As a revolutionary industrial technology,additive manufacturing creates objects by adding materials layer by layer and hence can fabricate customized components with an unprecedented degree of freedom.For metallic mat...As a revolutionary industrial technology,additive manufacturing creates objects by adding materials layer by layer and hence can fabricate customized components with an unprecedented degree of freedom.For metallic materials,unique hierarchical microstructures are constructed during additive manufacturing,which endow them with numerous excellent properties.To take full advantage of additive manufacturing,an in-depth understanding of the microstructure evolution mechanism is required.To this end,this review explores the fundamental procedures of additive manufacturing,that is,the formation and binding of melt pools.A comprehensive processing map is proposed that integrates melt pool energy-and geometry-related process parameters together.Based on it,additively manufactured microstructures are developed during and after the solidification of constituent melt pool.The solidification structures are composed of primary columnar grains and fine secondary phases that form along the grain boundaries.The post-solidification structures include submicron scale dislocation cells stemming from internal residual stress and nanoscale precipitates induced by intrinsic heat treatment during cyclic heating of adjacent melt pool.Based on solidification and dislocation theories,the formation mechanisms of the multistage microstructures are thoroughly analyzed,and accordingly,multistage control methods are proposed.In addition,the underlying atomic scale structural features are briefly discussed.Furthermore,microstructure design for additive manufacturing through adjustment of process parameters and alloy composition is addressed to fulfill the great potential of the technique.This review not only builds a solid microstructural framework for metallic materials produced by additive manufacturing but also provides a promising guideline to adjust their mechanical properties.展开更多
Introduction The usual metaphors of“heart”and“throat”indi-cate the importance of pumps and valves in industrial systems including petroleum,chemical,metallurgy,aviation,and aerospace.With the continuous penetra-ti...Introduction The usual metaphors of“heart”and“throat”indi-cate the importance of pumps and valves in industrial systems including petroleum,chemical,metallurgy,aviation,and aerospace.With the continuous penetra-tion of the industrial internet,the miniaturization,digi-tization,multi-functionalization,and systemization of valves have become very important(Si et al.,2020;Chang et al.,2021;Pang et al.,2021;Bonilla et al.,2022;Yuan et al.,2022;Zhao et al.,2022).展开更多
The combination of silicon carbide(SiC)ceramics and stereolithography technology shows promise for manufacturing complex-shaped SiC components,expanding application possibilities.However,high sintering temperature and...The combination of silicon carbide(SiC)ceramics and stereolithography technology shows promise for manufacturing complex-shaped SiC components,expanding application possibilities.However,high sintering temperature and structural-performance anisotropy limit the practical use of 3D-printed SiC components.Herein,a novel method is introduced to produce high-specific-strength SiC-based ceramics at a relatively low temperature of 1100℃.A mixed SiC/SiO_(2) slurry(30%SiO_(2) and 70%SiC by volume)with a solid loading of up to 40%was prepared to improve UV light penetration and printability.Additionally,incorporating a high content of methyl-phenyl-polysiloxane(PSO)solution(75%by weight)enabled low-temperature pyrolysis of SiC/SiO_(2)/PSO ceramics.The SiC/SiO_(2)/PSO ceramic lattices after pyrolysis achieved a specific strength as high as(1.03×10^(5))N·m·kg^(-1) and a density of 1.75 g·cm^(-3),outperforming similar SiC-based lattices structures of similar porosities.The bending strength of(95.49±8.79)MPa was comparable to that of ceramics sintered at 1400℃ or higher.Notably,the addition of the silicon carbide oxide(SiOC)phase reduced anisotropy,lowering the transverse and longitudinal compression strength ratios from 1.87 to 1.08,and improving mechanical properties by 79%.This improvement is attributed to SiOC shrinkage,promoting a uniform distribution of sintered components,resulting in a more robust and balanced material structure.This method offers valuable insight into the additive manufacturing(AM)of SiC-based ceramics at lower temperatures and provides new guidance for controlling anisotropy in 3D-printed ceramic parts.展开更多
In this work,tensile mechanical behavior of 316L steels fabricated by three different processing methods(casting,powder extrusion printing(PEP)and laser powder bed fusion(LPBF))was studied in the presence of liquid le...In this work,tensile mechanical behavior of 316L steels fabricated by three different processing methods(casting,powder extrusion printing(PEP)and laser powder bed fusion(LPBF))was studied in the presence of liquid lead-bismuth eutectic(LBE)and air at 350℃.The results show that all three steels tested in LBE are not subjected to evident degradation of tensile elongation to failure and strength compared to those tested in air,suggesting that LME does not occur regardless of the processing methods.The LPBF 316L steel exhibits the highest yield strength(420-435 MPa),followed by casting 316 L(~242 MPa)and PEP 316L(146-165 MPa).Ultimate tensile strength of three steels is comparable and ranges from 427 to 485 MPa.The PEP and casting 316L steels have similar total elongation to failure(i.e.,40.0%-43.8%),whereas this property decreases markedly to 18.6%-19.5% for the LPBF 316 L steel.The superior strength and relatively low ductility of the LPBF 316L steel can be attributed to nanosized dislocations trapped at cell structures which can produce a remarkable strengthening effect to the steel matrix.By contrast,due to massive residual micropores,the PEP 316L steel has the lowest strength.展开更多
