Polylactic acid(PLA)possesses good mechanical and biodegradability properties which make it a suitable material for polymer composites whereas brittleness and high costs limit its utilization in various applications.T...Polylactic acid(PLA)possesses good mechanical and biodegradability properties which make it a suitable material for polymer composites whereas brittleness and high costs limit its utilization in various applications.The reinforcement of natural fibres with biopolymers has been formed to be an efficient technique to develop composites having the ability to be fully biodegradable.This study concerns with the incorporation of various percentages of untreated and alkali-treated Coir Fibres(CF)and pineapple leaf fibres(PALF)in PLA biocomposites and characterizations of flexural,morphological and dynamic mechanical properties.Flexural properties showed that the treated C1P1 hybrid composites(C1P1A)displayed highest flexural strength(35.81 MPa)and modulus(5.28 GPa)among all hybrid biocomposites.Scanning Electron Microscopy(SEM)revealed a behaviour of fibre-matrix adhesion in untreated treated biocomposites.SEM observation revealed good dispersion of the fillers in PLA.Dynamic mechanical analysis revealed that C1P1A showed highest glass transition temperature(Tg)and storage modulus(E')while untreated C3P7 displayed the least Tg and E'.Overall findings showed that alkali-treated hybrid biocomposites(CF/PALF/PLA)especially C1P1A have improved flexural properties,dynamic and morphological properties over untreated biocomposites.Success of these findings will provide attracting consideration of these hybrid biocomposites for various lightweight uses in a broad selection of industrial applications such as biomedical sectors,automobile,construction,electronics equipment,and hardware tools.展开更多
The focus of this research is a new type of particle extraction process for the transfer of magnetite nanoparticles from an aqueous to an immiscible organic phase, directly through the liquid-liquid phase boundary in ...The focus of this research is a new type of particle extraction process for the transfer of magnetite nanoparticles from an aqueous to an immiscible organic phase, directly through the liquid-liquid phase boundary in a drop column. The particle extraction process comprises several advantages such as a minimum amount of stabilizing surfactant, no exposure of the particles to a gas atmosphere and with it the avoidance of sintering by capillary forces and a high particle concentration in the receiving phase as well. The study presents experimental results of the characterization of the process environment and the transfer behavior in a drop column. The solution of surfactant in the continuous phase has been investigated during a particle-free phase transfer experiment including the measurements of the total organic carbon (TOC) content and analysis of the size of the stabilized droplets using the laser diffraction spectroscopy. The determination of the transfer fluxes, the mass flows as well as the yield of transferred magnetite by ICP-OES measurements provide information on the impact of interaction of the elementary processes at the phase boundary. Furthermore, the transfer kinetics of the process is described and compared with calculated theoretical values resulting from a kinetic approach.展开更多
Background:Internal tibial loading is influenced by modifiable factors with implications for the risk of stress injury.Runners encounter varied surface steepness(gradients)when running outdoors and may adapt their spe...Background:Internal tibial loading is influenced by modifiable factors with implications for the risk of stress injury.Runners encounter varied surface steepness(gradients)when running outdoors and may adapt their speed according to the gradient.This study aimed to quantify tibial bending moments and stress at the anterior and posterior peripheries when running at different speeds on surfaces of different gradients.Methods:Twenty recreational runners ran on a treadmill at 3 different speeds(2.5 m/s,3.0 m/s,and 3.5 m/s)and gradients(level:0%;uphill:+5%,+10%,and+15%;downhill:-5%,-10%,and-15%).Force and marker data were collected synchronously throughout.Bending moments were estimated at the distal third centroid of the tibia about the medial-lateral axis by ensuring static equilibrium at each 1%of stance.Stress was derived from bending moments at the anterior and posterior peripheries by modeling the tibia as a hollow ellipse.Two-way repeated-measures analysis of variance were conducted using both functional and discrete statistical analyses.Results:There were significant main effects for running speed and gradient on peak bending moments and peak anterior and posterior stress.Higher running speeds resulted in greater tibial loading.Running uphill at+10%and+15%resulted in greater tibial loading than level running.Running downhill at-10%and-15%resulted in reduced tibial loading compared to level running.There was no difference between+5%or-5%and level running.Conclusion:Running at faster speeds and uphill on gradients≥+10%increased internal tibial loading,whereas slower running and downhill running on gradients≥-10%reduced internal loading.Adapting running speed according to the gradient could be a protective mechanism,providing runners with a strategy to minimize the risk of tibial stress injuries.展开更多
