Phone number recycling(PNR)refers to the event wherein a mobile operator collects a disconnected number and reassigns it to a new owner.It has posed a threat to the reliability of the existing authentication solution ...Phone number recycling(PNR)refers to the event wherein a mobile operator collects a disconnected number and reassigns it to a new owner.It has posed a threat to the reliability of the existing authentication solution for e-commerce platforms.Specifically,a new owner of a reassigned number can access the application account with which the number is associated,and may perform fraudulent activities.Existing solutions that employ a reassigned number database from mobile operators are costly for e-commerce platforms with large-scale users.Thus,alternative solutions that depend on only the information of the applications are imperative.In this work,we study the problem of detecting accounts that have been compromised owing to the reassignment of phone numbers.Our analysis on Meituan's real-world dataset shows that compromised accounts have unique statistical features and temporal patterns.Based on the observations,we propose a novel model called temporal pattern and statistical feature fusion model(TSF)to tackle the problem,which integrates a temporal pattern encoder and a statistical feature encoder to capture behavioral evolutionary interaction and significant operation features.Extensive experiments on the Meituan and IEEE-CIS datasets show that TSF significantly outperforms the baselines,demonstrating its effectiveness in detecting compromised accounts due to reassigned numbers.展开更多
Communications system has a signifi-cant impact on both operational safety and logisti-cal efficiency within low-altitude drone logistics net-works.Aiming at providing a systematic investiga-tion of real-world communi...Communications system has a signifi-cant impact on both operational safety and logisti-cal efficiency within low-altitude drone logistics net-works.Aiming at providing a systematic investiga-tion of real-world communication requirements and challenges encountered in Meituan UAV’s daily oper-ations,this article first introduces the operational sce-narios within current drone logistics networks and an-alyzes the related communication requirements.Then,the current communication solution and its inherent bottlenecks are elaborated.Finally,this paper explores emerging technologies and examines their application prospects in drone logistics networks.展开更多
Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has prov...Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has proven highly successful in image generation,speech generation,time series modelling etc.and now opens a new avenue for traffic data imputation.In this paper,we propose a conditional diffusion model,called the implicit-explicit diffusion model,for traffic data imputation.This model exploits both the implicit and explicit feature of the data simultaneously.More specifically,we design two types of feature extraction modules,one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series.This approach not only inherits the advantages of the diffusion model for estimating missing data,but also takes into account the multiscale correlation inherent in traffic data.To illustrate the performance of the model,extensive experiments are conducted on three real-world time series datasets using different missing rates.The experimental results demonstrate that the model improves imputation accuracy and generalization capability.展开更多
Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evo...Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evolution in composites is the path to elucidating the relationship between microstructures and fracture performance,but crack-based finite-element methods are computationally expensive and time-consuming,which limits their application in computation-intensive scenarios.Consequently,this study proposes a deep learning framework called Crack-Net for instant prediction of the dynamic crack growth process,as well as its strain-stress curve.Specifically,Crack-Net introduces an implicit constraint technique,which incorporates the relationship between crack evolution and stress response into the network architecture.This technique substantially reduces data requirements while improving predictive accuracy.The transfer learning technique enables Crack-Net to handle composite materials with reinforcements of different strengths.Trained on high-accuracy fracture development datasets from phase field simulations,the proposed framework is capable of tackling intricate scenarios,involving materials with diverse interfaces,varying initial conditions,and the intricate elastoplastic fracture process.The proposed Crack-Net holds great promise for practical applications in engineering and materials science,in which accurate and efficient fracture prediction is crucial for optimizing material performance and microstructural design.展开更多
Since the fully convolutional network has achieved great success in semantic segmentation,lots of works have been proposed to extract discriminative pixel representations.However,the authors observe that existing meth...Since the fully convolutional network has achieved great success in semantic segmentation,lots of works have been proposed to extract discriminative pixel representations.However,the authors observe that existing methods still suffer from two typical challenges:(i)The intra-class feature variation between different scenes may be large,leading to the difficulty in maintaining the consistency between same-class pixels from different scenes;(ii)The inter-class feature distinction in the same scene could be small,resulting in the limited performance to distinguish different classes in each scene.The authors first rethink se-mantic segmentation from a perspective of similarity between pixels and class centers.Each weight vector of the segmentation head represents its corresponding semantic class in the whole dataset,which can be regarded as the embedding of the class center.Thus,the pixel-wise classification amounts to computing similarity in the final feature space between pixels and the class centers.Under this novel view,the authors propose a Class Center Similarity(CCS)layer to address the above-mentioned challenges by generating adaptive class centers conditioned on each scenes and supervising the similarities between class centers.The CCS layer utilises the Adaptive Class Center Module to generate class centers conditioned on each scene,which adapt the large intra-class variation between different scenes.Specially designed Class Distance Loss(CD Loss)is introduced to control both inter-class and intra-class distances based on the predicted center-to-center and pixel-to-center similarity.Finally,the CCS layer outputs the processed pixel-to-center similarity as the segmentation prediction.Extensive experiments demonstrate that our model performs favourably against the state-of-the-art methods.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62072115,62202402,61971145,and 61602122)the Shanghai Science and Technology Innovation Action Plan Project(No.22510713600)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2022A1515011583 and 2023A1515011562)the One-off Tier 2 Start-up Grant(2020/2021)of Hong Kong Baptist University(Ref.RCOFSGT2/20-21/COMM/002)Startup Grant(Tier 1)for New Academics AY2020/21 of Hong Kong Baptist University and Germany/Hong Kong Joint Research Scheme sponsored by the Research Grants Council of Hong Kong,China,the German Academic Exchange Service of Germany(No.G-HKBU203/22),and Meituan。
文摘Phone number recycling(PNR)refers to the event wherein a mobile operator collects a disconnected number and reassigns it to a new owner.It has posed a threat to the reliability of the existing authentication solution for e-commerce platforms.Specifically,a new owner of a reassigned number can access the application account with which the number is associated,and may perform fraudulent activities.Existing solutions that employ a reassigned number database from mobile operators are costly for e-commerce platforms with large-scale users.Thus,alternative solutions that depend on only the information of the applications are imperative.In this work,we study the problem of detecting accounts that have been compromised owing to the reassignment of phone numbers.Our analysis on Meituan's real-world dataset shows that compromised accounts have unique statistical features and temporal patterns.Based on the observations,we propose a novel model called temporal pattern and statistical feature fusion model(TSF)to tackle the problem,which integrates a temporal pattern encoder and a statistical feature encoder to capture behavioral evolutionary interaction and significant operation features.Extensive experiments on the Meituan and IEEE-CIS datasets show that TSF significantly outperforms the baselines,demonstrating its effectiveness in detecting compromised accounts due to reassigned numbers.
