期刊文献+
共找到658篇文章
< 1 2 33 >
每页显示 20 50 100
Mechanics of Flexible Lithium-Ion Batteries: Structural Design and Characterization
1
作者 Ziniu Liu Xinran Li Yinhua Bao 《Acta Mechanica Solida Sinica》 2025年第3期369-383,共15页
The development of wearable electronics necessitates flexible and robust energy storage components to enhance comfort and battery longevity.The key to flexible batteries is improving electrochemical stability during d... The development of wearable electronics necessitates flexible and robust energy storage components to enhance comfort and battery longevity.The key to flexible batteries is improving electrochemical stability during deformation,which demands mechanical analysis for optimized design and manufacturing.This paper summarizes the progress of flexible batteries from a mechanical perspective,highlighting highly deformable structures such as fiber,wave,origami,and rigid-supple integrated designs.We discuss mechanical performance characterization and existing evaluation criteria for battery flexibility,along with simulation modeling and testing methods.Furthermore,we analyze mechano-electrochemical coupling,reviewing theoretical models that simulate mechanical and electrochemical behavior under various loads and introduce coupling tests that assess electrochemical performance during deformation.Finally,we suggest future research directions to advance flexible energy storage devices. 展开更多
关键词 Lithium-ion batteries FLEXIBLE Structural design Mechanical characterization
原文传递
Effect of Core Structure on the Mechanical and Electromagnetic Properties of High-Temperature Superconducting Cables 被引量:1
2
作者 Jiangtao Yan Yuanwen Gao 《Acta Mechanica Solida Sinica》 2025年第1期14-24,共11页
Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of... Research on the mechanical–electrical properties is crucial for designing and preparing high-temperature superconducting(HTS)cables.Various winding core structures can influence the mechanical–electrical behavior of cables,but the impact of alterations in the winding core structure on the mechanical–electrical behavior of superconducting cables remains unclear.This paper presents a 3D finite element model to predict the performance of three cables with different core structures when subjected to transverse compression and axial tension.The three cables analyzed are CORC(conductor-on-round-core),CORT(conductor-on-round-tube),and HFRC(conductor-on-spiral-tube).A parametric analysis is carried out by varying the core diameter and inner-to-outer diameter ratio.Results indicate that the CORT cable demonstrates better performance in transverse compression compared to the CORC cable,aligning with experimental data.Among the three cables,the HFRC cables exhibit the weakest resistance to transverse deformation.However,the HFRC cable demonstrates superior tensile deformation resistance compared to the CORT cable,provided that the transverse compression properties are maintained.Finite element results also show that the optimum inner-to-outer diameter ratios for achieving the best transverse compression performance are approximately 0.8 for CORT cables and 0.6 for HFRC cables.Meanwhile,the study explores the effect of structural changes in HTS cable winding cores on their electromagnetic properties.It recommends utilizing small tape gaps,lower frequencies,and spiral core construction to minimize eddy losses.The findings presented in this paper offer valuable insights for the commercialization and practical manufacturing of HTS cables. 展开更多
关键词 Superconducting cables Winding core structure Transverse compression Axial tension Eddy loss
原文传递
Contact behaviors of rough surfaces under tension and bending 被引量:1
3
作者 Xiaoyu Tang Wurui Ta Youhe Zhou 《Acta Mechanica Sinica》 2025年第2期132-147,共16页
The contact problem of deformed rough surfaces exists widely in complex engineering structures.How to reveal the influence mechanism of surface deformation on the contact properties is a key issue in evaluating the in... The contact problem of deformed rough surfaces exists widely in complex engineering structures.How to reveal the influence mechanism of surface deformation on the contact properties is a key issue in evaluating the interface performances of the engineering structures.In this paper,a contact model is established,which is suitable for tensile and bending deformed contact surfaces.Four contact forms of asperities are proposed,and their distribution characteristics are analyzed.This model reveals the mechanism of friction generation from the perspective of the force balance of asperity.The results show the contact behaviors of the deformed contact surface are significantly different from that of the plane contact,which is mainly reflected in the change in the number of contact asperities and the real contact area.This study suggests that the real contact area of the interface can be altered by applying tensile and bending strains,thereby regulating its contact mechanics and conductive behavior. 展开更多