This study demonstrates that two-and three-dimensional spatially graded,truss-based polymeric-material metamaterials can be designed for beneficial impact mitigation and energy absorption capabilities.Through a combin...This study demonstrates that two-and three-dimensional spatially graded,truss-based polymeric-material metamaterials can be designed for beneficial impact mitigation and energy absorption capabilities.Through a combination of numerical and experimental techniques,we highlight the broad property space of periodic viscoelastic trusses,realized using 3D printing via selective laser sintering.Extending beyond periodic designs,we investigate the impact response of spatially variant viscoelastic lattices in both two and three dimensions.Our result reveal that introducing spatial variations in lattice topology allows for redirecting of the impact trajectory,opening new opportunities for engineering and tailoring lightweight materials with target impact functionality.This is achieved through the combined selection of base material and metamaterial design.展开更多
Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah regi...Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah region of Togo. A two-year trial was conducted in a controlled environment at AREJ, an agro-ecological center in Cinkassé. The plant material was sorghum variety Sorvato 28. The experimental design was a Completely Randomized Block with three replications and three treatments as follows: T0 control plot (rainfed conditions);T1 (supplementary irrigation from flowering to grain filling stage) and T2 (supplementary irrigation from planting to grain filling stage). Two irrigation techniques (furrow and Californian system) were used under each watering treatment. The results showed that irrigation technique significantly affected panicle length with no effect on 1000 grains mass. Panicle length and grain yields varied from 15.59 to 25.71 cm and 0.0 to 2.06 t∙h−1, respectively, with the highest values (25.66 cm and 2.06 t∙h−1, respectively) under the T2 treatment with the California system-based supplementary irrigation. The comparison of results obtained on treatment T0 and T2, shows that supplementary irrigation increased the yields by at least 68.62%. Supplementary irrigation during sowing and growing season (T2) improved sorghum yields in the dry savannahs of Togo, with a better performance of the California irrigation system.展开更多
The velocity profiles and separation efficiency curves of a hydrocyclone were predicted by an Euler-Euler approach using a computational fluid dynamics tool ANSYS-CFX 14.5. The Euler-Euler approach is capable of consi...The velocity profiles and separation efficiency curves of a hydrocyclone were predicted by an Euler-Euler approach using a computational fluid dynamics tool ANSYS-CFX 14.5. The Euler-Euler approach is capable of considering the particle-particle interactions and is appropriate for highly laden liquid-solid mixtures. Pre- dicted results were compared and validated with experi- mental results and showed a considerably good agreement. An increase in the particle cut size with increasing solid concentration of the inlet mixture flow was observed and discussed. In addition to this, the erosion on hydrocyclone walls constructed from stainless steel 410, eroded by sand particles (mainly SiOz), was predicted with the Euler-La- grange approach. In this approach, the abrasive solid particles were traced in a Lagrangian reference frame as discrete particles. The increases in the input flow velocity, solid concentration, and the particle size have increased the erosion at the upper part of the cylindrical body of the hydrocyclone, where the tangential inlet flow enters the hydrocyclone. The erosion density in the area between the cylindrical to conical body area, in comparison to other parts of the hydrocyclone, also increased considerably. Moreover, it was observed that an increase in the particle shape factor from 0.1 to 1.0 leads to a decrease of almost 70 % in the average erosion density of the hydrocyclone wall surfaces.展开更多
This paper reviews rare earth minerals(monazite and xenotime) separation by flotation. A wide range of monazite and xenotime flotation test results are summarized including: reasons of variation in the point of zero c...This paper reviews rare earth minerals(monazite and xenotime) separation by flotation. A wide range of monazite and xenotime flotation test results are summarized including: reasons of variation in the point of zero charges on these minerals, the effects of various flotation conditions on zeta potential of monazite and xenotime, interactions of collectors and depressants on the surface of these minerals during flotation separation, relationship between surface chemistry of the minerals and different types of collector adsorptions and effects of the conditioning temperature on flotation of rare earth minerals. This review collects various approaches for the selective separation of monazite and xenotime by flotation and gives perspectives for further research in the future.展开更多
