期刊文献+
共找到2,088篇文章
< 1 2 105 >
每页显示 20 50 100
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
1
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
3D printing of tissue engineering scaffolds:a focus on vascular regeneration 被引量:15
2
作者 Pengju Wang Yazhou Sun +3 位作者 Xiaoquan Shi Huixing Shen Haohao Ning Haitao Liu 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第2期344-378,共35页
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to... Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels.Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues.The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering.Recent advances in 3D printing have facilitated fabrication of vascular scaffolds,contributing to broad prospects for tissue vascularization.This review presents state of the art on modeling methods,print materials and preparation processes for fabrication of vascular scaffolds,and discusses the advantages and application fields of each method.Specially,significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized.Print materials and preparation processes are discussed in detail.And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting,electrospinning,and Lego-like construction.And related studies are exemplified.Transformation of vascular scaffolds to clinical application is discussed.Also,four trends of 3D printing of tissue engineering vascular scaffolds are presented,including machine learning,near-infrared photopolymerization,4D printing,and combination of self-assembly and 3D printing-based methods. 展开更多
关键词 Tissue engineering 3D printing Vascular scaffolds Print materials Modeling methods
在线阅读 下载PDF
Prestiction friction compensation in direct-drive mechatronics systems 被引量:2
3
作者 黎志强 周擎坤 +2 位作者 张智永 张连超 范大鹏 《Journal of Central South University》 SCIE EI CAS 2013年第11期3031-3041,共11页
LuGre model has been widely used in friction modeling and compensation.However,the new friction regime,named prestiction regime,cannot be accurately characterized by LuGre model in the latest research.With the extensi... LuGre model has been widely used in friction modeling and compensation.However,the new friction regime,named prestiction regime,cannot be accurately characterized by LuGre model in the latest research.With the extensive experimental observations of friction behaviors in the prestiction,some variables were abstracted to depict the rules in the prestiction regime.Based upon the knowledge of friction modeling,a novel friction model including the presliding regime,the gross sliding regime and the prestiction regime was then presented to overcome the shortcomings of the LuGre model.The reason that LuGre model cannot estimate the prestiction friction was analyzed in theory.Feasibility analysis of the proposed model in modeling the prestiction friction was also addressed.A parameter identification method for the proposed model based on multilevel coordinate search algorithm was presented.The proposed friction compensation strategy was composed of a nonlinear friction observer and a feedforward mechanism.The friction observer was designed to estimate the friction force in the presliding and the gross sliding regimes.And the friction force was estimated based on the model in the prestiction regime.The comparative trajectory tracking experiments were conducted on a simulator of inertially stabilization platforms among three control schemes:the single proportional–derivative(PD)control,the PD with LuGre model-based compensation and the PD with compensator based on the presented model.The experimental results reveal that the control scheme based on the proposed model has the best tracking performance.It reduces the peak-to-peak value(PPV)of tracking error to 0.2 mrad,which is improved almost 50%compared with the PD with LuGre model-based compensation.Compared to the single PD control,it reduces the PPV of error by 66.7%. 展开更多
关键词 prestiction friction LuGre model multilevel coordinate search friction compensation inertially stabilization platforms
在线阅读 下载PDF
Engineering Model for Detecting Sensitivity of the Coupling Capacitance Detector 被引量:2
4
作者 王伟 邓甲昊 +1 位作者 尹君 黄艳 《Journal of Beijing Institute of Technology》 EI CAS 2004年第1期54-57,共4页
