in the Late Permian coals from the Niuchang-Yigu mining area,Zhenxiong County,northeastern Yunnan,China,were investigated using optical microscopy and low temperature ashing plus X-ray diffraction(LTA?XRD).The results showed that minerals in the coal LTAs are mainly quartz,kaolinite,chamosite,mixed-layer illite/smectite(I/S),pyrite,and calcite,with trace amounts of marcasite,dolomite,and bassanite.The authigenic quartz generally occurs in collodetrinite or as a filling in cleats or cell cavities.This silica was mainly derived from aqueous solutions produced by the weathering of basaltic rocks in the Kangdian Upland and from hydrothermal fluids.The presence of b-quartz paramorph grains in collodetrinite probably indicates that these grains were detrital and came from a volcanic ash.Clay minerals are generally embedded in collodetrinite and occur as cell-fillings.Pyrite occurs as framboidal,anhedral,and euhedral grains and a cell-filling.The coals are high in pyrite and the high pyrite content probably results from seawater invading during the stage of peat accumulation.Calcite generally occurs as vein-fillings,indicating an epigenetic origin.展开更多
The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The resul...The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.展开更多
Gneisses with anatectic characteristics from the Liansan island in the Sulu UHPM(ultra-high pressure metamorphic)belt were studied for petrography,titanite U-Pb dating and mineral geochemistry.Three origins of garnets...Gneisses with anatectic characteristics from the Liansan island in the Sulu UHPM(ultra-high pressure metamorphic)belt were studied for petrography,titanite U-Pb dating and mineral geochemistry.Three origins of garnets are distinguished:metamorphic garnet,peritectic garnet and anatectic garnet,which are formed in the stages of peak metamorphism,retrograde anatexis and melt crystallization,respectively.The euhedral titanite has a high content of REE and high Th/U ratios,which is interpreted as indicating that it was newly-formed from an anatectic melt.The LA-ICP-MS titanite U-Pb dating yields 214-217 Ma ages for the titanite(melt)crystallization.The distribution of trace elements varies in response to the different host minerals at different stages.At the peak metamorphic stage,Y and HREE are mainly hosted by garnet,Ba and Rb by phengite,Sr,Nb,Ta,Pb,Th,U and LREE by allanite and Y,U and HREE by zircon.During partial melting,Y,Pb,Th,U and REE are released into the melt,which causes a dramatic decline of these element contents in the retrograde minerals.Finally,titanite absorbs most of the Nb,U,LREE and HREE from the melt.Therefore,the different stages of metamorphism have different mineral assemblages,which host different trace elements.展开更多
Reconstruction of the diagenetic evolution of reservoirs is one of the most significant tasks in oil and gas exploration and development.Assessing the accurate timing of diagenetic events is critical to better underst...Reconstruction of the diagenetic evolution of reservoirs is one of the most significant tasks in oil and gas exploration and development.Assessing the accurate timing of diagenetic events is critical to better understand the process of reservoir evolution,but the isotope dating of diagenetic events is technically challenging.This paper uses three case studies in the sedimentary basins in China to demonstrate the promising application of recently developed LA-(MC)-ICPMS in-situ U-Pb geochronology.Our results show that the new U-Pb dating method provides a reliable and efficient chronological approach to determine the absolute ages of diagenetic events.For example,the U-Pb age data of the Cambrian carbonate reservoir in the Tarim Basin reveals three diagenetic events at 526±14,515±21,and 481±4.6 Ma,respectively.It is worth noting that microscopic observations are particularly important for improving the success rate of U-Pb dating.In addition,the recent progress and future prospects in the in-situ U-Pb dating method are also discussed in this study,suggesting that this method is currently hindered by the lack of international carbonate standards for data correction.展开更多
Formation and dissolution of secondary arsenic minerals often play significant roles in controlling arsenic mobility in contaminated environments, especially in sulfide mines. Weathering of the orpiment and realgar-be...Formation and dissolution of secondary arsenic minerals often play significant roles in controlling arsenic mobility in contaminated environments, especially in sulfide mines. Weathering of the orpiment and realgar-bearing tailings from the Shimen realgar deposit, the largest realgar deposit in Asia, were studied. An integrated mineralogical analysis by using X-ray powder diffraction (XRD), Raman spectrum, scanning electron microscope (SEM) and transmission electron microscope (TEM) reveals four kinds of As-bearing secondary minerals including arsenic oxides, arsenates, As-gypsum, and As-Fe minerals. The precipitation of arsenates is due to interaction of As-bearing run-off waters and the underlying carbonate rocks, or the transformation of gypsum into arsenates or As-bearing gypsum through SO42-/HAsO42- substitution. Ca-arsenates are mainly weilite and pharmacolite with Ca/As atomic ratio of 1. Scanning transmission X-ray microscope (STXM) and X-ray absorption fine structure (XAFS) reveal that the valence of arsenic is mainly +3 and +5.展开更多