关键词 Deformed contact surface Four contact forms of asperity Oblique contact Friction mechanism Contact resistance
原文传递
Voids and cracks detection in bulk superconductors through magnetic field and displacement signals
4
作者 Dongming An Pengpeng Shi Xiaofan Gou 《Acta Mechanica Sinica》 2025年第5期148-161,共14页
Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applicat... Large-grain REBa_(2)Cu_(3)O_(7-δ)(REBCO,RE=rare earth)bulk superconductors offer promising magnetic field trapping capabilities due to their high critical current density,making them ideal for many important applications such as trapped field magnets.However,for such large-grain superconductor bulks,there are lots of voids and cracks forming during the process of melting preparation,and some of them can be up to hundreds of microns or even millimeters in size.Consequently,these larger size voids/cracks pose a great threat to the strength of the bulks due to the inherent brittleness of superconductor REBCO materials.In order to ensure the operational safety of related superconducting devices with bulk superconductors,it is firstly important to accurately detect these voids/cracks in them.In this paper,we proposed a method for quantitatively evaluating multiple voids/cracks in bulk superconductors through the magnetic field and displacement response signals at superconductor bulk surface.The proposed method utilizes a damage index constructed from the magnetic field signals and displacement responses to identify the number and preliminary location of multiple defects.By dividing the detection area into subdomains and combining the magnetic field signals with displacement responses within each subdomain,a particle swarm algorithm was employed to evaluate the location and size parameters of the defects.In contrast to other evaluation methods using only magnetic field or displacement response signals,the combined evaluation method using both signals can identify the number of cracks effectively.Numerical studies demonstrate that the morphology of voids and cracks reconstructed using the proposed algorithm ideally matches real defects and is applicable to cases where voids and cracks coexist.This study provides a theoretical basis for the quantitative detection of voids/cracks in bulk superconductors. 展开更多
关键词 Bulk superconductor Defect detection Multiple voids and cracks Damage index Particle swarm optimization
原文传递
Dynamic properties of mode Ⅰ and mode Ⅱ fractures of shale under impact loading
5
作者 Zelin Yan Linjuan Wang +1 位作者 Jidong Jin Jianxiang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1053-1067,共15页
Controllable shock wave fracturing is an innovative engineering technique used for shale reservoir fracturing and reformation.Understanding the anisotropic fracture mechanism of shale under impact loading is vital for... Controllable shock wave fracturing is an innovative engineering technique used for shale reservoir fracturing and reformation.Understanding the anisotropic fracture mechanism of shale under impact loading is vital for optimizing shock wave fracturing equipment and enhancing shale oil production.In this study,using the well-known notched semi-circular bend(NSCB)sample and the novel double-edge notched flattened Brazilian disc(DNFBD)sample combined with a split Hopkinson pressure bar(SHPB),various dynamic anisotropic fracture properties of Lushan shale,including failure characteristics,fracture toughness,energy dissipation and crack propagation velocity,are comprehensively compared and discussed under mode Ⅰ and mode Ⅱ fracture scenarios.First,using a newly modified fracture criterion considering the strength anisotropy of shale,the DNFBD specimen is predicted to be a robust method for true mode Ⅱ fracture of anisotropic shale rocks.Our experimental results show that the dynamic mode Ⅱ fracture of shale induces a rougher and more complex fracture morphology and performs a higher fracture toughness or fracture energy compared to dynamic mode Ⅰ fracture.The minimal fracture toughness or fracture energy occurs in the Short-transverse orientation,while the maximal ones occur in the Divider orientation.In addition,it is interesting to find that the mode Ⅱ fracture toughness anisotropy index decreases more slowly than that in the mode Ⅰ fracture scenario.These results provide significant insights for understanding the different dynamic fracture mechanisms of anisotropic shale rocks under impact loading and have some beneficial implications for the controllable shock wave fracturing technique. 展开更多