Magnetically responsive microstructured functional surface(MRMFS),capable of dynamically and reversibly switching the surface topography under magnetic actuation,provides a wireless,noninvasive,and instantaneous way t...Magnetically responsive microstructured functional surface(MRMFS),capable of dynamically and reversibly switching the surface topography under magnetic actuation,provides a wireless,noninvasive,and instantaneous way to accurately control the microscale engineered surface.In the last decade,many studies have been conducted to design and optimize MRMFSs for diverse applications,and significant progress has been accomplished.This review comprehensively presents recent advancements and the potential prospects in MRMFSs.We first classify MRMFSs into one-dimensional linear array MRMFSs,two-dimensional planar array MRMFSs,and dynamic self-assembly MRMFSs based on their morphology.Subsequently,an overview of three deformation mechanisms,including magnetically actuated bending deformation,magnetically driven rotational deformation,and magnetically induced self-assembly deformation,are provided.Four main fabrication strategies employed to create MRMFSs are summarized,including replica molding,magnetization-induced self-assembly,laser cutting,and ferrofluid-infused method.Furthermore,the applications of MRMFS in droplet manipulation,solid transport,information encryption,light manipulation,triboelectric nanogenerators,and soft robotics are presented.Finally,the challenges that limit the practical applications of MRMFSs are discussed,and the future development of MRMFSs is proposed.展开更多
Searching for compatible electrolytes with Ni_(0.8)C_(00.15)Al_(0.05)LiO_(2-δ)(NCAL)electrodes that exhibit high ionic conductivity at low operational temperatures(<550℃)is crucial for advancing ceramics fuel cel...Searching for compatible electrolytes with Ni_(0.8)C_(00.15)Al_(0.05)LiO_(2-δ)(NCAL)electrodes that exhibit high ionic conductivity at low operational temperatures(<550℃)is crucial for advancing ceramics fuel cells(CFCs)research.In this work,the experimental and theoretical analyses demonstrate that the highly stable single-phase Gd_(3)Ga_(5)O_(12)(GGO)garnet structure,composed of Gd-O octahedrons and Ga-O tetrahedrons,provides more active sites for ion transport,resulting in enhanced peak power density(PPD)and stable open circuit voltage(OCV)at low operational temperatures.The unique internal garnet structure effectively reduces the interfacial impedance of the prepared fuel cell device,provides more active sites at triple-phase boundarie region,and increases the electrochemical stability.As a result,the constructed fuel cell device can deliver a superior peak power density of 770 mW/cm^(2)at 490℃.In addition,X-ray photoelectron spectroscopy,electrochemical impedance spectroscopy,and theoretical calculations further demonstrate electrolyte effectiveness of GGO,enabling stable an OCV even at a low temperature of 370℃under a H_(2)/air environment.This work contributes to a deeper understanding of the underlying mechanisms of a single-layer fuel cell device,which is essential for advancing this promising energy technology,even at a very low temperature of 370℃.展开更多
Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue.However,low resolution,occlusion,and background interference make small obje...Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue.However,low resolution,occlusion,and background interference make small object detection a complex and demanding task.One effective approach to overcome these issues is the integration of multimodal image data to enhance detection capabilities.This paper proposes a novel small object detection method that utilizes three types of multimodal image combinations,such as Hyperspectral-Multispectral(HSMS),Hyperspectral-Synthetic Aperture Radar(HS-SAR),and HS-SAR-Digital Surface Model(HS-SAR-DSM).The detection process is done by the proposed Jaccard Deep Q-Net(JDQN),which integrates the Jaccard similarity measure with a Deep Q-Network(DQN)using regression modeling.To produce the final output,a Deep Maxout Network(DMN)is employed to fuse the detection results obtained from each modality.The effectiveness of the proposed JDQN is validated using performance metrics,such as accuracy,Mean Squared Error(MSE),precision,and Root Mean Squared Error(RMSE).Experimental results demonstrate that the proposed JDQN method outperforms existing approaches,achieving the highest accuracy of 0.907,a precision of 0.904,the lowest normalized MSE of 0.279,and a normalized RMSE of 0.528.展开更多
An Al-12 Si/Al-3.5 Cu-1.5 Mg-1 Si bimetal with a good interface was successfully produced by selective laser melting(SLM).The SLM bimetal exhibits four successive zones along the building direction:an Al-12 Si zone,an...An Al-12 Si/Al-3.5 Cu-1.5 Mg-1 Si bimetal with a good interface was successfully produced by selective laser melting(SLM).The SLM bimetal exhibits four successive zones along the building direction:an Al-12 Si zone,an interfacial zone,a texture-strengthening zone and an Al-Cu-Mg-Si zone.The interfacial zone(<0.2 mm thick)displays an increasing size of the cells composed of eutectic Al-Si and a discontinuous cellular microstructure,resulting in the lowest hardness of the four zones.The texturestrengthening zone(around 0.3 mm thick)shows a remarkable variation of the hardness and<001>fiber texture.Electron backscatter diffraction analysis shows that the grains grow gradually from the interfacial zone to the Al-Cu-Mg-Si zone along the building direction.Additionally,a strong<001>fiber texture develops at the Al-Cu-Mg-Si side of the interfacial zone and disappears gradually along the building direction.The bimetal exhibits a room temperature yield strength of 267±10 MPa and an ultimate tensile strength of 369±15 MPa with elongation of 2.6±0.1%,revealing the potential of selective laser melting in manufacturing dissimilar materials.展开更多
Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flowinduced vibrations.A novel tristable galloping-based piezoelectric energy harvester is constructed ...Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flowinduced vibrations.A novel tristable galloping-based piezoelectric energy harvester is constructed by introducing a nonlinear magnetic force on the traditional galloping-based piezoelectric energy harvester.Based on Euler-Bernoulli beam theory and Kirchhoff’s law,the corresponding aero-electromechanical model is proposed and validated by a series of wind tunnel experiments.The parametric study is performed to analyse the response of the tristable galloping-based piezoelectric energy harvester.Numerical results show that comparing with the galloping-based piezoelectric energy harvester,the mechanism of the tristable galloping-based piezoelectric energy harvester is more complex.With the increase of a wind speed,the vibration of the bluff body passes through three branches:intra-well oscillations,chaotic oscillations,and inter-well oscillations.The threshold wind speed of the presented harvester for efficiently harvesting energy is 1.0 m/s,which is decreased by 33% compared with the galloping-based piezoelectric energy harvester.The maximum output power of the presented harvester is 0.73 mW at 7.0 m/s wind speed,which is increased by 35.3%.Compared with the traditional galloping-based piezoelectric energy harvester,the presented tristable galloping-based piezoelectric energy harvester has a better energy harvesting performance from flow-induced vibrations.展开更多