The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the...The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.展开更多
There are quite a few tetrahedrite-group minerals in the Jinjitai gold deposit, western Sichuan, which occur in an interstratified fractured zone of Middle Devonian carbonate rock series. The gold ore consists of pyri...There are quite a few tetrahedrite-group minerals in the Jinjitai gold deposit, western Sichuan, which occur in an interstratified fractured zone of Middle Devonian carbonate rock series. The gold ore consists of pyrite, chalcopyrite, tetrahedrite-group minerals, galena, sphalerite and gold-silver series minerals, with an element association of Au-Cu-Ag-Pb-As-Sb-Bi. Electron microprobe analyses of the tetrahedrite-group minerals gave the following results: copper 40.04 to 42.27% (average 40.04%), iron 1.24 to 7.78% (average 4.13%), zinc 0.39 to 7.06% (average 3.58%), arsenic 5.41 to 17.40% (average 8.84%), antimony 2.70 to 20.46% (average 15.87%), and silver 0.02 to 0.73% (average 0.28%). The mineral varieties include zinc-antimony-tetrahedrite, iron-antimony-tetrahedrite, iron-tennatite and zincotennatite. These data show that there is a complete isomorphous series between Sb and As. From above downwards tetrahedrite varies from zinc- and antimony-rich to iron- and arsenic-rich compositions. Their occurrence and zonal features are very important for exploration of the same type of gold deposits in western Sichuan.展开更多
The main objective of this work is to relate the coalescence of inherent minerals and the fragmentation of extraneous minerals to the slagging propensities of South African pulverised feed coals during combustion.By i...The main objective of this work is to relate the coalescence of inherent minerals and the fragmentation of extraneous minerals to the slagging propensities of South African pulverised feed coals during combustion.By incorporating the behaviour of inherent mineral matter or extraneous mineral matter in these coals under combustion conditions into ash-deposition prediction methods,the heterogeneous nature of the ash properties,which were disregarded in previous conventional ash deposition predictions,is considered in the study.The mode of occurrence of mineral matter in feed coals plays a crucial role in the formation of high-temperature mineral phases under combustion conditions.The float and sink fractions of the three different coals evaluated in this distinctive alternative approach provide different chemical and mineralogical properties of the derived ashes when subjected to elevated temperatures under oxidising conditions.Formation of significant concentrations of high-temperature minerals(such as mullite and cristobalite)is mainly due to the transformation reactions of extraneous kaolinite and quartz which are not associated with the extraneous fluxing minerals at elevated temperatures.However,the formation of anorthite at elevated temperatures can be attributed to the interaction of either inherent or extraneous fluxing minerals(namely calcite,dolomite,pyrite,and siderite)that are associated with either inherent or extraneous kaolinite in the coal samples under the oxidising condition.Furthermore,the anorthite,mullite,and calcium/magnesium/iron/aluminosilicate and silica glasses in ashes are formed either via crystallisation during the cooling of the hightemperature molten solution or via the solid state reactions.These high-temperature minerals and their glasses present in ashes can therefore be used as the indicators of the slagging propensity of coals.The implementation of results from this unique case study,will be of great significance to other industrial combustion processes to minimise or control ash deposition,slagging,and equipment erosion problems by either blending the density-separated fractions of coals or coals from different mines based on the chemical and mineralogical properties to prepare suitable feed coals.Furthermore,this unique alternative approach can be followed to further evaluate other feed coals in the global power stations during combustion.展开更多