关键词 SHALE Controllable shock wave fracturing Dynamic fracture property Fracture toughness anisotropy Loading rate effect
在线阅读 下载PDF
An innovative nonlinear bionic X-shaped vibration isolator enhanced by quasi-zero stiffness characteristics:theory and experimental investigation
6
作者 Zeyu CHAI Zhen ZHANG +3 位作者 Kefan XU Xuyuan SONG Yewei ZHANG Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第8期1475-1492,共18页
Bionic X-shaped vibration isolators have been widely employed in aerospace and other industrial fields,but the stiffness properties of classic X-shaped structures limit the vibration isolation ability for low frequenc... Bionic X-shaped vibration isolators have been widely employed in aerospace and other industrial fields,but the stiffness properties of classic X-shaped structures limit the vibration isolation ability for low frequencies.An innovative bionic quasi-zero stiffness(QZS)vibration isolator(BQZSVI),which can broaden the QZS range of a classic X-shaped isolator and can bring it closer to the equilibrium position,is proposed.The BQZSVI consists of an X-shaped structure as the bone fabric of lower limbs and a nonlinear magnetic loop device simulating the leg muscle.Based on static calculation,the stiffness characteristic of the structure is confirmed.The governing equations of motion of the BQZSVI structure are established in the framework of the Lagrange equation,and the harmonic balance method(HBM)is adopted to obtain the transmissibility responses.The results show that the BQZSVI can provide a more accessible and broader range of QZS.In the dynamic manifestation,the introduction of the BQZSVI can reduce the amplitude of a classic X-shaped vibration isolator by 65.7%,and bring down the initial vibration isolation frequency from 7.43 Hz to 2.39 Hz.In addition,a BQZSVI prototype is designed and fabricated,and the exactitude of the theoretical analysis method is proven by means of experiments. 展开更多
关键词 bionic quasi-zero stiffness(QZS) X-shaped structure magnetic loop device vibration isolation dynamic property
在线阅读 下载PDF
Enhancing the Capacity and Cycling Performance of Lithium Ion Batteries Through Perforated Current Collectors
7
作者 Qi Zou Jianjun Nie +3 位作者 Bo Lu Yinhua Bao Yicheng Song Junqian Zhang 《Acta Mechanica Solida Sinica》 2025年第3期539-548,共10页
Lithium ion batteries are important for new energy technologies and manufacturing systems.However,enhancing their capacity and cycling stability poses a significant challenge.This study proposes a novel method,i.e.,mo... Lithium ion batteries are important for new energy technologies and manufacturing systems.However,enhancing their capacity and cycling stability poses a significant challenge.This study proposes a novel method,i.e.,modifying current collectors with perforations,to address these issues.Lithium ion batteries with mechanically perforated current collectors are prepared and tested with charge/discharge cycles,revealing superior capacity as well as enhanced electrochemical stability over cycles.Impedance spectroscopy,scanning electron microscopy,and peeling tests are conducted to investigate the underlying mechanisms.Higher peel resistance,minimized interface cracking,and reduced electrical impedance are found in the perforated electrodes after cycles.Investigations indicate that the perforation holes on current collectors allow the active materials coating on the two sides of the current collector to bind together and,thus,lead to enhanced adhesion between the current collector and active layer.Mechanical simulation illustrates the role of perforated current collectors in curbing interface cracking during lithiation,while electrochemical simulation shows that the interfacial cracking hinders the diffusion of lithium ions,thereby increasing battery impedance and reducing the cyclic performance.This investigation reveals the potential of designing non-active battery components to enhance battery performance,advocating a nuanced approach to battery design emphasizing structural integrity and interface optimization. 展开更多
关键词 Lithium ion batteries Perforated current collectors Electrochemical performance IMPEDANCE Interface cracking
原文传递
Dynamic Compressive Behavior and Stress Wave Attenuation Characteristics of Ti-6Al-4V Lattice Structure
8
作者 Shuai Zhang Xin Lai +3 位作者 Haiyan Niu Lisheng Liu Shifu Wang Jinyong Zhang 《Computer Modeling in Engineering & Sciences》 2025年第7期739-762,共24页