Ultrasonic welding can be used to join plastic and metal through high-frequency (more than 20 kHz) acoustic vibrations. Aluminium alloy is widely used in electronics, automotive and aerospace. The mechanical vibration...Ultrasonic welding can be used to join plastic and metal through high-frequency (more than 20 kHz) acoustic vibrations. Aluminium alloy is widely used in electronics, automotive and aerospace. The mechanical vibrations used during ultrasonic metal welding are introduced horizontally. During ultrasonic metal welding, a complex process is triggered involving static forces, oscillating shearing forces and a moderate temperature increase in the welding area. As the energy is introduced to the weld zone, there are three important phenomena occurring which are surface effect, volume effect and thermal effect. As it is known, microstructure is directly linked to the mechanical properties including fatigue resistance, fatigue life and fracture strength. So the microstructure analysis is important to evaluate the ultrasonically welded aluminium alloy’s properties. Also, mechanical properties of metal sheets, such as plastic anisotropy and formability, can be improved by a proper crystallographic texture control. That means the texture has great influence on the plastic anisotropy of the final recrystallized sheets. Optical microscopy (OM) can be used for showing the grain size and grain shape. However, to examine the relationship between mechanical behaviour and microstructure of the weldment, optical microscopy(OM) is not sufficient. OM cannot delineate a grain structure in the weld zone. The etched surface exhibited granularity at the micron level, but it was not clear if that reflected the grain structure. Electron backscatter diffraction (EBSD) in an SEM has become the most widely used technique for determination of microtexture. In this research, high-resolution electron backscatter diffraction is used to study the effects of the vibration on the evolution of microstructure in AA6061. The orientation image maps (OIM), polar figures (PF), and orientation distribution functions (ODF) of the samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analysed to find the effect of ultrasonic vibration on the microstructure and texture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. The grain size of upper foil is much smaller than that of the lower foil. And ultrasonic vibration results in a very weak texture with some characteristic intensity of a rotated cube-orientation and the Brass-orientation and S-orientation. In the lower foil, there is no much influence of the ultrasonic vibration. So there is very strong cube orientation in the lower foil.展开更多
The influence of interlayer anions such as NO3-, 5042- and Cl- on Mg-AI hydrotalcites for Cr(Vl) removal from aqueous solution was studied. The structure of the prepared LDHs was characterized by XRD, SEM, FTIR, TGA...The influence of interlayer anions such as NO3-, 5042- and Cl- on Mg-AI hydrotalcites for Cr(Vl) removal from aqueous solution was studied. The structure of the prepared LDHs was characterized by XRD, SEM, FTIR, TGA, BET surface area and pHzpc. The sorbent ability and sorption mechanisms were also investigated. The LDHs exhibit high removal for Cr(VI), and the sorbed amount depends on the nature of interlayer anion, which decreased in the following order: NO3- 〉 Cl 〉 SO42-, Nitrate-containing LDH reached a Cr(VI) sorption equilibrium within only 30 min. The effects of operating conditions, including initial concentration, solution pH, agitation time and sorbent amount have been studied in batch mode. The optimum conditions were observed at an initial concen- tration of 100 mg. L- 1, pH = 6, agitation time of 60 min and a sorbent dose of 2 g.L- 1. The equilibrium data were fitted to the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The Langmuir model was found to sufficiently describe the sorption process, offering a maximum sorption capacity of 71.91 mg-g 1. The sorp- tion kinetic follows pseudo-second-order reaction with high accuracy. Thermodynamic parameters suggested that the sorption process is spontaneous and endothermic in nature.展开更多
The aim of this study is to report batch adsorption results of Cd (II) and Cr (VI) onto Algerian bentonite. The equilibrium adsorption process was achieved at about 120 min contact time. The kinetic and isotherms aspe...The aim of this study is to report batch adsorption results of Cd (II) and Cr (VI) onto Algerian bentonite. The equilibrium adsorption process was achieved at about 120 min contact time. The kinetic and isotherms aspects of Cr (VI) and Cd (II) adsorption were investigated by varying operation parameters such as pH (0.5 - 6), initial Cd (II) and Cr (VI) concentrations (50 - 200 mg/l) and temperature (293.15 K - 343.15 K). The optimum conditions obtained were: pH = 6.0 and 4.0 for Cd (II) and Cr (VI) respectively, initial concentrations of Cd (II) and Cr (VI) = 50 mg/L and T = 293.15 K. The kinetic of the adsorption process was studied by application of the most important kinetic models namely the pseudo-first order, the pseudo-second order and Elovich equations. The results showed that the pseudo-second order model fitted well the adsorption data of Cr (VI) whereas, and the Cd (II) adsorption data fitted best the Elovich equation. The equilibrium data fitted best the Langmuir isotherm, and the maximum adsorption capacity was determined through this model and was found to be 13.17 and 12.61 mg/g for Cd (II) and Cr (VI) respectively. The temperature had a reverse effect on the Cd (II) and Cr (VI) adsorption;our results showed that the removal efficiency increased to82.4% and 55.70% for Cd (II) and Cr (VI)when the temperature decreasedto 293.15 K.The negative figures of the Gibbs free energy ΔG°ads values range from -15.23 kJ/mol to -14.37 kJ/mol for Cd (II) and from -9.70 kJ/mol to -9.64 kJ/mol for Cr(VI) at 293.15 K to 343.15 K showed that the adsorption process is spontaneous and favourable. These results confirmed the ability of the low-cost Algerian natural bentonite to efficiently and competitively adsorb the two toxic elements investigated: cadmium (II) and chromium (VI).展开更多