基金Project(42277256)supported by the National Natural Science Foundation of ChinaProjects(HBKT-2021011,HBKT-2021014)supported by the Hunan Province Environmental Protection Research Program,ChinaProject(CDSKY-2023-05)supported by the Scientific Research of Project Hunan Provincial Urban Geological Survey and Monitoring Institute,China。
文摘In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the morphology,crystallinity,grain size and specific surface area of each mineral varied upon different bacteria and culturing conditions.In addition,the formed minerals’elemental composition and group disparity lead to different morphology,crystallinity and subsequent adsorption performance.In particular,adsorption difference existed in iron minerals biosynthesized by different bacteria.The maximal adsorption capacities of Akaganéite,Schwertmannite and ammoniojarosite were 26.6 mg/g,17.5 mg/g and 3.90 mg/g respectively.Cr(VI)adsorption on iron-minerals involves hydrogen bonding,electrostatic interaction,and ligand exchange.The adsorption only occurred on the surface of ammoniojarosite,while for Akaganéite and Schwertmannite,the tunnel structure greatly facilitated the adsorption process and improved adsorption capacity.Thus,the molecular structure is the primary determining factor for adsorption performance.Collectively,the results can provide useful information in selecting suitable bacteria for synthesizing heavy-metal scavenging minerals according to different environmental conditions.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFC2903904)National Natural Science Foundation of China(Grant Nos.U1906208 and U21A20106).
文摘Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect the comprehensive characteristics of natural rock,including mineral content and spatial distributions.This study employs the bubbling method to reconstruct granite containing multiple minerals in both two-(2D)and three-dimensions(3D),proposing a general procedure for granite structure reconstruction.The bubbling method utilizes numerous bubbles(hemispheres or spheres)of varying sizes and gradually changing properties,which are randomly overlapped to create a heterogeneous plane(2D)or space(3D).The properties of these overlapped areas are adjusted based on the sum of neighboring bubbles'properties,allowing specific regions with extreme properties to be selected and intercepted to form the desired mineral shapes.The results demonstrate that the reproduced granite samples can accurately exhibit the mineral distributions and sizes of real granite,quantified by fractal dimension(D)and the hourglass parameter(V_(Sum)=V_(Total)).The proposed method is also suitable for reconstructing anisotropic granite models,with anisotropy described by a fitted elliptic curve derived from ratios between directional mineral sizes and cross-sectional dimensions.Based on these findings,a series of numerical granite models with similar structures were reconstructed and tested.Results indicate that different mineral distributions significantly impact the macroscopic mechanical behaviors,but variability in numerical simulation results decreases with increasing specimen size.The compressive and tensile strength values of the reconstructed numerical models show less variation than those of natural granite specimens.This suggests that,beyond mineral distribution,other factors such as internal defects within natural granite contribute to the observed discrepancies.Additionally,the bubbling method shows great potential for modeling porous structures and offers high computational efficiency.
基金financially supported by the National Natural Science Foundation of China (No.51634009)the Institutions of Higher Learning Discipline Innovation Conference Program (111 Project) (No.B14034)the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources Innovation Driven Plan of Central South University (No.2015CX005)
文摘The similar floatabilities of calcium minerals and the huge difference between scheelite and wolframite have resulted in difficulties during their separation by flotation in Shizhuyuan Mine. In this study, novel collectors, lead complexes of benzohydroxamic acid(Pb-BHA),were introduced to modify the surface properties of scheelite and wolframite, thereby effectively and selectively improving floatability. The Pb-BHA complexes are found to be selective for the separation of scheelite and calcium minerals with little use of depressants and enable the synchronous flotation of scheelite and wolframite.Hence, a novel flotation process was developed for the recovery of tungsten minerals. The process is simplified greatly, and the recovery is improved by almost 10%.Removing or decreasing the amount of water glass contributes to the improvement of tungsten and fluorite recovery and the circulation of water and reagents, which benefits the environment.
基金Science and Technology Planning Project of Guangdong Province(2023B1212060048).