This study investigates the dynamic compressive behavior of three periodic lattice structures fabricated from Ti-6Al-4V titanium alloy,each with distinct topologies:simple cubic(SC),body-centered cubic(BCC),and face-c... This study investigates the dynamic compressive behavior of three periodic lattice structures fabricated from Ti-6Al-4V titanium alloy,each with distinct topologies:simple cubic(SC),body-centered cubic(BCC),and face-centered cubic(FCC).Dynamic compression experiments were conducted using a Split Hopkinson Pressure Bar(SHPB)system,complemented by high-speed imaging to capture real-time deformation and failure mechanisms under impact loading.The influence of cell topology,relative density,and strain rate on dynamic mechanical properties,failure behavior,and stress wave propagation was systematically examined.Finite element modeling was performed,and the simulated results showed good agreement with experimental data.The findings reveal that the dynamic mechanical properties of the lattice structures are generally insensitive to strain rate variations,while failure behavior is predominantly governed by structural configuration.The SC structure exhibited strut buckling and instability-induced fracture,whereas the BCC and FCC structures displayed layer-by-layer crushing with lower strain rate sensitivity.Regarding stress wave propagation,all structures demonstrated significant attenuation capabilities,with the BCC structure achieving the greatest reduction in transmitted wave amplitude and energy.Across all configurations,wave reflection was identified as the primary energy dissipation mechanism.These results provide critical insights into the design of lattice structures for impact mitigation and energy absorption applications. 展开更多
关键词 Lattice structure energy dissipation Split Hopkinson Pressure Bar dynamic mechanical behavior stress wave
在线阅读 下载PDF
Random Vibration of a Pipe Conveying Fluid under Combined Harmonic and Gaussian White Noise Excitations
9
作者 Hufei Li Yibo Sun +2 位作者 Sha Wei Hu Ding Li-Qun Chen 《Acta Mechanica Solida Sinica》 2025年第5期843-856,共14页
Fluid-conveying pipes generally face combined excitations caused by periodic loads and random noises.Gaussian white noise is a common random noise excitation.This study investigates the random vibration response of a ... Fluid-conveying pipes generally face combined excitations caused by periodic loads and random noises.Gaussian white noise is a common random noise excitation.This study investigates the random vibration response of a simply-supported pipe conveying fluid under combined harmonic and Gaussian white noise excitations.According to the generalized Hamilton’s principle,the dynamic model of the pipe conveying fluid under combined harmonic and Gaussian white noise excitations is established.Subsequently,the averaged stochastic differential equations and Fokker–Planck–Kolmogorov(FPK)equations of the pipe conveying fluid subjected to combined excitations are acquired by the modified stochastic averaging method.The effectiveness of the analysis results is verified through the Monte Carlo method.The effects of fluid speed,noise intensity,amplitude of harmonic excitation,and damping factor on the probability density functions of amplitude,displacement,as well as velocity are discussed in detail.The results show that with an increase in fluid speed or noise intensity,the possible greatest amplitude for the fluid-conveying pipe increases,and the possible greatest displacement and velocity also increase.With an increase in the amplitude of harmonic excitation or damping factor,the possible greatest amplitude for the pipe decreases,and the possible greatest displacement and velocity also decrease. 展开更多
关键词 Fluid-conveying pipe Harmonic excitation Stochastic averaging method Gaussian white noise Probability density function
原文传递
In situ observation and numerical simulation on deformation and failure process of Al alloy foam with close pore structure under quasi-static compression
10
作者 Fan Bai Lei Wang +1 位作者 Dong-hui Yang Quan-lin Ding 《Journal of Iron and Steel Research International》 2025年第9期3014-3025,共12页
The applications of Al alloy foam require consideration of potential damage risks,which are closely related to the evolution of its internal pore structures.However,conventional ex situ experimental observation cannot... The applications of Al alloy foam require consideration of potential damage risks,which are closely related to the evolution of its internal pore structures.However,conventional ex situ experimental observation cannot provide information on the structure evolution during deformation.In order to investigate the failure mechanism of Al alloy foam under quasi-static compression,by utilizing X-ray imaging technology,in situ CT image data were obtained during the loading process.A geometric model characterizing the real structure of Al alloy foam was reconstructed from the initial CT images and used for finite element simulation.Besides,based on the digital volume correlation(DVC)method,the displacement and strain fields of Al alloy foam