Ti2AlNb-based intermetallic compounds are considered as a new category of promising lightweight aerospace materials due to their balanced mechanical properties.The aim of this study was to evaluate monotonic and cycli...Ti2AlNb-based intermetallic compounds are considered as a new category of promising lightweight aerospace materials due to their balanced mechanical properties.The aim of this study was to evaluate monotonic and cyclic deformation behavior of an as-cast Ti-22A1-20Nb-2V-1Mo-0.25Si(at.%)intermetallic compound in relation to its microstructure.The alloy containing an abundant fine lamellar O-Ti2AlNb phase exhibited a good combination of strength and plasticity,and superb fatigue resistance in comparison with other intermetallic compounds.Cyclic stabilization largely remained except slight cyclic hardening occurring at higher strain amplitudes.While fatigue life could be described using the common Coffin-Mason-Basquin equation,it could be better predicted via a weighted energy-based approach.Fatigue crack growth was characterized mainly by crystallographic cracking,along with fatigue striationlike features being unique to appear in the intermetallics.The results obtained in this study lay the foundation for the safe and durable applications of Ti2AlNb-based lightweight intermetallic compounds.展开更多
This study investigated the effect of annealing below glass transition temperature(T_(g))on the microstructural characteristics,mechanical property,wettability,and electrochemical performance of activated combustion-h...This study investigated the effect of annealing below glass transition temperature(T_(g))on the microstructural characteristics,mechanical property,wettability,and electrochemical performance of activated combustion-high velocity air fuel(AC-HVAF)-sprayed Fe-Cr-Mo-W-C-B-Y amorphous coatings(ACs).Results showed that Fe-based ACs with a thickness of~300μm exhibited a fully amorphous structure with low oxidization.Originating from the reduced free volume,sub-T_(g) annealing increased the thermal stability,hardness,and surface hydrophobicity of Fe-based ACs.The enhanced corrosion resistance of sub-T_(g) annealed ACs in 3.5 wt%NaCl solution was attributed to the increased surface hydrophobicity and passivation capability.This finding elucidates the correlation between sub-T_(g) annealing and the properties of Fe-based ACs,which promotes ameliorating ACs with superior performance.展开更多
In this work, a series of Cu2O-Ag/ZnO, Cu2O/ZnO and Ag/ZnO nanocomposites with various compositions were prepared via a hydrothermal method followed by chemical modification, and their antibacterial performance was in...In this work, a series of Cu2O-Ag/ZnO, Cu2O/ZnO and Ag/ZnO nanocomposites with various compositions were prepared via a hydrothermal method followed by chemical modification, and their antibacterial performance was investigated in detail. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy results confirmed that 31 nm Cu20 and 30 nm Ag nanoparticles are well-dispersed on 202 nm ZnO grains to form a Cu2O/ZnO and Ag/ZnO heterojunction, respectively. The bi-heterojuction structure in the Cu20-Ag/ZnO provided a synergistic effect on antibacterial activity, and the(Cu2O)0.04Ag0.06ZnO0.9nanocomposites showed the highest antimicrobial activity of all samples with minimum inhibitory concentration and minimum bactericidal concentration against Escherichia coli and Staphylococcus aureus as low to 31.25 μg/mL, 250μg/mL, 125μg/mL and 500μg/mL, respectively. This is the first report of the antibacterial activities of Cu2O and Ag co-modified ZnO nanocomposites.展开更多
Two-dimensional(2D)nanomaterials are categorized as a new class of microwave absorption(MA)materials owing to their high specific surface area and peculiar electronic properties.In this study,2D WS2-reduced graphene o...Two-dimensional(2D)nanomaterials are categorized as a new class of microwave absorption(MA)materials owing to their high specific surface area and peculiar electronic properties.In this study,2D WS2-reduced graphene oxide(WS2-rGO)heterostructure nanosheets were synthesized via a facile hydrothermal process;moreover,their dielectric and MA properties were reported for the first time.Remarkably,the maximum reflection loss(RL)of the sample-wax composites containing 40 wt% WS2-rGO was-41.5 dB at a thickness of 2.7 mm;furthermore,the bandwidth where RL<-10 dB can reach up to 13.62 GHz(4.38-18 GHz).Synergistic mechanisms derived from the interfacial dielectric coupling and multiple-interface scattering after hybridization of WS2 with rGO were discussed to explain the drastically enhanced microwave absorption performance.The results indicate these lightweight WS2-rGO nanosheets to be potential materials for practical electromagnetic wave-absorbing applications.展开更多
Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show tha...Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively).展开更多
High-entropy alloys(HEAs)generally possess complex component combinations and abnormal properties.The traditional methods of investigating these alloys are becoming increasingly inefficient because of the unpredictabl...High-entropy alloys(HEAs)generally possess complex component combinations and abnormal properties.The traditional methods of investigating these alloys are becoming increasingly inefficient because of the unpredictable phase transformation and the combination of many constituents.The development of compositionally complex materials such as HEAs requires high-throughput experimental methods,which involves preparing many samples in a short time.Here we apply the high-throughput method to investigate the phase evolution and mechanical properties of novel HEA film with the compositional gradient of(Cr,Fe,V)-(Ta,W).First,we deposited the compositional gradient film by co-sputtering.Second,the mechanical properties and thermal stability of the(Cr0.33Fe0.33V0.33)x(Ta0.5W0.5)100−x(x=13-82)multiplebased-elemental(MBE)alloys were investigated.After the deposited wafer was annealed at 600℃for 0.5 h,the initial amorphous phase was transformed into a body-centered cubic(bcc)structure phase when x=33.Oxides were observed on the film surface when x was 72 and 82.Finally,the highest hardness of as-deposited films was found when x=18,and the maximum hardness of annealed films was found when x=33.展开更多