文摘The Suizhou meteorite is a heavily shock-met-amorphosed L6 chondrite which contains thin shock melt veins.So far,26 high-pressure phases have been identified from the meteorite.Among the high-pressure phases,ten of them were approved as new minerals which include tuite,xieite,wangdaodeite,chenmingite,hemleyite,poirierite,asimowite,hiroseite,elgoresyite,and ohtaniite,by the Commission on New Minerals,Nomenclature and Classification of the International Mineralogical Association.Other high-pressure phases identified from the meteorite are ahrensite,akimotoite,bridgmanite,lingunite,magnesiowüstite,majorite,majorite-pyrope_(ss),maskelynite,riesite,ringwoodite,wadsleyite,and 5 other phases including phase A,vitrified phase B and phase C,phase D(Ca-rich majorite),and partly inverted ringwoodite.The occurrence and abundance of high-pressure phases makes this meteorite the one with the richest variety of high-pressure minerals to date.
基金supported by the Project of the National Natural Science Foundation of China(No.52274263)the Key Research and Development Program of Jiangxi Province(No.20214BBG74001)the Major Science and Technology Innovation Project of Yichun(No.2023ZDKJGG03).
文摘Lepidolite,feldspar,and quartz are silicate minerals with similar chemical properties,complicating their flotation separation.Current collector systems require strong acidic conditions for effective separation but still face challenges related to low separation efficiency and recovery rates.This study proposed a novel collector,ammonium dodecylsulfate(ALS),to selectively extract lepidolite from feldspar and quartz using highly selective flotation methods.Microflotation experiments showed that ALS significantly outperforms other collectors in collecting lepidolite compared to feldspar and quartz.At pH 7,lepidolite recovery reached 95%,while flotation recoveries for both feldspar and quartz were below 10%.Mixed pure mineral flotation tests revealed that at pH 7 and ALS concentration of 2.5×10^(-4) mol·L^(−1),the Li_(2)O content in the concentrate was 4.21%,with a recovery rate of 95.01%.Separation efficiency and Gaudin selectivity index values were recorded.Solution chemical analyses showed that at pH 7,ALS completely ionizes into NH_(4)^(+)and CH_(3)(CH_(2))_(11)OSO_(3)^(−).Various analytical techniques,including high-speed photography imaging,contact angle measurements,Fourier transform infrared spectroscopy,zeta potential analysis,and X-ray photoelectron spectroscopy,confirmed that the anion CH_(3)(CH_(2))_(11)OSO_(3)^(−)adsorbs chemically onto aluminum sites on lepidolite's surface,while the cation NH_(4)+binds through electrostatic interactions and hydrogen bonding.The combined adsorption of these ions on lepidolite's surface enhanced its hydrophobicity.In contrast,ALS showed minimal adsorption on feldspar and quartz surfaces,which remained hydrophilic,enabling efficient selective flotation separation of lepidolite from both feldspar and quartz.
基金supported by the National Natural Science Foundation of China(Nos.42250202,92162323,42272075)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.24lgqb01).