were calculated.The results show that the in situ experimental observation based on X-ray imaging can effectively obtain the failure information of Al alloy foam.The simulation results for deformation and failure behavior of Al alloy foam are consistent with experimental results.During the quasi-static compression,a shear band can be observed diagonally across the profile of Al alloy foam,with weak regions occurring in the cells with larger volume and higher aspect ratios.Using these weak regions as boundaries,the relative displacement of cell structures on one side compared to another side was identified as the intrinsic cause of shear band formation.The high-strain regions identified by DVC closely match the crack locations on the cell walls,validating the accuracy of DVC on localizing cracks on cell walls and predicting their propagation trends. 展开更多
关键词 Al alloy foam In situ observation Quasi-static compression Reverse reconstruction Digital volume correlation
原文传递
Micromechanics-based thermo-hydro-mechanical model for airentrained porous materials subjected to freezing-thawing cycles
11
作者 Weiqi Guo Yang Wu +3 位作者 Mingkun Jia Zhihong Ma Jinyang Jiang Wenxiang Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4413-4428,共16页
The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remain... The freeze-thaw(FT)behavior of porous materials(PMs)involves the coupling of the thermo-hydromechanical(THM)processes and is significantly influenced by the microstructure.However,modeling FT in unsaturated PMs remains an open issue,and the influence of microstructure is not yet fully understood.To address these challenges,we propose a THM model for FT in PMs that considers microstructure and variable air content.In this work,a non-equilibrium thermodynamic approach is proposed to capture ice formation/melting,the microstructure is accounted for utilizing micromechanics,and the FT processes in air-entrained PMs are formulated within the proposed THM model.This model incorporates variable air void characteristics,e.g.air content,spacing factor,specific surface area,and supercooled water-filled regimes,and distinguishes the roles of air voids between freezing and thawing.The FT behaviors,including deformation,ice formation/melting,spacing factor,and pore water pressure evolutions,are focused.Comparisons with experimental results,confirm the capability of the present model.The results demonstrate the effects of variable air voids on the FT behavior of air-entrained PMs.The findings reveal that assuming fixed air void characteristics can lead to underestimation of pore pressure and deformation,particularly at low air content.Additionally,air voids act as cryo-pumps during freezing and when the cooling temperature stabilizes.During thawing,air voids supply gas to the melting sites(i.e.“gas escape”),preventing further significant deformation reduction.These results can provide novel insights for understanding the frost damage of PMs. 展开更多
关键词 Porous materials(PMs) Freezing and thawing(FT) Air voids Thermo-hydro-mechanical coupling(THM coupling)
在线阅读 下载PDF
A Trans-scale Shear-lag Model for Characterizing the Size Effect and Viscoelasticity of Staggered Shells
12
作者 Zhongya Lin Kuanjie Ding +1 位作者 Hansong Ma Yueguang Wei 《Acta Mechanica Solida Sinica》 2025年第5期749-763,共15页
Natural biomaterials with staggered structures exhibit remarkable mechanical properties owing to their unique microstructure.The microstructural arrangement can induce size-dependent and viscoelastic responses within ... Natural biomaterials with staggered structures exhibit remarkable mechanical properties owing to their unique microstructure.The microstructural arrangement can induce size-dependent and viscoelastic responses within the material.This study proposes a strain gradient viscoelastic shear-lag model to elucidate the intricate interplay between the strain gradient and viscoelastic effect in staggered shells.Our model clarifies the role of both effects,as experimentally observed,in governing the mechanical properties of these biomaterials.A detailed characterization of the size-dependent responses is conducted through the utilization of a microstructural characterization parameter alongside viscoelastic constitutive models.Then,the effective modulus of the staggered shell is defined and its formula is derived through the Laplace transform.Compared to classical models and even the strain gradient elastic model,the strain gradient viscoelastic model offers calculated moduli that are more consistent with experimental data.Moreover,the strengthening-softening effect of staggered structures is predicted using the strain gradient viscoelastic model and critical energy principle.This study contributes significantly to our understanding of the mechanical behavior of structural materials.Additionally,it provides insights for the design of advanced bionic materials with tailored properties. 展开更多