Rotary ultrasonic drilling(RUD)has become an effective approach for machining advanced composites which are widely using in the field of aeronautics.The cutting kinematics and the corresponding material removal mechan...Rotary ultrasonic drilling(RUD)has become an effective approach for machining advanced composites which are widely using in the field of aeronautics.The cutting kinematics and the corresponding material removal mechanisms are distinct in different drilling areas during RUD.However,these fundamentals have not been fully considered in the existing studies.In this research,two distinct forms of interaction induced by ultrasonic vibration were considered as impact-separation and vibratory lapping between the abrasives and workpiece.And the conditions to guarantee the effectiveness of these interactions were obtained to eliminate diminishing effects of ultrasonic vibration.Based on indentation fracture theory,the penetration depth of abrasives and the axial drilling force model was derived for RUD.The verification tests of C/SiC composites resulted in a prediction error within 15%.Due to the minimal volume of material removed during each vibration cycle,the drilling force was more stable in vibration assisted mode.The specific drilling energy of RUD was firstly calculated based on the measured drilling load.It was found the drilling parameters should be matched with vibration frequency and amplitude to make better usage of the advantages of ultrasonic vibration,which is critical in the vibration assisted processing of advanced materials.展开更多
Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(ox...Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(oxygen-ionic or protonic,or n-type,or p-type electronic)or a combination thereof gener-ating distinct dual-conducting or even triple-conducting materials.These properties enable their use as diverse functional materials for solid oxide fuel cells,solid oxide electrolysis cells,permeable membranes,and gas sensors.The literature review shows that the field of solid oxide materials and related electro-chemical cells has a significant level of research engagement,with over 8,000 publications published since 2020.The manual analysis of such a large volume of material is challenging.However,by examining the review articles,it is possible to identify key patterns,recent achievements,prospects,and remaining obstacles.To perform such an analysis,the present article provides,for the first time,a comprehensive summary of previous review publications that have been published since 2020,with a special focus on solid oxide materials and electrochemical systems.Thus,this study provides an important reference for researchers specializing in the fields of solid state ionics,high-temperature electrochemistry,and energyconversiontechnologies.展开更多
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ...Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.展开更多
In this paper,a kind of discrete delay food-limited model obtained by the Euler method is investigated,where the discrete delay τ is regarded as a parameter.By analyzing the associated characteristic equation,the lin...In this paper,a kind of discrete delay food-limited model obtained by the Euler method is investigated,where the discrete delay τ is regarded as a parameter.By analyzing the associated characteristic equation,the linear stability of this model is studied.It is shown that Neimark-Sacker bifurcation occurs when τ crosses certain critical values.The explicit formulae which determine the stability,direction,and other properties of bifurcating periodic solution are derived by means of the theory of center manifold and normal form.Finally,numerical simulations are performed to verify the analytical results.展开更多
Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fue...Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fuel cells must have excellent activity toward oxygen reduction reaction and resistance to methanol oxidation reaction.This review focuses on the methanol tolerant noble metal-based electrocatalysts,including platinum and palladium-based alloys,noble metal–carbon based composites,transition metal-based catalysts,carbon-based metal catalysts,and metal-free catalysts.The understanding of the correlation between the activity and the synthesis method,electrolyte environment and stability issues are highlighted.For the transition metal-based catalyst,their activity,stability and methanol tolerance in direct methanol fuel cells and comparisons with those of platinum are particularly discussed.Finally,strategies to enhance the methanol tolerance and hinder the generation of mixed potential in direct methanol fuel cells are also presented.This review provides a perspective for future developments for the scientist in selecting suitable methanol tolerate catalyst for oxygen reduction reaction and designing high-performance practical direct methanol fuel cells.展开更多
基金financial support of National Natural Science Foundation of China(No.51971149)the funding from Science and Technology Innovation Commission of Shenzhen(Nos.KQJSCX20180328095612712,GJHZ20190822095418365)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515110869 and 2019A1515110515)Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(No.HZQB-KCZYB-2020030)。
文摘As a revolutionary industrial technology,additive manufacturing creates objects by adding materials layer by layer and hence can fabricate customized components with an unprecedented degree of freedom.For metallic materials,unique hierarchical microstructures are constructed during additive manufacturing,which endow them with numerous excellent properties.To take full advantage of additive manufacturing,an in-depth understanding of the microstructure evolution mechanism is required.To this end,this review explores the fundamental procedures of additive manufacturing,that is,the formation and binding of melt pools.A comprehensive processing map is proposed that integrates melt pool energy-and geometry-related process parameters together.Based on it,additively manufactured microstructures are developed during and after the solidification of constituent melt pool.The solidification structures are composed of primary columnar grains and fine secondary phases that form along the grain boundaries.The post-solidification structures include submicron scale dislocation cells stemming from internal residual stress and nanoscale precipitates induced by intrinsic heat treatment during cyclic heating of adjacent melt pool.Based on solidification and dislocation theories,the formation mechanisms of the multistage microstructures are thoroughly analyzed,and accordingly,multistage control methods are proposed.In addition,the underlying atomic scale structural features are briefly discussed.Furthermore,microstructure design for additive manufacturing through adjustment of process parameters and alloy composition is addressed to fulfill the great potential of the technique.This review not only builds a solid microstructural framework for metallic materials produced by additive manufacturing but also provides a promising guideline to adjust their mechanical properties.
