Plasmonic grating structures have been shown effective at increasing near-field optical enhancement. A doublewidth plasmonic grating design is introduced, where each period has two alternating metal widths separated b...Plasmonic grating structures have been shown effective at increasing near-field optical enhancement. A doublewidth plasmonic grating design is introduced, where each period has two alternating metal widths separated by a nanogap. With this new design, analysis has shown that plasmonic resonances couple between each metal section,resulting in even greater optical enhancement compared with single-width gratings. The geometry that gives the greatest optical enhancement has been determined with a computational model. This work demonstrates that the increased enhancement is due to hybridized modes that couple between the two grating segments.展开更多
基金Arkansas Biosciences Institute(ABI)Iraqi Ministry of Higher Education and Scientific ResearchSPIE
文摘Plasmonic grating structures have been shown effective at increasing near-field optical enhancement. A doublewidth plasmonic grating design is introduced, where each period has two alternating metal widths separated by a nanogap. With this new design, analysis has shown that plasmonic resonances couple between each metal section,resulting in even greater optical enhancement compared with single-width gratings. The geometry that gives the greatest optical enhancement has been determined with a computational model. This work demonstrates that the increased enhancement is due to hybridized modes that couple between the two grating segments.