文摘Understanding the formation of lithium-rich pegmatites is critical for meeting global lithium demand.The 509 Daobanxi Li pegmatite deposit,located in the West Kunlun orogenic belt of northwestern China,represents a significant example of an LCT-type(Li-Cs-Ta)pegmatite system.This study investigates the paragenetic sequence of lithium(Li)minerals and the factors controlling their crystallization,providing new insights into the magmatic-hydrothermal evolution of rare-element pegmatites.Pegmatite dikes exhibit distinct zonation,comprising a wall rock zone,a border zone(aplitic layer),and a core zone(pegmatitic layer),with Li mineralization concentrated in the pegmatitic and aplitic layers.The primary Li minerals include spodumene(Spd),montebrasite(Mbs),eucryptite(Ecr),elbaite(Elb),and lepidolite(Lpd),which crystallize in the order of spodumene→montebrasite→elbaite→lepidolite.Spodumene,the dominant Li-bearing mineral,crystallizes from a Li-saturated melt during the magmatic stage.Montebrasite,a Li-phosphate mineral,forms in P-rich environments,coexisting with spodumene and columbite-group minerals(CGM).During the magmatic-hydrothermal transition,elbaite crystallizes from a B-rich melt,exhibiting skeletal and patchy zoning due to undercooling and disequilibrium crystallization.Hydrothermal alteration leads to the breakdown of spodumene and the formation of secondary minerals such as eucryptite and lepidolite,with lepidolite being the final Li-bearing phase,enriched in fluorine.The coupled dissolution-precipitation processes during the magmatic-hydrothermal transition play a critical role in the remobilization and enrichment of rare elements such as Li,Nb,Ta,and Sn.This deposit,characterized by spodumene crystallization in the Spd+Quartz stability field(≥300 MPa,≤725℃)and subsequent alteration to Ecr+quartz assemblages(<270℃,<160 MPa),exhibits broader temperature-pressure conditions exceeding typical global pegmatites like Tanco,with no petalite formation observed due to its persistent exclusion from petalite stability fields throughout mineralization.The shear zone controls the pegmatite emplacement and lithium enrichment in the 509 Daobanxi lithium deposit,and its deformation-fluid coupling mechanism provides new insights for the exploration of LCT pegmatite deposits.The present study highlights the importance of understanding both magmatic and hydrothermal processes in the formation of LCT-type pegmatites and provides valuable insights for the exploration of critical metal resources in similar geological settings.
基金supported by the Natural Science Foundation of China (No. 41403022)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUGL150401)
文摘The effect of operating conditions on the time-dependent X-ray intensity variation is of great importance for the optimal EPMA conditions for accurate determinations of various elements in carbonate minerals. Beam diameters of 0, 1, 2, 5, 10, 15, and 20 μm, and beam currents of 3, 5, 10, 20,and 50 nA were tested. Ca, Mg, Zn, and Sr were found to be more sensitive to electron beam irradiation as compared to other elements, and small currents and large beam diameters minimized the timedependent X-ray intensity variations. We determined the optimal EPMA operating conditions for elements in carbonate: 10 μm and 5 nA for calcite;10 μm and 10 nA for dolomite;5 μm and 10 nA or 10 μm and 20 nA for strontianite;and 20 nA and 5 μm for other carbonate. Elements sensitive to electron beam irradiation should be determined first. In addition, silicate minerals are preferred as standards rather than carbonate minerals.
基金Project supported by the National Natural Science Foundation of China(51872269,42072053)。
文摘The unique luminescent performance of lanthanide complexes/clay minerals hybrid materials has been fascinating many researchers for recent decades.It not only retains the excellent luminescent characteristics of lanthanide complexes but also improves the poor stability of the complexes.In this article,we introduce the luminescence mechanism of lanthanide complexes and point out the necessity of their combination with clay minerals.After the analysis of the structure and interlayer environment differences of 1:1-type and 2:1-type clay minerals,the intercalation methods(covalent grafting and ion exchange)appropriate for different clay minerals are summarized with examples.Based on the luminescence characteristics of the hybrid materials,the applications of these materials as luminescent probes in recognition of specific metal cations and molecules,detection of pH value,and temperature are reviewed.Finally,the current problems in the preparation of lanthanide complexes/clay minerals hybrid luminescent materials and shortcomings that need improvement in their performance are analyzed,and the application prospect is forecast.
基金supported by the Project of the National Natural Science Foundation of China (Grant No. 41572093, 41072083, 40602011)the Open Foundation of Shangdong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineralthe Cultivating Program of Young and Middle-aged Backbone Teachers of Chengdu University of Technology
文摘The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe-Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe-Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe-Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe-Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75-0.73 Ma B.P..
基金financially supported by the National Natural Science Foundation of China (Nos. 41472071 and 51734001)
文摘The effect of hydrated radius, cation valence, pH and solution concentration on the zeta potential of clay minerals was investigated, and the relation between zeta potential of clay minerals and swelling was discussed in different leaching agents as well. The results show that the zeta potential of clay minerals decreases with the hydrated ionic radius increasing. It could be seen that the zeta potential of the clay minerals in AICl3 solution is positive,whereas that in NH4C1, KCl and MgCl2 solution is negative. And the zeta potential of clay minerals increases with the cation valence increasing. Moreover, the zeta potential of clay minerals decreases with the solution pH increasing,whereas that increases with the solution concentration increasing in different ammonium solutions. In addition,the swelling of clay minerals decreases while the zeta potential of clay minerals increasing in different ammonium solutions. The ability of compound ammonium to inhibit the swelling of clay minerals is lower than that of single ammonium solution.