文摘Introduction The usual metaphors of“heart”and“throat”indi-cate the importance of pumps and valves in industrial systems including petroleum,chemical,metallurgy,aviation,and aerospace.With the continuous penetra-tion of the industrial internet,the miniaturization,digi-tization,multi-functionalization,and systemization of valves have become very important(Si et al.,2020;Chang et al.,2021;Pang et al.,2021;Bonilla et al.,2022;Yuan et al.,2022;Zhao et al.,2022).
基金financially supported by the Key Project of Department of Education of Guangdong Province(Grant No.2022ZDZX3017)Special Support Plan of Guangdong Province(Grant No.2021TQ05Z151)+2 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515010049)SZU Research Fund(Grant No.GFPY-YB-2024-03)Shenzhen Science and Technology Programs(Grant Nos.GJHZ20210705141803011 and 20200731211324001).
文摘The combination of silicon carbide(SiC)ceramics and stereolithography technology shows promise for manufacturing complex-shaped SiC components,expanding application possibilities.However,high sintering temperature and structural-performance anisotropy limit the practical use of 3D-printed SiC components.Herein,a novel method is introduced to produce high-specific-strength SiC-based ceramics at a relatively low temperature of 1100℃.A mixed SiC/SiO_(2) slurry(30%SiO_(2) and 70%SiC by volume)with a solid loading of up to 40%was prepared to improve UV light penetration and printability.Additionally,incorporating a high content of methyl-phenyl-polysiloxane(PSO)solution(75%by weight)enabled low-temperature pyrolysis of SiC/SiO_(2)/PSO ceramics.The SiC/SiO_(2)/PSO ceramic lattices after pyrolysis achieved a specific strength as high as(1.03×10^(5))N·m·kg^(-1) and a density of 1.75 g·cm^(-3),outperforming similar SiC-based lattices structures of similar porosities.The bending strength of(95.49±8.79)MPa was comparable to that of ceramics sintered at 1400℃ or higher.Notably,the addition of the silicon carbide oxide(SiOC)phase reduced anisotropy,lowering the transverse and longitudinal compression strength ratios from 1.87 to 1.08,and improving mechanical properties by 79%.This improvement is attributed to SiOC shrinkage,promoting a uniform distribution of sintered components,resulting in a more robust and balanced material structure.This method offers valuable insight into the additive manufacturing(AM)of SiC-based ceramics at lower temperatures and provides new guidance for controlling anisotropy in 3D-printed ceramic parts.
基金Project(2024YFB4608600)supported by the National Key Research and Development Program of ChinaProjects(52271063,U21B2066,U24B2024)supported by the National Natural Science Foundation of China+3 种基金Project(JSGG20210713091539014)supported by the Shenzhen Science and Technology Innovation Commission Key Technical Project,ChinaProject(HNGD2025040)supported by the Overseas High-Level Talents Introduction of Henan Province,ChinaProject(240621041)supported by the Fundamental Research Funds of Henan Academy of Sciences,ChinaProject(20231120233925001)supported by Stabilization Support Program for Higher Education Institutions of Shenzhen,China。
文摘In this work,tensile mechanical behavior of 316L steels fabricated by three different processing methods(casting,powder extrusion printing(PEP)and laser powder bed fusion(LPBF))was studied in the presence of liquid lead-bismuth eutectic(LBE)and air at 350℃.The results show that all three steels tested in LBE are not subjected to evident degradation of tensile elongation to failure and strength compared to those tested in air,suggesting that LME does not occur regardless of the processing methods.The LPBF 316L steel exhibits the highest yield strength(420-435 MPa),followed by casting 316 L(~242 MPa)and PEP 316L(146-165 MPa).Ultimate tensile strength of three steels is comparable and ranges from 427 to 485 MPa.The PEP and casting 316L steels have similar total elongation to failure(i.e.,40.0%-43.8%),whereas this property decreases markedly to 18.6%-19.5% for the LPBF 316 L steel.The superior strength and relatively low ductility of the LPBF 316L steel can be attributed to nanosized dislocations trapped at cell structures which can produce a remarkable strengthening effect to the steel matrix.By contrast,due to massive residual micropores,the PEP 316L steel has the lowest strength.
基金financially supported by the Shenzhen Science and Technology Project(Project Nos.JCYJ20220818102201003,JCYJ20220818100001002)the Shenzhen Sustainable Development Special Project(Project No.KCXFZ20230731094500001)+1 种基金the National Natural Science Foundation of China(Project Nos.51975597,52175446)the Natural Science Foundation of Guangdong Province(Project No.2022B1515020011)。
文摘Magnetically responsive microstructured functional surface(MRMFS),capable of dynamically and reversibly switching the surface topography under magnetic actuation,provides a wireless,noninvasive,and instantaneous way to accurately control the microscale engineered surface.In the last decade,many studies have been conducted to design and optimize MRMFSs for diverse applications,and significant progress has been accomplished.This review comprehensively presents recent advancements and the potential prospects in MRMFSs.We first classify MRMFSs into one-dimensional linear array MRMFSs,two-dimensional planar array MRMFSs,and dynamic self-assembly MRMFSs based on their morphology.Subsequently,an overview of three deformation mechanisms,including magnetically actuated bending deformation,magnetically driven rotational deformation,and magnetically induced self-assembly deformation,are provided.Four main fabrication strategies employed to create MRMFSs are summarized,including replica molding,magnetization-induced self-assembly,laser cutting,and ferrofluid-infused method.Furthermore,the applications of MRMFS in droplet manipulation,solid transport,information encryption,light manipulation,triboelectric nanogenerators,and soft robotics are presented.Finally,the challenges that limit the practical applications of MRMFSs are discussed,and the future development of MRMFSs is proposed.