The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capaci... The sensitivity engineering model of the coupling capacitance detector is built to provide the theoretic foundation for designing its circuits and electrodes scientifically. The sensitivity concept model of the capacitance proximity detector is discussed, and the detecting sensitivity of the coupling capacitance detector is analyzed theoretically. Then the sensitivity engineering model, which can reflect the main parameters relationship of the detecting circuit is set up based on the foregoing analyses. It is concluded that: ① the sensitivity is mainly correlative with some parameters including the voltage transmission factor of the demodulator, the oscillating voltage amplitude and the amplitude variation constant of the oscillator; ② the sensitivity is also influenced by the areas of electrodes and the distance between electrodes of the detector. 展开更多
关键词 proximity detector coupling capacitance detector sensitivity engineering model
在线阅读 下载PDF
3D Engineering Model Retrieval Based on Enhanced Shape Distributions 被引量:1
5
作者 侯鑫 张旭堂 +1 位作者 刘文剑 冉洋 《Journal of Donghua University(English Edition)》 EI CAS 2009年第4期413-422,共10页
To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capab... To reuse and share the valuable knowledge embedded in repositories of engineering models for accelerating the design process, improving product quality, and reducing costs, it is crucial to devise search engines capable of matching 3D models efficiently and effectively. In this paper, an enhanced shape distributions-based technique of using geometrical and topological information to search 3D engineering models represented by polygonal meshes was presented. A simplification method of polygonal meshes was used to simplify engineering model as the pretreatment for generation of sample points. The method of sampling points was improved and a pair of functions that was more sensitive to shape was employed to construct a 2D shape distribution. Experiments were conducted to evaluate the proposed algorithm utilizing the Engineering Shape Benchmark (ESB) database. The experiential results suggest that the search effectiveness is significantly improved by enforcing the simplification and enhanced shape distributions to engineering model retrieval. 展开更多
关键词 shape retrieval polygonal mesh simplification shape distribution 3D engineering model
在线阅读 下载PDF
Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries 被引量:7
6
作者 Manxi Wang Yaling Wu +14 位作者 Min Qiu Xuan Li Chuanping Li Ruiling Li Jiabo He Ganggang Lin Qingrong Qian Zhenhai Wen Xiaoyan Li Ziqiang Wang Qi Chen Qinghua Chen Jinhyuk Lee Yiu-Wing Mai Yuming Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期253-268,I0008,共17页
Owing to safety issue and low energy density of liquid lithium-ion batteries(LIBs),all-solid-state lithium metal batteries(ASLMBs)with unique all-solid-state electrolytes(SEs)have attracted wide attentions.This arises... Owing to safety issue and low energy density of liquid lithium-ion batteries(LIBs),all-solid-state lithium metal batteries(ASLMBs)with unique all-solid-state electrolytes(SEs)have attracted wide attentions.This arises mainly from the advantages of the SEs in the suppression of lithium dendrite growth,long cycle life,and broad working temperature range,showing huge potential applications in electronic devices,electric vehicles,smart grids,and biomedical devices.However,SEs suffer from low lithiumion conductivity and low mechanical integrity,slowing down the development of practical ASLMBs.Nanostructure engineering is of great efficiency in tuning the structure and composition of the SEs with improved lithium-ion conductivity and mechanical integrity.Among various available technologies for nanostructure engineering,electrospinning is a promising technique because of its simple operation,cost-effectiveness,and efficient integration with different components.In this review,we will first give a simple description of the electrospinning process.Then,the use of electrospinning technique in the synthesis of various SEs is summarized,for example,organic nanofibrous matrix,organic/inorganic nanofibrous matrix,and inorganic nanofibrous matrix combined with other components.The current development of the advanced architectures of SEs through electrospinning technology is also presented to provide references and ideas for designing high-performance ASLMBs.Finally,an outlook and further challenges in the preparation of advanced SEs for ASLMBs through electrospinning engineering are given. 展开更多