基金supported by Yunnan Fundamental Research Projects(No.202101BE070001-009)China Postdoctoral Science Foundation(No.2018T111000)Applied Basic Research Foundation of Yunnan Province(No.2018FD035).
文摘Copper oxide minerals are important copper resources,which include malachite,azurite,chrysocolla,cuprite,etc.Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry.In this paper,the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized.The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail.Flotation methods include direct flotation(using chelating reagents or a fatty acid as collector),sulfidization flotation(using xanthate as collector),and activation flotation(using chelating reagents,ammonium/amine salts,metal ions,and oxidant for activation).An effective way to realize efficient flotation of copper oxide minerals is to increase active sites on the surface of copper oxide minerals to enhance the interaction of collector with the mineral surface.Besides,various perspectives for further investigation on the efficient recovery of copper oxide minerals are proposed.
基金funded by the National Natural Science Foundation of China (No.52004020)Fundamental Research Funds for the Central Universities (No.00007733)+2 种基金Open Foundation of State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2021-13)High-end Foreign Expert Introduction Program (No.G2022105001L)State Key Laboratory of Comprehensive Utilization of LowGrade Refractory Gold Ores,Zijin Mining Group Co.,Ltd.
文摘In the past few decades,microbubble flotation has been widely studied in the separation and beneficiation of fine minerals.Compared with conventional flotation,microbubble flotation has obvious advantages,such as high grade and recovery and low consumption of flotation reagents.This work systematically reviews the latest advances and research progress in the flotation of fine mineral particles by microbubbles.In general,microbubbles have small bubble size,large specific surface area,high surface energy,and good selectivity and can also easily be attached to the surface of hydrophobic particles or large bubbles,greatly reducing the detaching probability of particles from bubbles.Microbubbles can be prepared by pressurized aeration and dissolved air,electrolysis,ultrasonic cavitation,photocatalysis,solvent exchange,temperature difference method(TDM),and Venturi tube and membrane method.Correspondingly,equipment for fine-particle flotation is categorized as microbubble release flotation machine,centrifugal flotation column,packed flotation column,and magnetic flotation machine.In practice,microbubble flotation has been widely studied in the beneficiation of ultrafine coals,metallic minerals,and nonmetallic minerals and exhibited superiority over conventional flotation machines.Mechanisms underpinning the promotion of fine-particle flotation by nanobubbles include the agglomeration of fine particles,high stability of nanobubbles in aqueous solutions,and enhancement of particle hydrophobicity and flotation dynamics.
基金This research was supported by the National Key Basic Research and Development Program(No.2014CB238902)National Natural Science Foundation of China(Nos.41272182 and 40930420)the Program for Changjiang Scholars and Innovative Research Team in University.
文摘Minerals in the Late Permian coals from the Niuchang-Yigu mining area,Zhenxiong County,northeastern Yunnan,China,were investigated using optical microscopy and low temperature ashing plus X-ray diffraction(LTA?XRD).The results showed that minerals in the coal LTAs are mainly quartz,kaolinite,chamosite,mixed-layer illite/smectite(I/S),pyrite,and calcite,with trace amounts of marcasite,dolomite,and bassanite.The authigenic quartz generally occurs in collodetrinite or as a filling in cleats or cell cavities.This silica was mainly derived from aqueous solutions produced by the weathering of basaltic rocks in the Kangdian Upland and from hydrothermal fluids.The presence of b-quartz paramorph grains in collodetrinite probably indicates that these grains were detrital and came from a volcanic ash.Clay minerals are generally embedded in collodetrinite and occur as cell-fillings.Pyrite occurs as framboidal,anhedral,and euhedral grains and a cell-filling.The coals are high in pyrite and the high pyrite content probably results from seawater invading during the stage of peat accumulation.Calcite generally occurs as vein-fillings,indicating an epigenetic origin.