基金supported by Shenzhen Science and Technology Program(KJZD20230923115210021)。
文摘Communications system has a signifi-cant impact on both operational safety and logisti-cal efficiency within low-altitude drone logistics net-works.Aiming at providing a systematic investiga-tion of real-world communication requirements and challenges encountered in Meituan UAV’s daily oper-ations,this article first introduces the operational sce-narios within current drone logistics networks and an-alyzes the related communication requirements.Then,the current communication solution and its inherent bottlenecks are elaborated.Finally,this paper explores emerging technologies and examines their application prospects in drone logistics networks.
基金partially supported by the National Natural Science Foundation of China(62271485)the SDHS Science and Technology Project(HS2023B044)
文摘Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has proven highly successful in image generation,speech generation,time series modelling etc.and now opens a new avenue for traffic data imputation.In this paper,we propose a conditional diffusion model,called the implicit-explicit diffusion model,for traffic data imputation.This model exploits both the implicit and explicit feature of the data simultaneously.More specifically,we design two types of feature extraction modules,one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series.This approach not only inherits the advantages of the diffusion model for estimating missing data,but also takes into account the multiscale correlation inherent in traffic data.To illustrate the performance of the model,extensive experiments are conducted on three real-world time series datasets using different missing rates.The experimental results demonstrate that the model improves imputation accuracy and generalization capability.
基金supported and partially funded by the National Natural Science Foundation of China(52288101)the China Postdoctoral Science Foundation(2024M761535)supported by the High Performance Computing Centers at Eastern Institute of Technology,Ningbo,and Ningbo Institute of Digital Twin.
文摘Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evolution in composites is the path to elucidating the relationship between microstructures and fracture performance,but crack-based finite-element methods are computationally expensive and time-consuming,which limits their application in computation-intensive scenarios.Consequently,this study proposes a deep learning framework called Crack-Net for instant prediction of the dynamic crack growth process,as well as its strain-stress curve.Specifically,Crack-Net introduces an implicit constraint technique,which incorporates the relationship between crack evolution and stress response into the network architecture.This technique substantially reduces data requirements while improving predictive accuracy.The transfer learning technique enables Crack-Net to handle composite materials with reinforcements of different strengths.Trained on high-accuracy fracture development datasets from phase field simulations,the proposed framework is capable of tackling intricate scenarios,involving materials with diverse interfaces,varying initial conditions,and the intricate elastoplastic fracture process.The proposed Crack-Net holds great promise for practical applications in engineering and materials science,in which accurate and efficient fracture prediction is crucial for optimizing material performance and microstructural design.
基金Hubei Provincial Natural Science Foundation of China,Grant/Award Number:2022CFA055National Natural Science Foundation of China,Grant/Award Number:62176097。
文摘Since the fully convolutional network has achieved great success in semantic segmentation,lots of works have been proposed to extract discriminative pixel representations.However,the authors observe that existing methods still suffer from two typical challenges:(i)The intra-class feature variation between different scenes may be large,leading to the difficulty in maintaining the consistency between same-class pixels from different scenes;(ii)The inter-class feature distinction in the same scene could be small,resulting in the limited performance to distinguish different classes in each scene.The authors first rethink se-mantic segmentation from a perspective of similarity between pixels and class centers.Each weight vector of the segmentation head represents its corresponding semantic class in the whole dataset,which can be regarded as the embedding of the class center.Thus,the pixel-wise classification amounts to computing similarity in the final feature space between pixels and the class centers.Under this novel view,the authors propose a Class Center Similarity(CCS)layer to address the above-mentioned challenges by generating adaptive class centers conditioned on each scenes and supervising the similarities between class centers.The CCS layer utilises the Adaptive Class Center Module to generate class centers conditioned on each scene,which adapt the large intra-class variation between different scenes.Specially designed Class Distance Loss(CD Loss)is introduced to control both inter-class and intra-class distances based on the predicted center-to-center and pixel-to-center similarity.Finally,the CCS layer outputs the processed pixel-to-center similarity as the segmentation prediction.Extensive experiments demonstrate that our model performs favourably against the state-of-the-art methods.