关键词 Solid-state composite electrolyte Lithium metal batteries Electrospinning engineering Organic/inorganic matrices
在线阅读 下载PDF
Design and Preparation of Bone Tissue Engineering Scaffolds with Porous Controllable Structure
7
作者 林柳兰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期174-180,共7页
A novel method of designing and preparing bone tissue engineering scaffolds with controllable porous structure of both macro channels and micro pores was proposed. The CAD software UG NX3.0 was used to design the macr... A novel method of designing and preparing bone tissue engineering scaffolds with controllable porous structure of both macro channels and micro pores was proposed. The CAD software UG NX3.0 was used to design the macro channels' shape, size and distribution. By integrating rapid prototyping and traditional porogen technique, the macro channels and micro pores were formed respectively. The size, shape and quantity of micro pores were controlled by porogen particulates. The sintered β-TCP porous scaffolds possessed connective macro channels of approximately 500 μm and micro pores of 200-400 μm. The porosity and connectivity of micro pores became higher with the increase of porogen ratio, while the mechanical properties weakened. The average porosity and compressive strength offl-TCP scaffolds prepared with porogen ratio of 60wt% were 78.12% and 0.2983 MPa, respectively. The cells' adhesion ratio of scaffolds was 67.43%. The ALP activity, OCN content and cells micro morphology indicated that cells grew and proliferated well on the scaffolds. 展开更多
关键词 bone tissue engineering scaffolds rapid prototyping porous structure
原文传递
Design of Human Adaptive Mechatronics Controller for Upper Limb Motion Intention Prediction
8
作者 R.Joshua Samuel Raj J.Prince Antony Joel +2 位作者 Salem Alelyani Mohammed Saleh Alsaqer C.Anand Deva Durai 《Computers, Materials & Continua》 SCIE EI 2022年第4期1171-1188,共18页
Human Adaptive Mechatronics(HAM)includes human and computer system in a closed loop.Elderly person with disabilities,normally carry out their daily routines with some assistance to move their limbs.With the short fall... Human Adaptive Mechatronics(HAM)includes human and computer system in a closed loop.Elderly person with disabilities,normally carry out their daily routines with some assistance to move their limbs.With the short fall of human care takers,mechatronics devices are used with the likes of exoskeleton and exosuits to assist them.The rehabilitation and occupational therapy equipments utilize the electromyography(EMG)signals to measure the muscle activity potential.This paper focuses on optimizing the HAM model in prediction of intended motion of upper limb with high accuracy and to increase the response time of the system.Limb characteristics extraction from EMG signal and prediction of optimal controller parameters are modeled.Time and frequency based approach of EMG signal are considered for feature extraction.The models used for estimating motion and muscle parameters from EMG signal for carrying out limb movement predictions are validated.Based on the extracted features,optimal parameters are selected by Modified Lion Optimization(MLO)for controlling the HAM system.Finally,supervised machine learning makes predictions at different points in time for individual sensing using Support Vector Neural Network(SVNN).This model is also evaluated based on optimal parameters of motion estimation and the accuracy level along with different optimization models for various upper limb movements.The proposed model of human adaptive controller predicts the limb movement by 96%accuracy. 展开更多
关键词 EXOSKELETON electromyography(emg) human adaptive mechatronics occupational therapy motion prediction machine learning
在线阅读 下载PDF
A critical review on oxidation behavior of Co-based superalloys 被引量:3
9
作者 Chenghao PEI Qingshuang MA +4 位作者 Qiuzhi GAO Yue YANG Yuhang DU Hailian ZHANG Huijun LI 《Chinese Journal of Aeronautics》 2025年第3期183-206,共24页