Three-dimensional compressible flow simulationswere conducted to develop a Hyperloop pod. Thenovelty is the usage of Gamma transition model, in whichthe transition from laminar to turbulent flow can be predicted.First...Three-dimensional compressible flow simulationswere conducted to develop a Hyperloop pod. Thenovelty is the usage of Gamma transition model, in whichthe transition from laminar to turbulent flow can be predicted.First, a mesh dependency study was undertaken,showing second-order convergence with respect to themesh refinement. Second, an aerodynamic analysis for twodesigns, short and optimized, was conducted with thetraveling speed 125 m/s at the system pressure 0.15 bar.The concept of the short model was to delay the transitionto decrease the frictional drag;meanwhile that of theoptimized design was to minimize the pressure drag bydecreasing the frontal area and introduce the transitionmore toward the front of the pod. The computed resultsshow that the transition of the short model occurred moreon the rear side due to the pod shape, which resulted in 8%smaller frictional drag coefficient than that for the optimizedmodel. The pressure drag for the optimized designwas 24% smaller than that for the short design, half ofwhich is due to the decrease in the frontal area, and theother half is due to the smoothed rear-end shape. The totaldrag for the optimized model was 14% smaller than that forthe short model. Finally, the influence of the systempressure was investigated. As the system pressure and theReynolds number increase, the frictional drag coefficientincreases, and the transition point moves toward the front,which are the typical phenomena observed in the transitionregime.展开更多
This paper presents the method of monitoring of cracks formation based on analysis of light impulses that appear during the cracks formation. The light impulses appear simultaneously in the ultraviolet (UV) and near-i...This paper presents the method of monitoring of cracks formation based on analysis of light impulses that appear during the cracks formation. The light impulses appear simultaneously in the ultraviolet (UV) and near-infrared (NIR) wave-length ranges. However, during the plastic deformation, where the building of micro cracks with narrow width is dominant, the light appears frequently in the UV-wavelength range. With the cracks growth the width become wide-ranging and the spectrum of light shifts to the NIR-wavelength range. This spectral shift was used to estimate the stage of cracks formation as degree of damage. The fracture of tested material can be predicted based on estimated degree of damage.展开更多
In long-term rheological shear experiments with semi-solid alloys, coarsening of the particles will falsify the interpretation of the experimental results.The coarsening is intensified by the shear induced convection ...In long-term rheological shear experiments with semi-solid alloys, coarsening of the particles will falsify the interpretation of the experimental results.The coarsening is intensified by the shear induced convection and the mean size of the particles is changed significantly during the experiments.A simple model has been set up which takes the influence of the convection into account.The resulting growth law has been simplified for diffusion and convection dominated growth.The growth law was verified with shear experiments in a Searl-rheometer with A356 and tin-lead alloys.The experiments demonstrated that under convection the growth follows a linear time law and that the rate constant depends on the root of the shear rate.The correction of experimental results to gain the true viscosity function is demonstrated for a shear jump experiment with A356.展开更多
The effects of large strain and strain path reversal on the deformation microstructure evolution in austenite below the recrystallisation temperature were studied by hot torsion using a non-transforming Fe-30wt%Ni mod...The effects of large strain and strain path reversal on the deformation microstructure evolution in austenite below the recrystallisation temperature were studied by hot torsion using a non-transforming Fe-30wt%Ni model austenitic alloy.Results show that the high angle boundaries (HABs) can be generated by both microstructure mechanism through dislocation accumulation and texture mechanism via subgrain rotation.However,multiple strain path reversals lead to less well-developed HABs in the original grains compared to single reversal deformed to the same amount of total accumulative strain.This effect is attributed to the subgrain rotation mechanism being less effective at small strains.In comparison,the same hot torsion tests were conducted using a microalloyed steel at a temperature between Ae 3 and Ar 3.After single strain path reversal,substantial deformation-induced austenite-to-ferrite phase transformation was observed.Meanwhile,a test with multiple strain path reversals but with the same total strain produces much lower levels of strain-induced ferrite formation.This difference is correlated to the observations made in the Fe-30wt%Ni model alloy.It is believed that the different amount of strain-induced ferrite originated from the different levels of strain-induced HABs within the austenite which act as ferrite nucleation sites.展开更多
基金The research work has the Integrated EC Project been executed as a part of "Biotechnology for Metal Bearing Materials in Europe (BioMinE)". The authors thank the European Commission for the financial support of the work.