基金supported by the Jiangsu Fundamental Research Program(JSSCRC2021491)Ongoing Research Funding Program(ORF-2025-391)。
文摘Searching for compatible electrolytes with Ni_(0.8)C_(00.15)Al_(0.05)LiO_(2-δ)(NCAL)electrodes that exhibit high ionic conductivity at low operational temperatures(<550℃)is crucial for advancing ceramics fuel cells(CFCs)research.In this work,the experimental and theoretical analyses demonstrate that the highly stable single-phase Gd_(3)Ga_(5)O_(12)(GGO)garnet structure,composed of Gd-O octahedrons and Ga-O tetrahedrons,provides more active sites for ion transport,resulting in enhanced peak power density(PPD)and stable open circuit voltage(OCV)at low operational temperatures.The unique internal garnet structure effectively reduces the interfacial impedance of the prepared fuel cell device,provides more active sites at triple-phase boundarie region,and increases the electrochemical stability.As a result,the constructed fuel cell device can deliver a superior peak power density of 770 mW/cm^(2)at 490℃.In addition,X-ray photoelectron spectroscopy,electrochemical impedance spectroscopy,and theoretical calculations further demonstrate electrolyte effectiveness of GGO,enabling stable an OCV even at a low temperature of 370℃under a H_(2)/air environment.This work contributes to a deeper understanding of the underlying mechanisms of a single-layer fuel cell device,which is essential for advancing this promising energy technology,even at a very low temperature of 370℃.
文摘Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue.However,low resolution,occlusion,and background interference make small object detection a complex and demanding task.One effective approach to overcome these issues is the integration of multimodal image data to enhance detection capabilities.This paper proposes a novel small object detection method that utilizes three types of multimodal image combinations,such as Hyperspectral-Multispectral(HSMS),Hyperspectral-Synthetic Aperture Radar(HS-SAR),and HS-SAR-Digital Surface Model(HS-SAR-DSM).The detection process is done by the proposed Jaccard Deep Q-Net(JDQN),which integrates the Jaccard similarity measure with a Deep Q-Network(DQN)using regression modeling.To produce the final output,a Deep Maxout Network(DMN)is employed to fuse the detection results obtained from each modality.The effectiveness of the proposed JDQN is validated using performance metrics,such as accuracy,Mean Squared Error(MSE),precision,and Root Mean Squared Error(RMSE).Experimental results demonstrate that the proposed JDQN method outperforms existing approaches,achieving the highest accuracy of 0.907,a precision of 0.904,the lowest normalized MSE of 0.279,and a normalized RMSE of 0.528.
基金supported by the Shenzhen Peacock Innovation Project(KQJSCX20170327150948772,KQJSCX20170727101223535,and KQJSCX20170327151307811)the Key Project Fund for Science and Technology Development of Guangdong Province(2017B090911014)+1 种基金support was provided by the European Research Council(ERC)under the ERC Advanced Grant INTELHYB(ERC-2013-ADG-340025)the National Natural Science Foundation of China(51771123)。
文摘An Al-12 Si/Al-3.5 Cu-1.5 Mg-1 Si bimetal with a good interface was successfully produced by selective laser melting(SLM).The SLM bimetal exhibits four successive zones along the building direction:an Al-12 Si zone,an interfacial zone,a texture-strengthening zone and an Al-Cu-Mg-Si zone.The interfacial zone(<0.2 mm thick)displays an increasing size of the cells composed of eutectic Al-Si and a discontinuous cellular microstructure,resulting in the lowest hardness of the four zones.The texturestrengthening zone(around 0.3 mm thick)shows a remarkable variation of the hardness and<001>fiber texture.Electron backscatter diffraction analysis shows that the grains grow gradually from the interfacial zone to the Al-Cu-Mg-Si zone along the building direction.Additionally,a strong<001>fiber texture develops at the Al-Cu-Mg-Si side of the interfacial zone and disappears gradually along the building direction.The bimetal exhibits a room temperature yield strength of 267±10 MPa and an ultimate tensile strength of 369±15 MPa with elongation of 2.6±0.1%,revealing the potential of selective laser melting in manufacturing dissimilar materials.
基金supported by the National Natural Science Foundation of China(Grants 51606171,51977196,and 11802237)China Postdoctoral Science Foundation(Grant 2019M652565).
文摘Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flowinduced vibrations.A novel tristable galloping-based piezoelectric energy harvester is constructed by introducing a nonlinear magnetic force on the traditional galloping-based piezoelectric energy harvester.Based on Euler-Bernoulli beam theory and Kirchhoff’s law,the corresponding aero-electromechanical model is proposed and validated by a series of wind tunnel experiments.The parametric study is performed to analyse the response of the tristable galloping-based piezoelectric energy harvester.Numerical results show that comparing with the galloping-based piezoelectric energy harvester,the mechanism of the tristable galloping-based piezoelectric energy harvester is more complex.With the increase of a wind speed,the vibration of the bluff body passes through three branches:intra-well oscillations,chaotic oscillations,and inter-well oscillations.The threshold wind speed of the presented harvester for efficiently harvesting energy is 1.0 m/s,which is decreased by 33% compared with the galloping-based piezoelectric energy harvester.The maximum output power of the presented harvester is 0.73 mW at 7.0 m/s wind speed,which is increased by 35.3%.Compared with the traditional galloping-based piezoelectric energy harvester,the presented tristable galloping-based piezoelectric energy harvester has a better energy harvesting performance from flow-induced vibrations.