The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review present... The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review presents an overview of the research progress on oxidation behavior of Co-based superalloys, including oxidation kinetics, oxides morphology, the formation and spallation of oxide layers, and importantly, the synergistic effects of alloying elements on oxidation resistance—a critical area considering the complex interactions with multiple alloying elements. Additionally, this review compares the oxidation resistance of single crystal versus polycrystalline alloys. The effect of phase interface and dislocations on oxidation behavior is also discussed. While significant progress has been achieved, areas necessitating further investigation include optimizing alloy compositions for enhanced oxidation resistance and understanding the long-term stability of oxide layers. The future prospects for Co-based superalloys are promising as ongoing research aims to address the existing challenges and unlock new applications at even higher operating temperatures. 展开更多
关键词 COBALT SUPERALLOYS OXIDATION Alloying elements MICROSTRUCTURE Temperature
原文传递
3D printed hybrid rocket fuels with μAl core-shell particles coated with polyvinylidene fluoride and polydopamine: Enhanced combustion characteristics 被引量:2
10
作者 Qihang Chen Xiaolong Fu +6 位作者 Weitao Yang Suhang Chen Zhiming Guo Rui Hu Huijie Zhang Lianpeng Cui Xu Xia 《Defence Technology(防务技术)》 2025年第4期59-70,共12页
3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have... 3D printing technology enhances the combustion characteristics of hybrid rocket fuels by enabling complex geometries. However, improvements in regression rates and energy properties of monotonous 3D printed fuels have been limited. This study explores the impact of poly(vinylidene fluoride) and polydopamine-coated aluminum particles on the thermal and combustion properties of 3D printed hybrid rocket fuels. Physical self-assembly and anti-solvent methods were employed for constructing composite μAl particles. Characterization using SEM, XRD, XPS, FTIR, and μCT revealed a core-shell structure and homogeneous elemental distribution. Thermal analysis showed that PVDF coatings significantly increased the heat of combustion for aluminum particles, with maximum enhancement observed in μAl@PDA@PVDF(denoted as μAl@PF) at 6.20 k J/g. Subsequently, 3D printed fuels with varying pure and composite μAl particle contents were prepared using 3D printing. Combustion tests indicated higher regression rates for Al@PF/Resin composites compared to pure resin, positively correlating with particle content. The fluorocarbon-alumina reaction during the combustion stage intensified Al particle combustion, reducing residue size. A comprehensive model based on experiments provides insights into the combustion process of PDA and PVDF-coated droplets. This study advances the design of 3D-printed hybrid rocket fuels, offering strategies to improve regression rates and energy release, crucial for enhancing solid fuel performance for hybrid propulsion. 展开更多
关键词 Hybrid propulsion Regression rate 3D print fuels Micro aluminum CORE-SHELL mAl@PDA@PVDF
在线阅读 下载PDF
Semi-Active Sound Absorption Method with Acoustic Impedance Matching 被引量:1
11
作者 ZHU Congyun ZHANG Shaoqi DING Guofang 《Journal of Donghua University(English Edition)》 2025年第1期64-70,共7页
The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-... The active sound absorption technique excels in mitigating low-frequency sound waves,yet it falls short when dealing with medium and high-frequency sound waves.To enhance the sound-absorbing effect of medium and high-frequency sound waves,a novel semi-active sound absorption method has been introduced.This method modulates the surface impedance of a loudspeaker positioned behind the sound-absorbing material,thereby altering the sound absorption coefficient.The theoretical sound absorption coefficient is calculated using MATLAB and compared with the experimental one.Results show that the method can effectively modulates the absorption coefficient in response to varying incident sound wave frequencies,ensuring that it remains at its peak value. 展开更多
关键词 acoustic impedance semi-active sound absorption rigid wall cavity depth sound absorption coefficient
在线阅读 下载PDF
Positioning error prediction and compensation for the multi-boom working mechanism of a drilling jumbo 被引量:1
12
作者 Yuming CUI Songyong LIU +2 位作者 Zhengqiang SHU Zhenli LV Lie LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第1期66-77,共12页
A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency a... A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling. 展开更多
关键词 Multi-boom rock-drilling jumbo Kinematic model Neural network optimization Positioning error prediction
原文传递