基金gratitude to Institute of Tropical Forestry and Forest Products(INTROP),Universiti Putra Malaysia for supporting the funding of research through Grant No:6369108funded by Researchers Supporting Project number(RSP-2021/117),King Saud University,Riyadh,Saudi Arabia.
文摘Polylactic acid(PLA)possesses good mechanical and biodegradability properties which make it a suitable material for polymer composites whereas brittleness and high costs limit its utilization in various applications.The reinforcement of natural fibres with biopolymers has been formed to be an efficient technique to develop composites having the ability to be fully biodegradable.This study concerns with the incorporation of various percentages of untreated and alkali-treated Coir Fibres(CF)and pineapple leaf fibres(PALF)in PLA biocomposites and characterizations of flexural,morphological and dynamic mechanical properties.Flexural properties showed that the treated C1P1 hybrid composites(C1P1A)displayed highest flexural strength(35.81 MPa)and modulus(5.28 GPa)among all hybrid biocomposites.Scanning Electron Microscopy(SEM)revealed a behaviour of fibre-matrix adhesion in untreated treated biocomposites.SEM observation revealed good dispersion of the fillers in PLA.Dynamic mechanical analysis revealed that C1P1A showed highest glass transition temperature(Tg)and storage modulus(E')while untreated C3P7 displayed the least Tg and E'.Overall findings showed that alkali-treated hybrid biocomposites(CF/PALF/PLA)especially C1P1A have improved flexural properties,dynamic and morphological properties over untreated biocomposites.Success of these findings will provide attracting consideration of these hybrid biocomposites for various lightweight uses in a broad selection of industrial applications such as biomedical sectors,automobile,construction,electronics equipment,and hardware tools.
文摘The focus of this research is a new type of particle extraction process for the transfer of magnetite nanoparticles from an aqueous to an immiscible organic phase, directly through the liquid-liquid phase boundary in a drop column. The particle extraction process comprises several advantages such as a minimum amount of stabilizing surfactant, no exposure of the particles to a gas atmosphere and with it the avoidance of sintering by capillary forces and a high particle concentration in the receiving phase as well. The study presents experimental results of the characterization of the process environment and the transfer behavior in a drop column. The solution of surfactant in the continuous phase has been investigated during a particle-free phase transfer experiment including the measurements of the total organic carbon (TOC) content and analysis of the size of the stabilized droplets using the laser diffraction spectroscopy. The determination of the transfer fluxes, the mass flows as well as the yield of transferred magnetite by ICP-OES measurements provide information on the impact of interaction of the elementary processes at the phase boundary. Furthermore, the transfer kinetics of the process is described and compared with calculated theoretical values resulting from a kinetic approach.
文摘Background:Internal tibial loading is influenced by modifiable factors with implications for the risk of stress injury.Runners encounter varied surface steepness(gradients)when running outdoors and may adapt their speed according to the gradient.This study aimed to quantify tibial bending moments and stress at the anterior and posterior peripheries when running at different speeds on surfaces of different gradients.Methods:Twenty recreational runners ran on a treadmill at 3 different speeds(2.5 m/s,3.0 m/s,and 3.5 m/s)and gradients(level:0%;uphill:+5%,+10%,and+15%;downhill:-5%,-10%,and-15%).Force and marker data were collected synchronously throughout.Bending moments were estimated at the distal third centroid of the tibia about the medial-lateral axis by ensuring static equilibrium at each 1%of stance.Stress was derived from bending moments at the anterior and posterior peripheries by modeling the tibia as a hollow ellipse.Two-way repeated-measures analysis of variance were conducted using both functional and discrete statistical analyses.Results:There were significant main effects for running speed and gradient on peak bending moments and peak anterior and posterior stress.Higher running speeds resulted in greater tibial loading.Running uphill at+10%and+15%resulted in greater tibial loading than level running.Running downhill at-10%and-15%resulted in reduced tibial loading compared to level running.There was no difference between+5%or-5%and level running.Conclusion:Running at faster speeds and uphill on gradients≥+10%increased internal tibial loading,whereas slower running and downhill running on gradients≥-10%reduced internal loading.Adapting running speed according to the gradient could be a protective mechanism,providing runners with a strategy to minimize the risk of tibial stress injuries.
