期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于机器学习方法的三维粒子重构技术 被引量:4
1
作者 朱浩然 高琪 +4 位作者 王洪平 廖相巍 赵亮 魏润杰 王晋军 《实验流体力学》 CAS CSCD 北大核心 2021年第3期88-93,共6页
通过三维粒子重构获取粒子场的分布情况是层析粒子图像测速的关键步骤,有限二维投影下的三维粒子重构是一个欠定的反问题,其精确解往往很难得到。一般情况下,可以通过优化方法得到近似解。为了获取质量更高的粒子场并用于层析粒子图像测... 通过三维粒子重构获取粒子场的分布情况是层析粒子图像测速的关键步骤,有限二维投影下的三维粒子重构是一个欠定的反问题,其精确解往往很难得到。一般情况下,可以通过优化方法得到近似解。为了获取质量更高的粒子场并用于层析粒子图像测速,提出了一种基于卷积神经网络(Convolutional Neural Networks,CNN)的粒子重构方法。所提出的技术可以从基于传统的代数重构技术(Algebraic Reconstruction Technique,ART)的方法所得到的粗略粒子分布中进一步提高粒子重构质量。与现有的基于ART的算法相比,新技术在重构质量方面有了显著的改进,可以有效剔除虚假粒子并更准确地还原粒子形状,并且在粒子浓度较稠密的情况下计算速度至少快了一个数量级。 展开更多
关键词 机器学习 粒子重构 层析粒子图像测速 卷积神经网络 重构质量
在线阅读 下载PDF
鱼游动涡结构PIV实验研究 被引量:10
2
作者 王福君 王洪平 +2 位作者 高琪 魏润杰 刘彦鹏 《实验流体力学》 EI CAS CSCD 北大核心 2020年第5期20-28,共9页
鱼类逃逸和巡游已逐渐成为鱼类仿生推进水动力学领域的研究热点,其研究结果为水下航行器推进技术提供了很好的理论基础和指导意义。利用平面PIV技术测量了斑马鱼在水中游动时的尾迹流场,分析了不同游动状态下的鱼尾迹涡结构的变化规律;... 鱼类逃逸和巡游已逐渐成为鱼类仿生推进水动力学领域的研究热点,其研究结果为水下航行器推进技术提供了很好的理论基础和指导意义。利用平面PIV技术测量了斑马鱼在水中游动时的尾迹流场,分析了不同游动状态下的鱼尾迹涡结构的变化规律;同时利用Tomo-PIV技术测量了曼龙鱼游尾迹三维流场,获得了涡环链结构。结果表明:不同游动状态下,鱼游尾迹表现出不同的流动结构和尾迹模式,对其进行研究有利于进一步揭示鱼游动的水动力学机理。 展开更多
关键词 鱼游 逃逸 巡游 Tomo-PIV 涡结构
在线阅读 下载PDF
Dual-basis reconstruction techniques for tomographic PIV 被引量:4
3
作者 YE ZhiJian GAO Qi +2 位作者 WANG HongPing WEI RunJie WANG JinJun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第11期1963-1970,共8页
As an inverse problem, particle reconstruction in tomographic particle image velocimetry attempts to solve a large-scale underdetermined linear system using an optimization technique. The most popular approach, the mu... As an inverse problem, particle reconstruction in tomographic particle image velocimetry attempts to solve a large-scale underdetermined linear system using an optimization technique. The most popular approach, the multiplicative algebraic reconstruction technique(MART), uses entropy as an objective function in the optimization. All available MART-based methods are focused on improving the efficiency and accuracy of particle reconstruction. However, those methods do not perform very well on dealing with ghost particles in highly seeded measurements. In this report, a new technique called dual-basis pursuit(DBP), which is based on the basis pursuit technique, is proposed for tomographic particle reconstruction. A template basis is introduced as a priori knowledge of a particle intensity distribution combined with a correcting basis to enable a full span of the solution space of the underdetermined linear system. A numerical assessment test with 2D synthetic images indicated that the DBP technique is superior to MART method, can completely recover a particle field when the number of particles per pixel(ppp) is less than 0.15, and can maintain a quality factor Q of above 0.8 for ppp up to 0.30. Unfortunately, the DBP method is difficult to utilize in 3D applications due to the cost of its excessive memory usage. Therefore, a dual-basis MART was designed that performed better than the traditional MART and can potentially be utilized for 3D applications. 展开更多
关键词 tomographic PIV particle reconstruction dual-basis pursuit multiplicative algebraic reconstruction technique
原文传递
Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning 被引量:3
4
作者 Qi Gao Shaowu Pan +2 位作者 Hongping Wang Runjie Wei Jinjun Wang 《Advances in Aerodynamics》 2021年第1期498-511,共14页
Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained.In general,approximate solutions can ... Three-dimensional particle reconstruction with limited two-dimensional projections is an under-determined inverse problem that the exact solution is often difficult to be obtained.In general,approximate solutions can be obtained by iterative optimization methods.In the current work,a practical particle reconstruction method based on a convolutional neural network(CNN)with geometry-informed features is proposed.The proposed technique can refine the particle reconstruction from a very coarse initial guess of particle distribution that is generated by any traditional algebraic reconstruction technique(ART)based methods.Compared with available ART-based algorithms,the novel technique makes significant improvements in terms of reconstruction quality,robustness to noise,and at least an order of magnitude faster in the offline stage. 展开更多
关键词 Particle reconstruction Volumetric particle image velocimetry Convolutional neural network
原文传递
Correction: Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning
5
作者 Qi Gao Shaowu Pan +2 位作者 Hongping Wang Runjie Wei Jinjun Wang 《Advances in Aerodynamics》 2022年第1期545-545,共1页
Following publication of the original article[1],the authors reported an error in the Funding number.The current Funding section is as below:This work was supported by the National Key R&D Program of China(No.2020... Following publication of the original article[1],the authors reported an error in the Funding number.The current Funding section is as below:This work was supported by the National Key R&D Program of China(No.2020YFA040070),the National Natural Science Foundation of China(grant No.11721202),the Program of State Key Laboratory of Marine Equipment(No.SKLMEA-K201910). 展开更多
关键词 image MARINE STRATEGY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部