Research on multi-scale simulation and dynamic verification of high dynamic MEMS components in additive manufacturing 被引量:1
13
作者 Sining Lv Hengzhen Feng +2 位作者 Wenzhong Lou Chuan Xiao Shiyi Li 《Defence Technology(防务技术)》 2025年第5期275-291,共17页
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s... Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components. 展开更多
关键词 Additive manufacturing High dynamic MEMS components Multiscale control Process optimization High dynamic verification
在线阅读 下载PDF
Tribological behaviors of AZ91D magnesium alloy under the lubrication of oil suspended synthetic magnesium silicate hydroxide nanotubes 被引量:1
14
作者 Y.L.Yin H.L.Yu +7 位作者 H.M.Wang X.C.Ji Z.Y.Song X.Y.Zhou M.Wei P.J.Shi W.Zhang C.F.Zhao 《Journal of Magnesium and Alloys》 2025年第1期379-397,共19页
Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological b... Efficient lubrication of magnesium alloys is a highly challenging topic in the field of tribology.In this study,magnesium silicate hydroxide(MSH)nanotubes with serpentine structures were synthesized.The tribological behavior of AZ91D magnesium alloy rubbed against GCr15 steel was studied under lubricating oil with surface-modified MSH nanotubes as additives.The effects of the concentration,applied load,and reciprocating frequency on the friction and wear of the AZ91D alloy were studied using an SRV-4 sliding wear tester.Results show a decrease of 18.7–68.5%in friction coefficient,and a reduction of 19.4–54.3%in wear volume of magnesium alloy can be achieved by applying the synthetic serpentine additive under different conditions.A suspension containing 0.3 wt.%MSH was most efficient in reducing wear and friction.High frequency and medium load were more conducive to improving the tribological properties of magnesium alloys.A series of beneficial physical and chemical processes occurring at the AZ91D alloy/steel interface can be used to explain friction and wear reduction based on the characterization of the morphology,chemical composition,chemical state,microstructure,and nanomechanical properties of the worn surface.The synthetic MSH,with serpentine structure and nanotube morphology,possesses excellent adsorbability,high chemical activity,and good self-lubrication and catalytic activity.Therefore,physical polishing,tribochemical reactions,and physicalchemical depositions can occur easily on the sliding contacts.A dense tribolayer with a complex composition and composite structure was formed on the worn surface.Its high hardness,good toughness and plasticity,and prominent lubricity resulted in the improvement of friction and wear,making the synthetic MSH a promising efficient oil additive for magnesium alloys under boundary and mixed lubrication. 展开更多
关键词 Magnesium alloy Oil lubrication Tribological behavior Magnesium silicate hydroxide SERPENTINE
在线阅读 下载PDF
Adaptive Vibration Control of Flexible Marine Riser with Internal Flow Coupling 被引量:1
15
作者 ZHOU Li WANG Guo-rong +1 位作者 WAN Min ZHONG Lin 《China Ocean Engineering》 2025年第5期928-940,共13页
This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Ham... This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods. 展开更多
关键词 flexible marine riser internal flow adaptive control fuzzy logic system vibration control
在线阅读 下载PDF
Unveiling the growth and morphological transition mechanisms of Al_(2)Cu intermetallic compounds quantified by synchrotron X-ray tomography 被引量:1
16
作者 Zongye Ding Liao Yu +3 位作者 Naifang Zhang Wenquan Lu Jianguo Li Qiaodan Hu 《Journal of Materials Science & Technology》 2025年第6期43-54,共12页
Controlling the morphology of Al_(2) Cu intermetallic compounds(IMCs)has been of importance to enhance the properties of Al-based alloys.However,the quantification of Al_(2) Cu IMCs with diversified morphologies is st... Controlling the morphology of Al_(2) Cu intermetallic compounds(IMCs)has been of importance to enhance the properties of Al-based alloys.However,the quantification of Al_(2) Cu IMCs with diversified morphologies is still lacking,and the morphological evolution of Al_(2) Cu dendrites remains poorly understood.Using synchrotron X-ray tomography,we have directly quantified the morphological evolution of proeutectic Al_(2) Cu IMCs in directionally solidified Al-Cu alloys.The three-dimensional(3D)morphologies of Al_(2) Cu IMCs under different growth rates were quantified using volume,specific surface area,interconnectivity,tortuosity,and Gaussian