文摘This study demonstrates that two-and three-dimensional spatially graded,truss-based polymeric-material metamaterials can be designed for beneficial impact mitigation and energy absorption capabilities.Through a combination of numerical and experimental techniques,we highlight the broad property space of periodic viscoelastic trusses,realized using 3D printing via selective laser sintering.Extending beyond periodic designs,we investigate the impact response of spatially variant viscoelastic lattices in both two and three dimensions.Our result reveal that introducing spatial variations in lattice topology allows for redirecting of the impact trajectory,opening new opportunities for engineering and tailoring lightweight materials with target impact functionality.This is achieved through the combined selection of base material and metamaterial design.
文摘Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah region of Togo. A two-year trial was conducted in a controlled environment at AREJ, an agro-ecological center in Cinkassé. The plant material was sorghum variety Sorvato 28. The experimental design was a Completely Randomized Block with three replications and three treatments as follows: T0 control plot (rainfed conditions);T1 (supplementary irrigation from flowering to grain filling stage) and T2 (supplementary irrigation from planting to grain filling stage). Two irrigation techniques (furrow and Californian system) were used under each watering treatment. The results showed that irrigation technique significantly affected panicle length with no effect on 1000 grains mass. Panicle length and grain yields varied from 15.59 to 25.71 cm and 0.0 to 2.06 t∙h−1, respectively, with the highest values (25.66 cm and 2.06 t∙h−1, respectively) under the T2 treatment with the California system-based supplementary irrigation. The comparison of results obtained on treatment T0 and T2, shows that supplementary irrigation increased the yields by at least 68.62%. Supplementary irrigation during sowing and growing season (T2) improved sorghum yields in the dry savannahs of Togo, with a better performance of the California irrigation system.
基金“Stiftung Rheinland-Pfalz fur Innovation,Mainz,Germany,”for financial support
文摘The velocity profiles and separation efficiency curves of a hydrocyclone were predicted by an Euler-Euler approach using a computational fluid dynamics tool ANSYS-CFX 14.5. The Euler-Euler approach is capable of considering the particle-particle interactions and is appropriate for highly laden liquid-solid mixtures. Pre- dicted results were compared and validated with experi- mental results and showed a considerably good agreement. An increase in the particle cut size with increasing solid concentration of the inlet mixture flow was observed and discussed. In addition to this, the erosion on hydrocyclone walls constructed from stainless steel 410, eroded by sand particles (mainly SiOz), was predicted with the Euler-La- grange approach. In this approach, the abrasive solid particles were traced in a Lagrangian reference frame as discrete particles. The increases in the input flow velocity, solid concentration, and the particle size have increased the erosion at the upper part of the cylindrical body of the hydrocyclone, where the tangential inlet flow enters the hydrocyclone. The erosion density in the area between the cylindrical to conical body area, in comparison to other parts of the hydrocyclone, also increased considerably. Moreover, it was observed that an increase in the particle shape factor from 0.1 to 1.0 leads to a decrease of almost 70 % in the average erosion density of the hydrocyclone wall surfaces.
文摘This paper reviews rare earth minerals(monazite and xenotime) separation by flotation. A wide range of monazite and xenotime flotation test results are summarized including: reasons of variation in the point of zero charges on these minerals, the effects of various flotation conditions on zeta potential of monazite and xenotime, interactions of collectors and depressants on the surface of these minerals during flotation separation, relationship between surface chemistry of the minerals and different types of collector adsorptions and effects of the conditioning temperature on flotation of rare earth minerals. This review collects various approaches for the selective separation of monazite and xenotime by flotation and gives perspectives for further research in the future.