关键词 Staggered structure Strain gradient viscoelasticity Shear-lag model Strengthening-softening effect
原文传递
Bandgap characteristics analysis and graded design of a novel metamaterial for flexural wave suppression
13
作者 Fan YANG Zhaoyang MA Xingming GUO 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期1-24,共24页
A novel elastic metamaterial is proposed with the aim of achieving lowfrequency broad bandgaps and bandgap regulation.The band structure of the proposed metamaterial is calculated based on the Floquet-Bloch theorem,an... A novel elastic metamaterial is proposed with the aim of achieving lowfrequency broad bandgaps and bandgap regulation.The band structure of the proposed metamaterial is calculated based on the Floquet-Bloch theorem,and the boundary modes of each bandgap are analyzed to understand the effects of each component of the unit cell on the bandgap formation.It is found that the metamaterials with a low elastic modulus of ligaments can generate flexural wave bandgaps below 300 Hz.Multi-frequency vibrations can be suppressed through the selective manipulation of bandgaps.The dual-graded design of metamaterials that can significantly improve the bandgap width is proposed based on parametric studies.A new way that can regulate the bandgap is revealed by studying the graded elastic modulus in the substrate.The results demonstrate that the nonlinear gradient of the elastic modulus in the substrate offers better bandgap performance.Based on these analyses,the proposed elastic metamaterials can pave the way for multi-frequency vibration control,low-frequency bandgap broadening,and bandgap tuning. 展开更多
关键词 METAMATERIAL flexural wave bandgap local resonance graded design
在线阅读 下载PDF
Understanding the Layered Silicon/Graphite Composite Electrode Design from the Perspective of Porosity Evolution
14
作者 Shanwei Wang Bo Lu Junqian Zhang 《Acta Mechanica Solida Sinica》 2025年第3期470-482,共13页
The recently reported silicon/graphite(Si/Gr)composite electrode with a layered structure is a promising approach to achieve high capacity and stable cycling of Si-based electrodes in lithium-ion batteries.However,the... The recently reported silicon/graphite(Si/Gr)composite electrode with a layered structure is a promising approach to achieve high capacity and stable cycling of Si-based electrodes in lithium-ion batteries.However,there is still a need to clarify why particular layered structures are effective and why others are ineffective or even detrimental.In this work,an unreported mechanism dominated by the porosity evolution of electrodes is proposed for the degradation behavior of layered Si/Gr electrodes.First,the effect of layering sequence on the overall electrode performance is investigated experimentally,and the results suggest that the cycling performance of the silicon-on-graphite(SG)electrode is much superior to that of the graphite-on-silicon electrode.To explain this phenomenon,a coupled mechanical-electrochemical porous electrode model is developed,in which the porosity is affected by the silicon expansion and the local constraints.The modeling results suggest that the weaker constraint of the silicon layer in the SG electrode leads to a more insignificant decrease in porosity,and consequently,the more stable cycling performance.The findings of this work provide new insights into the structural design of Si-based electrodes. 展开更多
关键词 Lithium-ion battery Silicon/graphite composite electrode Layered structure Porosity evolution DEFORMATION
原文传递
Modeling and mechanism of vibration reduction of pipes by visco-hyperelastic materials
15
作者 Jie JING Xiaoye MAO +2 位作者 Hu DING Honggang LI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 2025年第6期1029-1048,共20页
Pipes have been extensively utilized in the aerospace,maritime,and other engineering sectors.However,the vibrations of pipes can significantly affect the system reliability and even lead to accidents.Visco-hyperelasti... Pipes have been extensively utilized in the aerospace,maritime,and other engineering sectors.However,the vibrations of pipes can significantly affect the system reliability and even lead to accidents.Visco-hyperelastic materials can enhance the dissipative effect,and reduce the vibrations of pipes.However,the mechanism based on the constitutive model for visco-hyperelastic materials is not clear.In this study,the damping effect of a visco-hyperelastic material on the outer surface of a plain steel pipe is investigated.The nonlinear constitutive relation of the visco-hyperelastic material is introduced into the governing equation of the system for the first time.Based on