curvature.The faceted morphology under slow growth rate was divided into three different types,including single hollow prism,irregular prism lacking partial faces,and coalesced prism consisting of two adjacent crystals.The morphological transition from faceted prism to non-faceted algae-like,irregular tree-like,and typically dendritic shapes with increasing growth rates was determined,reflecting the growth modes varied from lateral mode to intermediary and continuous modes.The non-faceted Al_(2) Cu dendrite had one primary stem,three groups of secondary arms,and a faceted tip.The angles between secondary arms were 120°,and the tip consisted of(011)and(011^(-))planes.This work provides a deep understanding of the formation and growth of complex IMCs in metallic alloys. 展开更多
关键词 Proeutectic Al_(2)Cu intermetallic Synchrotron tomography Directional solidification 3-D morphology
原文传递
Coupled thermo-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams 被引量:1
17
作者 Jianping LIU Zhaozhong YANG +2 位作者 Liangping YI Duo YI Xiaogang LI 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期663-682,共20页
A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution t... A coupled thermal-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams is presented.Heat exchange between the cold fluid and the hot rock is considered,and the thermal contribution terms between the cold fluid and the hot rock are derived.Heat transfer obeys Fourier's law,and porosity is used to relate the thermodynamic parameters of the fracture and matrix domains.The net pressure difference between the fracture and the matrix is neglected,and thus the fluid flow is modeled by the unified fluid-governing equations.The evolution equations of porosity and Biot's coefficient during hydraulic fracturing are derived from their definitions.The effect of coal cleats is considered and modeled by Voronoi polygons,and this approach is shown to have high accuracy.The accuracy of the proposed model is verified by two sets of fracturing experiments in multilayer coal seams.Subsequently,the differences in fracture morphology,fluid pressure response,and fluid pressure distribution between direct fracturing of coal seams and indirect fracturing of shale interlayers are explored,and the effects of the cluster number and cluster spacing on fracture morphology for multi-cluster fracturing are also examined.The numerical results show that the proposed model is expected to be a powerful tool for the fracturing design and optimization of deep coalbed methane. 展开更多
关键词 phase-field method thermo-hydro-mechanical coupling indirect fracturing cohesive zone model deep coal seam
在线阅读 下载PDF
Engine Misfire Fault Detection Based on the Channel Attention Convolutional Model
18
作者 Feifei Yu Yongxian Huang +3 位作者 Guoyan Chen Xiaoqing Yang Canyi Du Yongkang Gong 《Computers, Materials & Continua》 SCIE EI 2025年第1期843-862,共20页
To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precis... To accurately diagnosemisfire faults in automotive engines,we propose a Channel Attention Convolutional Model,specifically the Squeeze-and-Excitation Networks(SENET),for classifying engine vibration signals and precisely pinpointing misfire faults.In the experiment,we established a total of 11 distinct states,encompassing the engine’s normal state,single-cylinder misfire faults,and dual-cylinder misfire faults for different cylinders.Data collection was facilitated by a highly sensitive acceleration signal collector with a high sampling rate of 20,840Hz.The collected data were methodically divided into training and testing sets based on different experimental groups to ensure generalization and prevent overlap between the two sets.The results revealed that,with a vibration acceleration sequence of 1000 time steps(approximately 50 ms)as input,the SENET model achieved a misfire fault detection accuracy of 99.8%.For comparison,we also trained and tested several commonly used models,including Long Short-Term Memory(LSTM),Transformer,and Multi-Scale Residual Networks(MSRESNET),yielding accuracy rates of 84%,79%,and 95%,respectively.This underscores the superior accuracy of the SENET model in detecting engine misfire faults compared to other models.Furthermore,the F1 scores for each type of recognition in the SENET model surpassed 0.98,outperforming the baseline models.Our analysis indicated that the misclassified samples in the LSTM and Transformer models’predictions were primarily due to intra-class misidentifications between single-cylinder and dual-cylinder misfire scenarios.To delve deeper,we conducted a visual analysis of the features extracted by the LSTM and SENET models using T-distributed Stochastic Neighbor Embedding(T-SNE)technology.The findings revealed that,in the LSTMmodel,data points of the same type tended to cluster together with significant overlap.Conversely,in the SENET model,data points of various types were more widely and evenly dispersed,demonstrating its effectiveness in distinguishing between different fault types. 展开更多