基金supported by the National Natural Science Foundation of China (NSFC)(Grant No. 51871168)the Natural Sciences and Engineering Research Council of Canada (NSERC) in the form of international research collaboration+4 种基金China Scholarships Council (CSC) for providing a PhD student scholarshipthe financial support by the Premier’s Research Excellence Award (PREA)NSERC-Discovery Accelerator Supplement (DAS) AwardCanada Foundation for Innovation (CFI)Ryerson Research Chair (RRC) program
文摘Ti2AlNb-based intermetallic compounds are considered as a new category of promising lightweight aerospace materials due to their balanced mechanical properties.The aim of this study was to evaluate monotonic and cyclic deformation behavior of an as-cast Ti-22A1-20Nb-2V-1Mo-0.25Si(at.%)intermetallic compound in relation to its microstructure.The alloy containing an abundant fine lamellar O-Ti2AlNb phase exhibited a good combination of strength and plasticity,and superb fatigue resistance in comparison with other intermetallic compounds.Cyclic stabilization largely remained except slight cyclic hardening occurring at higher strain amplitudes.While fatigue life could be described using the common Coffin-Mason-Basquin equation,it could be better predicted via a weighted energy-based approach.Fatigue crack growth was characterized mainly by crystallographic cracking,along with fatigue striationlike features being unique to appear in the intermetallics.The results obtained in this study lay the foundation for the safe and durable applications of Ti2AlNb-based lightweight intermetallic compounds.
基金supported by the National Natural Science Foundation of China(No.51901138)the Postdoctoral Science Foundation of China(No.2020M672788)the National Key Research and Development Program of China(No.2018YFA0703605)。
文摘This study investigated the effect of annealing below glass transition temperature(T_(g))on the microstructural characteristics,mechanical property,wettability,and electrochemical performance of activated combustion-high velocity air fuel(AC-HVAF)-sprayed Fe-Cr-Mo-W-C-B-Y amorphous coatings(ACs).Results showed that Fe-based ACs with a thickness of~300μm exhibited a fully amorphous structure with low oxidization.Originating from the reduced free volume,sub-T_(g) annealing increased the thermal stability,hardness,and surface hydrophobicity of Fe-based ACs.The enhanced corrosion resistance of sub-T_(g) annealed ACs in 3.5 wt%NaCl solution was attributed to the increased surface hydrophobicity and passivation capability.This finding elucidates the correlation between sub-T_(g) annealing and the properties of Fe-based ACs,which promotes ameliorating ACs with superior performance.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.51677120 and 51207093)the Shenzhen Government Fund(Grant Nos.JCYJ20160422102919963)the Shenzhen Key Laboratory of Special Functional Materials(Grant Nos.T201502)
文摘In this work, a series of Cu2O-Ag/ZnO, Cu2O/ZnO and Ag/ZnO nanocomposites with various compositions were prepared via a hydrothermal method followed by chemical modification, and their antibacterial performance was investigated in detail. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy results confirmed that 31 nm Cu20 and 30 nm Ag nanoparticles are well-dispersed on 202 nm ZnO grains to form a Cu2O/ZnO and Ag/ZnO heterojunction, respectively. The bi-heterojuction structure in the Cu20-Ag/ZnO provided a synergistic effect on antibacterial activity, and the(Cu2O)0.04Ag0.06ZnO0.9nanocomposites showed the highest antimicrobial activity of all samples with minimum inhibitory concentration and minimum bactericidal concentration against Escherichia coli and Staphylococcus aureus as low to 31.25 μg/mL, 250μg/mL, 125μg/mL and 500μg/mL, respectively. This is the first report of the antibacterial activities of Cu2O and Ag co-modified ZnO nanocomposites.
基金financially supported by the National Natural Science Foundation of China(Nos.51272110,51772160,and 51771123)the Shenzhen Peacock Innovation Project(No.KQJSCX20170327151307811)+1 种基金the support of China Scholarship Council(No.201506100018)the START project of Japan Science and Technology Agency(JST)
文摘Two-dimensional(2D)nanomaterials are categorized as a new class of microwave absorption(MA)materials owing to their high specific surface area and peculiar electronic properties.In this study,2D WS2-reduced graphene oxide(WS2-rGO)heterostructure nanosheets were synthesized via a facile hydrothermal process;moreover,their dielectric and MA properties were reported for the first time.Remarkably,the maximum reflection loss(RL)of the sample-wax composites containing 40 wt% WS2-rGO was-41.5 dB at a thickness of 2.7 mm;furthermore,the bandwidth where RL<-10 dB can reach up to 13.62 GHz(4.38-18 GHz).Synergistic mechanisms derived from the interfacial dielectric coupling and multiple-interface scattering after hybridization of WS2 with rGO were discussed to explain the drastically enhanced microwave absorption performance.The results indicate these lightweight WS2-rGO nanosheets to be potential materials for practical electromagnetic wave-absorbing applications.