文摘Ultrasonic welding can be used to join plastic and metal through high-frequency (more than 20 kHz) acoustic vibrations. Aluminium alloy is widely used in electronics, automotive and aerospace. The mechanical vibrations used during ultrasonic metal welding are introduced horizontally. During ultrasonic metal welding, a complex process is triggered involving static forces, oscillating shearing forces and a moderate temperature increase in the welding area. As the energy is introduced to the weld zone, there are three important phenomena occurring which are surface effect, volume effect and thermal effect. As it is known, microstructure is directly linked to the mechanical properties including fatigue resistance, fatigue life and fracture strength. So the microstructure analysis is important to evaluate the ultrasonically welded aluminium alloy’s properties. Also, mechanical properties of metal sheets, such as plastic anisotropy and formability, can be improved by a proper crystallographic texture control. That means the texture has great influence on the plastic anisotropy of the final recrystallized sheets. Optical microscopy (OM) can be used for showing the grain size and grain shape. However, to examine the relationship between mechanical behaviour and microstructure of the weldment, optical microscopy(OM) is not sufficient. OM cannot delineate a grain structure in the weld zone. The etched surface exhibited granularity at the micron level, but it was not clear if that reflected the grain structure. Electron backscatter diffraction (EBSD) in an SEM has become the most widely used technique for determination of microtexture. In this research, high-resolution electron backscatter diffraction is used to study the effects of the vibration on the evolution of microstructure in AA6061. The orientation image maps (OIM), polar figures (PF), and orientation distribution functions (ODF) of the samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analysed to find the effect of ultrasonic vibration on the microstructure and texture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. The grain size of upper foil is much smaller than that of the lower foil. And ultrasonic vibration results in a very weak texture with some characteristic intensity of a rotated cube-orientation and the Brass-orientation and S-orientation. In the lower foil, there is no much influence of the ultrasonic vibration. So there is very strong cube orientation in the lower foil.
基金financially supported by both the department of Process Engineering and Chemistry of USTHB(Algiers)
文摘The influence of interlayer anions such as NO3-, 5042- and Cl- on Mg-AI hydrotalcites for Cr(Vl) removal from aqueous solution was studied. The structure of the prepared LDHs was characterized by XRD, SEM, FTIR, TGA, BET surface area and pHzpc. The sorbent ability and sorption mechanisms were also investigated. The LDHs exhibit high removal for Cr(VI), and the sorbed amount depends on the nature of interlayer anion, which decreased in the following order: NO3- 〉 Cl 〉 SO42-, Nitrate-containing LDH reached a Cr(VI) sorption equilibrium within only 30 min. The effects of operating conditions, including initial concentration, solution pH, agitation time and sorbent amount have been studied in batch mode. The optimum conditions were observed at an initial concen- tration of 100 mg. L- 1, pH = 6, agitation time of 60 min and a sorbent dose of 2 g.L- 1. The equilibrium data were fitted to the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The Langmuir model was found to sufficiently describe the sorption process, offering a maximum sorption capacity of 71.91 mg-g 1. The sorp- tion kinetic follows pseudo-second-order reaction with high accuracy. Thermodynamic parameters suggested that the sorption process is spontaneous and endothermic in nature.
文摘The aim of this study is to report batch adsorption results of Cd (II) and Cr (VI) onto Algerian bentonite. The equilibrium adsorption process was achieved at about 120 min contact time. The kinetic and isotherms aspects of Cr (VI) and Cd (II) adsorption were investigated by varying operation parameters such as pH (0.5 - 6), initial Cd (II) and Cr (VI) concentrations (50 - 200 mg/l) and temperature (293.15 K - 343.15 K). The optimum conditions obtained were: pH = 6.0 and 4.0 for Cd (II) and Cr (VI) respectively, initial concentrations of Cd (II) and Cr (VI) = 50 mg/L and T = 293.15 K. The kinetic of the adsorption process was studied by application of the most important kinetic models namely the pseudo-first order, the pseudo-second order and Elovich equations. The results showed that the pseudo-second order model fitted well the adsorption data of Cr (VI) whereas, and the Cd (II) adsorption data fitted best the Elovich equation. The equilibrium data fitted best the Langmuir isotherm, and the maximum adsorption capacity was determined through this model and was found to be 13.17 and 12.61 mg/g for Cd (II) and Cr (VI) respectively. The temperature had a reverse effect on the Cd (II) and Cr (VI) adsorption;our results showed that the removal efficiency increased to82.4% and 55.70% for Cd (II) and Cr (VI)when the temperature decreasedto 293.15 K.The negative figures of the Gibbs free energy ΔG°ads values range from -15.23 kJ/mol to -14.37 kJ/mol for Cd (II) and from -9.70 kJ/mol to -9.64 kJ/mol for Cr(VI) at 293.15 K to 343.15 K showed that the adsorption process is spontaneous and favourable. These results confirmed the ability of the low-cost Algerian natural bentonite to efficiently and competitively adsorb the two toxic elements investigated: cadmium (II) and chromium (VI).