关键词 Channel attention SENET model engine misfire fault fault detection
在线阅读 下载PDF
Interpretable machine learning excavates a low-alloyed magnesium alloy with strength-ductility synergy based on data augmentation and reconstruction 被引量:1
19
作者 Qinghang Wang Xu Qin +6 位作者 Shouxin Xia Li Wang Weiqi Wang Weiying Huang Yan Song Weineng Tang Daolun Chen 《Journal of Magnesium and Alloys》 2025年第6期2866-2883,共18页
The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an ... The application of machine learning in alloy design is increasingly widespread,yet traditional models still face challenges when dealing with limited datasets and complex nonlinear relationships.This work proposes an interpretable machine learning method based on data augmentation and reconstruction,excavating high-performance low-alloyed magnesium(Mg)alloys.The data augmentation technique expands the original dataset through Gaussian noise.The data reconstruction method reorganizes and transforms the original data to extract more representative features,significantly improving the model's generalization ability and prediction accuracy,with a coefficient of determination(R^(2))of 95.9%for the ultimate tensile strength(UTS)model and a R^(2)of 95.3%for the elongation-to-failure(EL)model.The correlation coefficient assisted screening(CCAS)method is proposed to filter low-alloyed target alloys.A new Mg-2.2Mn-0.4Zn-0.2Al-0.2Ca(MZAX2000,wt%)alloy is designed and extruded into bar at given processing parameters,achieving room-temperature strength-ductility synergy showing an excellent UTS of 395 MPa and a high EL of 17.9%.This is closely related to its hetero-structured characteristic in the as-extruded MZAX2000 alloy consisting of coarse grains(16%),fine grains(75%),and fiber regions(9%).Therefore,this work offers new insights into optimizing alloy compositions and processing parameters for attaining new high strong and ductile low-alloyed Mg alloys. 展开更多
关键词 Magnesium alloy Interpretable machine learning Alloy design Hetero-structure Strength-ductility synergy
在线阅读 下载PDF
Effects of Ultrasonic Shot Peening on Surface Integrity and Corrosion Resistance of 6061-T6 Aluminum Alloy
20
作者 Li Kun Wen Tengfei +1 位作者 Li Shaolong Wang Cheng 《稀有金属材料与工程》 北大核心 2025年第7期1717-1726,共10页
According to surface morphology,microhardness,X-ray diffraction,and static contact angle experiments,the changes in the surface integrity and corrosion resistance of 6061-T6 aluminum alloy after ultrasonic shot peenin... According to surface morphology,microhardness,X-ray diffraction,and static contact angle experiments,the changes in the surface integrity and corrosion resistance of 6061-T6 aluminum alloy after ultrasonic shot peening(USP)were investigated.Results show that the grain size of the material surface is reduced by 43%,the residual compressive stress has an increasing trend,the roughness and hardness are increased by approximately 211.1%and 35%,respectively.And the static contact angle is increased at first,followed by a slight decrease.Weighing,scanning electron microscope,and energy dispersive spectrometer were used to study the samples after a cyclic corrosion test.Results show that USP reduces the corrosion rate by 41.2%.A model of surface corrosion mechanism of USP is developed,and the mechanism of USP to improve the corrosion resistance of materials is discussed.The introduction of compressive residual stresses,grain refinement,increased grain boundaries,increased hardness,and increased static contact angle are the main factors related to the improvement of corrosion resistance in most materials,while increased roughness tends to weaken surface corrosion resistance. 展开更多
关键词 6061-T6 aluminum alloy corrosion resistance surface integrity USP
原文传递
上一页 1 2 105 下一页 到第
使用帮助 返回顶部