基金Project(U1608254) supported by the Special Fund for the National Natural Science Foundation of ChinaProjects(ZJKY2017(B)KFJJ01,ZJKY2017(B)KFJJ02) supported by Zijin Mining Group Co.,Ltd.,China
文摘The effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores was carried out by phase analysis means of XRD, optical microscopy and SEM-EDS. The results indicated that at ambient temperature, the easily leached copper oxide minerals were completely dissolved, while the bonded copper minerals were insoluble. At lukewarm temperature of 40℃, it was mainly the dissolution of copper in isomorphism state. With increasing temperature to 60℃, the copper leaching rate in the adsorbed state was significantly accelerated. In addition, when the temperature increased to 80℃, the isomorphic copper was completely leached, leaving 11.2% adsorbed copper un-leached. However, the copper in feldspar-quartz-copper-iron colloid state was not dissolved throughout the leaching process. Overall, the leaching rates of copper in different copper minerals decreased in the order: malachite, pseudo-malachite > chrysocolla > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite > feldspar-quartz-copper-iron colloid.
基金supported by funds from the National Natural Science Foundation of China(Grant Nos.42172067,41972064,U1906207)the SDUST Research Fund。
文摘Gneisses with anatectic characteristics from the Liansan island in the Sulu UHPM(ultra-high pressure metamorphic)belt were studied for petrography,titanite U-Pb dating and mineral geochemistry.Three origins of garnets are distinguished:metamorphic garnet,peritectic garnet and anatectic garnet,which are formed in the stages of peak metamorphism,retrograde anatexis and melt crystallization,respectively.The euhedral titanite has a high content of REE and high Th/U ratios,which is interpreted as indicating that it was newly-formed from an anatectic melt.The LA-ICP-MS titanite U-Pb dating yields 214-217 Ma ages for the titanite(melt)crystallization.The distribution of trace elements varies in response to the different host minerals at different stages.At the peak metamorphic stage,Y and HREE are mainly hosted by garnet,Ba and Rb by phengite,Sr,Nb,Ta,Pb,Th,U and LREE by allanite and Y,U and HREE by zircon.During partial melting,Y,Pb,Th,U and REE are released into the melt,which causes a dramatic decline of these element contents in the retrograde minerals.Finally,titanite absorbs most of the Nb,U,LREE and HREE from the melt.Therefore,the different stages of metamorphism have different mineral assemblages,which host different trace elements.
基金supported by the National Natural Science Foundation of China(Nos.42072142,41702121,U19B2007)the Major National Science and Technology Programs in the“Thirteenth Five-Year”Plan Period(No.2016ZX05024-006-002)the PetroChina Innovation Foundation(No.2018D-5007-0104)。
文摘Reconstruction of the diagenetic evolution of reservoirs is one of the most significant tasks in oil and gas exploration and development.Assessing the accurate timing of diagenetic events is critical to better understand the process of reservoir evolution,but the isotope dating of diagenetic events is technically challenging.This paper uses three case studies in the sedimentary basins in China to demonstrate the promising application of recently developed LA-(MC)-ICPMS in-situ U-Pb geochronology.Our results show that the new U-Pb dating method provides a reliable and efficient chronological approach to determine the absolute ages of diagenetic events.For example,the U-Pb age data of the Cambrian carbonate reservoir in the Tarim Basin reveals three diagenetic events at 526±14,515±21,and 481±4.6 Ma,respectively.It is worth noting that microscopic observations are particularly important for improving the success rate of U-Pb dating.In addition,the recent progress and future prospects in the in-situ U-Pb dating method are also discussed in this study,suggesting that this method is currently hindered by the lack of international carbonate standards for data correction.