this nonlinear constitutive model,the governing model for the forced vibration analysis of a simply-supported laminated pipe is established.The Galerkin method is used to analyze the effects of the visco-hyperelastic parameters and structural parameters on the natural characteristics of the fluid-conveying pipes.Subsequently,the harmonic balance method(HBM)is used to investigate the forced vibration responses of the pipe.Finally,the differential quadrature element method(DQEM)is used to validate these results.The findings demonstrate that,while the visco-hyperelastic material has a minimal effect on the natural characteristics,it effectively dampens the vibrations in the pipe.This research provides a theoretical foundation for applying vibration damping materials in pipe vibration control. 展开更多
关键词 pipe conveying fluid visco-hyperelastic material harmonic balance method(HBM) vibration damping passive control
在线阅读 下载PDF
Surface effects on buckling instability and large deformation of magneto-active soft beams
16
作者 Lu LU Min LI Shuang WANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第4期617-632,共16页
Magneto-active soft materials,composed of hard-magnetic particles embedded in polymeric matrices,have found widespread applications in soft robotics,active metamaterials,and shape-morphing structures across various le... Magneto-active soft materials,composed of hard-magnetic particles embedded in polymeric matrices,have found widespread applications in soft robotics,active metamaterials,and shape-morphing structures across various length scales due to their ability to undergo reversible,untethered,and rapid deformation in response to magnetic actuation.At small scales,surface effects play a crucial role in the mechanical behavior of these soft materials.In this paper,we theoretically investigate the influence of surface effects on the buckling instability and large deformation of magneto-active soft beams under a uniform magnetic field.The theoretical model is derived according to the principle of minimum potential energy and numerically solved with the finite difference method.By employing the developed theoretical model,parametric studies are performed to explore how surface effects influence the buckling instability and large deformation of magneto-active soft cantilever beams with varying geometric parameters under different uniform magnetic fields.Our results reveal that the influence of surface effects on the mechanical behavior of magneto-active soft beams depends not only on the geometric parameters but also on the magnetic field strength.Specifically,when the magnetic field strength is relatively small,surface effects reduce the deformation of magneto-active soft beams,particularly for beams with smaller thicknesses and larger length-to-thickness ratios.However,when the magnetic field strength is sufficiently large,and the beam's deformation becomes saturated,surface effects have little influence on the deformation.This work uncovers the role of surface effects in the mechanical behavior of magnetoactive soft materials,which could provide guidelines for the design and optimization of small-scale magnetic-active soft material-based applications. 展开更多
关键词 magneto-active soft material surface effect buckling instability large deformation
在线阅读 下载PDF
An experimental study of noise generated by tandem blades
17
作者 Xiaolong TANG Fan TONG +3 位作者 Chao WANG Jue DING Guangming LI Xiaoquan YANG 《Chinese Journal of Aeronautics》 2025年第2期143-160,共18页
To facilitate the low-noise design of tandem lift bodies as applied in aeroengines and aircraft,the acoustic features of tandem blades are investigated by wind-tunnel experiments.This is further specialized for the ro... To facilitate the low-noise design of tandem lift bodies as applied in aeroengines and aircraft,the acoustic features of tandem blades are investigated by wind-tunnel experiments.This is further specialized for the rotating blades applied in contra-rotating open rotors under the concept of frozen-rotor.A 70-channel phased microphone array and nine high-precision free-field microphones are employed.The beamforming method,enhanced by a source filtering technique,is employed to locate noise sources,providing insights into the source patterns of blade-blade interaction noise concerning flow speed,blade spacing,and aft blade clipping.The results show the following:(A)Sources of tandem-blade noise exist in the form of concentrated source clusters,resulting in two major clusters:the mid-span interaction noise and the tip-induced noise.(B)These source clusters tend to separate as flow speed or blade spacing increases.(C)By increasing blade spacing,the band-pass filtered overall sound pressure level is reduced by 2.9 dB.(D)A two-phase noise suppression pattern is observed with blade clipping,resulting in a total reduction of 3.0 dB for the interaction noise through the removal of tip-induced noise sources and the replacement of mid-span noise sources.Based on these findings,suggestions concerning blade spacing and clipping are discussed. 展开更多