基金The authors acknowledge all the members of the Swissloop Team for their great endeavor to compete in the Hyperloop pod Competition and to push the Hyperloop technology forward.The authors gratefully acknowledge Connova AG for their support in manufacturing of the pod.
文摘Three-dimensional compressible flow simulationswere conducted to develop a Hyperloop pod. Thenovelty is the usage of Gamma transition model, in whichthe transition from laminar to turbulent flow can be predicted.First, a mesh dependency study was undertaken,showing second-order convergence with respect to themesh refinement. Second, an aerodynamic analysis for twodesigns, short and optimized, was conducted with thetraveling speed 125 m/s at the system pressure 0.15 bar.The concept of the short model was to delay the transitionto decrease the frictional drag;meanwhile that of theoptimized design was to minimize the pressure drag bydecreasing the frontal area and introduce the transitionmore toward the front of the pod. The computed resultsshow that the transition of the short model occurred moreon the rear side due to the pod shape, which resulted in 8%smaller frictional drag coefficient than that for the optimizedmodel. The pressure drag for the optimized designwas 24% smaller than that for the short design, half ofwhich is due to the decrease in the frontal area, and theother half is due to the smoothed rear-end shape. The totaldrag for the optimized model was 14% smaller than that forthe short model. Finally, the influence of the systempressure was investigated. As the system pressure and theReynolds number increase, the frictional drag coefficientincreases, and the transition point moves toward the front,which are the typical phenomena observed in the transitionregime.
基金This work is carried out in the framework of the DFG priority program:Partikel im Kontakt-Mikromechanik,Mikroprozessdynamik und Partikelkollektive(SPP 1486).Project:AM 336/1-2.
文摘This paper presents the method of monitoring of cracks formation based on analysis of light impulses that appear during the cracks formation. The light impulses appear simultaneously in the ultraviolet (UV) and near-infrared (NIR) wave-length ranges. However, during the plastic deformation, where the building of micro cracks with narrow width is dominant, the light appears frequently in the UV-wavelength range. With the cracks growth the width become wide-ranging and the spectrum of light shifts to the NIR-wavelength range. This spectral shift was used to estimate the stage of cracks formation as degree of damage. The fracture of tested material can be predicted based on estimated degree of damage.
文摘In long-term rheological shear experiments with semi-solid alloys, coarsening of the particles will falsify the interpretation of the experimental results.The coarsening is intensified by the shear induced convection and the mean size of the particles is changed significantly during the experiments.A simple model has been set up which takes the influence of the convection into account.The resulting growth law has been simplified for diffusion and convection dominated growth.The growth law was verified with shear experiments in a Searl-rheometer with A356 and tin-lead alloys.The experiments demonstrated that under convection the growth follows a linear time law and that the rate constant depends on the root of the shear rate.The correction of experimental results to gain the true viscosity function is demonstrated for a shear jump experiment with A356.
文摘The effects of large strain and strain path reversal on the deformation microstructure evolution in austenite below the recrystallisation temperature were studied by hot torsion using a non-transforming Fe-30wt%Ni model austenitic alloy.Results show that the high angle boundaries (HABs) can be generated by both microstructure mechanism through dislocation accumulation and texture mechanism via subgrain rotation.However,multiple strain path reversals lead to less well-developed HABs in the original grains compared to single reversal deformed to the same amount of total accumulative strain.This effect is attributed to the subgrain rotation mechanism being less effective at small strains.In comparison,the same hot torsion tests were conducted using a microalloyed steel at a temperature between Ae 3 and Ar 3.After single strain path reversal,substantial deformation-induced austenite-to-ferrite phase transformation was observed.Meanwhile,a test with multiple strain path reversals but with the same total strain produces much lower levels of strain-induced ferrite formation.This difference is correlated to the observations made in the Fe-30wt%Ni model alloy.It is believed that the different amount of strain-induced ferrite originated from the different levels of strain-induced HABs within the austenite which act as ferrite nucleation sites.