文摘Formation and dissolution of secondary arsenic minerals often play significant roles in controlling arsenic mobility in contaminated environments, especially in sulfide mines. Weathering of the orpiment and realgar-bearing tailings from the Shimen realgar deposit, the largest realgar deposit in Asia, were studied. An integrated mineralogical analysis by using X-ray powder diffraction (XRD), Raman spectrum, scanning electron microscope (SEM) and transmission electron microscope (TEM) reveals four kinds of As-bearing secondary minerals including arsenic oxides, arsenates, As-gypsum, and As-Fe minerals. The precipitation of arsenates is due to interaction of As-bearing run-off waters and the underlying carbonate rocks, or the transformation of gypsum into arsenates or As-bearing gypsum through SO42-/HAsO42- substitution. Ca-arsenates are mainly weilite and pharmacolite with Ca/As atomic ratio of 1. Scanning transmission X-ray microscope (STXM) and X-ray absorption fine structure (XAFS) reveal that the valence of arsenic is mainly +3 and +5.
基金financially supported by the Yunnan Major Scientific and Technological Projects,China (No.202202AG050015)the National Natural Science Foundation of China (No.51464029)。
文摘The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.
文摘There are quite a few tetrahedrite-group minerals in the Jinjitai gold deposit, western Sichuan, which occur in an interstratified fractured zone of Middle Devonian carbonate rock series. The gold ore consists of pyrite, chalcopyrite, tetrahedrite-group minerals, galena, sphalerite and gold-silver series minerals, with an element association of Au-Cu-Ag-Pb-As-Sb-Bi. Electron microprobe analyses of the tetrahedrite-group minerals gave the following results: copper 40.04 to 42.27% (average 40.04%), iron 1.24 to 7.78% (average 4.13%), zinc 0.39 to 7.06% (average 3.58%), arsenic 5.41 to 17.40% (average 8.84%), antimony 2.70 to 20.46% (average 15.87%), and silver 0.02 to 0.73% (average 0.28%). The mineral varieties include zinc-antimony-tetrahedrite, iron-antimony-tetrahedrite, iron-tennatite and zincotennatite. These data show that there is a complete isomorphous series between Sb and As. From above downwards tetrahedrite varies from zinc- and antimony-rich to iron- and arsenic-rich compositions. Their occurrence and zonal features are very important for exploration of the same type of gold deposits in western Sichuan.
基金the NRF and DSI(Coal Research Chair Grant Nos.86880,UID85643,and UID85632)Sasol,South Africa for their assistance in funding this project.
文摘The main objective of this work is to relate the coalescence of inherent minerals and the fragmentation of extraneous minerals to the slagging propensities of South African pulverised feed coals during combustion.By incorporating the behaviour of inherent mineral matter or extraneous mineral matter in these coals under combustion conditions into ash-deposition prediction methods,the heterogeneous nature of the ash properties,which were disregarded in previous conventional ash deposition predictions,is considered in the study.The mode of occurrence of mineral matter in feed coals plays a crucial role in the formation of high-temperature mineral phases under combustion conditions.The float and sink fractions of the three different coals evaluated in this distinctive alternative approach provide different chemical and mineralogical properties of the derived ashes when subjected to elevated temperatures under oxidising conditions.Formation of significant concentrations of high-temperature minerals(such as mullite and cristobalite)is mainly due to the transformation reactions of extraneous kaolinite and quartz which are not associated with the extraneous fluxing minerals at elevated temperatures.However,the formation of anorthite at elevated temperatures can be attributed to the interaction of either inherent or extraneous fluxing minerals(namely calcite,dolomite,pyrite,and siderite)that are associated with either inherent or extraneous kaolinite in the coal samples under the oxidising condition.Furthermore,the anorthite,mullite,and calcium/magnesium/iron/aluminosilicate and silica glasses in ashes are formed either via crystallisation during the cooling of the hightemperature molten solution or via the solid state reactions.These high-temperature minerals and their glasses present in ashes can therefore be used as the indicators of the slagging propensity of coals.The implementation of results from this unique case study,will be of great significance to other industrial combustion processes to minimise or control ash deposition,slagging,and equipment erosion problems by either blending the density-separated fractions of coals or coals from different mines based on the chemical and mineralogical properties to prepare suitable feed coals.Furthermore,this unique alternative approach can be followed to further evaluate other feed coals in the global power stations during combustion.