基金Project(2020A1515110869)supported by Guangdong Basic and Applied Basic Research Foundation,ChinaProject(GJHZ20190822095418365)supported by Shenzhen International Cooperation Research,China+3 种基金Project(51775351)supported by the National Natural Science Foundation of ChinaProject(2019011)supported by the NTUT-SZU Joint Research Program,ChinaProject(2019040)supported by the Natural Science Foundation of SZU,ChinaProject(ASTRA6-6)supported by the European Regional Development Fund,European Union。
文摘Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively).
基金the National Natural Science Foundation of China(No.51671020)the Fundamental Research Funds for the Central Universities(No.FRF-MP-19-013).
文摘High-entropy alloys(HEAs)generally possess complex component combinations and abnormal properties.The traditional methods of investigating these alloys are becoming increasingly inefficient because of the unpredictable phase transformation and the combination of many constituents.The development of compositionally complex materials such as HEAs requires high-throughput experimental methods,which involves preparing many samples in a short time.Here we apply the high-throughput method to investigate the phase evolution and mechanical properties of novel HEA film with the compositional gradient of(Cr,Fe,V)-(Ta,W).First,we deposited the compositional gradient film by co-sputtering.Second,the mechanical properties and thermal stability of the(Cr0.33Fe0.33V0.33)x(Ta0.5W0.5)100−x(x=13-82)multiplebased-elemental(MBE)alloys were investigated.After the deposited wafer was annealed at 600℃for 0.5 h,the initial amorphous phase was transformed into a body-centered cubic(bcc)structure phase when x=33.Oxides were observed on the film surface when x was 72 and 82.Finally,the highest hardness of as-deposited films was found when x=18,and the maximum hardness of annealed films was found when x=33.
基金supported by the National Natural Science Foundation of China(No.U1737201)the National Science and Technology Major Project(No.2017-VII-0015-0111)+1 种基金the Key Basic and Applied Research Program of Guangdong Province,China(No.2019B030302010)the Science and Technology Innovation Commission Shenzhen(No.JCYJ20170412111216258).
文摘Rotary ultrasonic drilling(RUD)has become an effective approach for machining advanced composites which are widely using in the field of aeronautics.The cutting kinematics and the corresponding material removal mechanisms are distinct in different drilling areas during RUD.However,these fundamentals have not been fully considered in the existing studies.In this research,two distinct forms of interaction induced by ultrasonic vibration were considered as impact-separation and vibratory lapping between the abrasives and workpiece.And the conditions to guarantee the effectiveness of these interactions were obtained to eliminate diminishing effects of ultrasonic vibration.Based on indentation fracture theory,the penetration depth of abrasives and the axial drilling force model was derived for RUD.The verification tests of C/SiC composites resulted in a prediction error within 15%.Due to the minimal volume of material removed during each vibration cycle,the drilling force was more stable in vibration assisted mode.The specific drilling energy of RUD was firstly calculated based on the measured drilling load.It was found the drilling parameters should be matched with vibration frequency and amplitude to make better usage of the advantages of ultrasonic vibration,which is critical in the vibration assisted processing of advanced materials.
文摘Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(oxygen-ionic or protonic,or n-type,or p-type electronic)or a combination thereof gener-ating distinct dual-conducting or even triple-conducting materials.These properties enable their use as diverse functional materials for solid oxide fuel cells,solid oxide electrolysis cells,permeable membranes,and gas sensors.The literature review shows that the field of solid oxide materials and related electro-chemical cells has a significant level of research engagement,with over 8,000 publications published since 2020.The manual analysis of such a large volume of material is challenging.However,by examining the review articles,it is possible to identify key patterns,recent achievements,prospects,and remaining obstacles.To perform such an analysis,the present article provides,for the first time,a comprehensive summary of previous review publications that have been published since 2020,with a special focus on solid oxide materials and electrochemical systems.Thus,this study provides an important reference for researchers specializing in the fields of solid state ionics,high-temperature electrochemistry,and energyconversiontechnologies.
基金Supported by National Natural Science Foundation of China (Grant Nos.52235011,51905352)Shenzhen Municipal Excellent Science and Technology Creative Talent Training Program (Grant No.RCBS20210609103819021)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No.2023B1515120086)Shenzhen Municipal Science and Technology Planning Project (Grant No.CJGJZD20230724093600001)。
文摘Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61272069,61272114,61073026,61170031,and 61100076)
文摘In this paper,a kind of discrete delay food-limited model obtained by the Euler method is investigated,where the discrete delay τ is regarded as a parameter.By analyzing the associated characteristic equation,the linear stability of this model is studied.It is shown that Neimark-Sacker bifurcation occurs when τ crosses certain critical values.The explicit formulae which determine the stability,direction,and other properties of bifurcating periodic solution are derived by means of the theory of center manifold and normal form.Finally,numerical simulations are performed to verify the analytical results.
基金supported by the National Natural Science Foundations of China(22150410340)the Chongqing Science&Technology Commission(catc2018jcyjax0582)。
文摘Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fuel cells must have excellent activity toward oxygen reduction reaction and resistance to methanol oxidation reaction.This review focuses on the methanol tolerant noble metal-based electrocatalysts,including platinum and palladium-based alloys,noble metal–carbon based composites,transition metal-based catalysts,carbon-based metal catalysts,and metal-free catalysts.The understanding of the correlation between the activity and the synthesis method,electrolyte environment and stability issues are highlighted.For the transition metal-based catalyst,their activity,stability and methanol tolerance in direct methanol fuel cells and comparisons with those of platinum are particularly discussed.Finally,strategies to enhance the methanol tolerance and hinder the generation of mixed potential in direct methanol fuel cells are also presented.This review provides a perspective for future developments for the scientist in selecting suitable methanol tolerate catalyst for oxygen reduction reaction and designing high-performance practical direct methanol fuel cells.