关键词 Tandem blades Contra-rotating open rotor Noise BEAMFORMING Blade spacing and clipping Wind tunnel test
原文传递
Experimental and Peridynamic Numerical Study on the Opening Process of the Soft PSD in Pulse Solid Rocket Motors
18
作者 Wenxia Cheng Qinliu Cao +1 位作者 Bin Yuan Jiale Yan 《Computer Modeling in Engineering & Sciences》 2025年第6期3197-3214,共18页
As a critical component of pulse solid rocket motors(SRMs),the soft pulse separation device(PSD)is vital in enabling multi-pulse propulsion and has become a breakthrough in SRM engineering applications.To investigate ... As a critical component of pulse solid rocket motors(SRMs),the soft pulse separation device(PSD)is vital in enabling multi-pulse propulsion and has become a breakthrough in SRM engineering applications.To investigate the opening performance of the PSD,an axial PSD incorporating a star-shaped prefabricated defect was designed.The opening process was simulated using peridynamics,yielding the strain field distribution and the corresponding failure mode.A single-opening verification test was conducted.The simulation results showed good agreement with the experimental data,demonstrating the reliability of the peridynamic modeling approach.Furthermore,the effects of the prefabricated defect shape and depth on the opening performance of the PSD were analyzed through simulation.The research results indicate that the established constitutive model and failure criteria based on peridynamics can reasonably predict the failure location and the opening pressure of the soft PSD.Under the impact loading,the weak zone of the soft PSD firstly ruptures,and the damaged area gradually propagates along with the prefabricated defect,eventually leading to complete separation.A smaller prefabricated defect depth or a wider prefabricated defect distribution can cause a reduction in opening pressure.These research results provide valuable guidance for the preliminary design and optimization of PSDs in pulse solid rocket motors. 展开更多
关键词 PERIDYNAMICS pulse solid rocket motor soft pulse separation device material failure
在线阅读 下载PDF
The influences of geometry on the hemodynamics and particle transport in model aorta
19
作者 Wenyuan Chen Tao Zhang Yantao Yang 《Acta Mechanica Sinica》 2025年第3期55-64,共10页
The present study investigates the infiuences of aorta geometry on hemodynamics and material transport.Based on the observation of the human aorta.two geometric paramelers are examined for a model aorta,savine the ane... The present study investigates the infiuences of aorta geometry on hemodynamics and material transport.Based on the observation of the human aorta.two geometric paramelers are examined for a model aorta,savine the anele spanned by the main aorticarc and the diameter of the descending aorta.irect numerical simulations are conducted for nine model aortas with difierencombinations of aorta arc and outlet diameter.Results reveal that the outlet diameter has a sienificant impact on aorta hemodynamics.A smaller outlet diameter compared to the inlet leads to accelerated blood fow in the descending segment,affecting fiowmorphology including the vortex structures,and increasing peak pressure gradient and wall shear stress.However,it reducesthe oscillatory shear index,indicating a more organized fow.Analyses show faster particle transport and reduced accumulativeresidence time for smaller outlet diameters,The arc anele has less sieniicant efiects on these properties.except for delaying thetime to reach the maximum pressure gradient during cjection.The research results may suggest that the diameter of the aorticoutlet has a greater impact on the fiow structures,while the arc angle has a relatively less efiect.These findings provide insightsinto the relation between hemodynamics and aorta geometry,with potential clinical implications. 展开更多
关键词 Aorta hemodynamics Immersed-boundary method Particle transport
原文传递
Solid solution dependence of the deformation behavior in Mg-xZn(x=0,1,2 wt%)alloys:In-situ neutron diffraction and crystal plasticity modeling
20
作者 Huai Wang Soo Yeol Lee +3 位作者 You Sub Kim Huamiao Wang Wanchuck Woo Ke An 《Journal of Magnesium and Alloys》 2025年第2期823-838,共16页
The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were... The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings. 展开更多
关键词 Magnesium alloy Deformation behavior Solid solution Crystal plasticity modeling Neutron diffraction
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部