期刊文献+
共找到23,844篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
1
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 Multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
A Novel Approach Based on Recuperated Seed Search Optimization for Solving Mechanical Engineering Design Problems
2
作者 Sumika Chauhan Govind Vashishtha +1 位作者 Riya Singh Divesh Bharti 《Computer Modeling in Engineering & Sciences》 2025年第7期309-343,共35页
This paper introduces a novel optimization approach called Recuperated Seed Search Optimization(RSSO),designed to address challenges in solving mechanical engineering design problems.Many optimization techniques strug... This paper introduces a novel optimization approach called Recuperated Seed Search Optimization(RSSO),designed to address challenges in solving mechanical engineering design problems.Many optimization techniques struggle with slow convergence and suboptimal solutions due to complex,nonlinear natures.The Sperm Swarm Optimization(SSO)algorithm,which mimics the sperm’s movement to reach an egg,is one such technique.To improve SSO,researchers combined it with three strategies:opposition-based learning(OBL),Cauchy mutation(CM),and position clamping.OBL introduces diversity to SSO by exploring opposite solutions,speeding up convergence.CM enhances both exploration and exploitation capabilities throughout the optimization process.This combined approach,RSSO,has been rigorously tested on standard benchmark functions,real-world engineering problems,and through statistical analysis(Wilcoxon test).The results demonstrate that RSSO significantly outperforms other optimization algorithms,achieving faster convergence and better solutions.The paper details the RSSO algorithm,discusses its implementation,and presents comparative results that validate its effectiveness in solving complex engineering design challenges. 展开更多
关键词 Local search Cauchy mutation opposition-based learning EXPLORATION EXPLOITATION
在线阅读 下载PDF
Foundation of Graduate Study in Mechanical EngineeringmAdvanced Dynamics
3
作者 Shuh Jing Ying 《Journal of Energy and Power Engineering》 2016年第4期231-236,共6页
Dynamics is the foundation of undergraduate study in mechanical engineering. If you are good in dynamics, you will be good on all other courses. Advanced dynamics is the foundation for graduate study. The author taugh... Dynamics is the foundation of undergraduate study in mechanical engineering. If you are good in dynamics, you will be good on all other courses. Advanced dynamics is the foundation for graduate study. The author taught advanced dynamics for more than ten years, this is the author's observation. Why it is so? Because the course of advanced dynamics covers usually many mathematical fundamentals such as vectors, tensors, matrices and rotation operators; principles and applications in dynamics from particle dynamics to rigid body motion, from small oscillation to vibration of systems with multiple degrees of freedom, the author's course covers also special relativity theory. They are very innovative. And they set the foundation for the study of all the graduate courses. Science is always in progress, dynamics is in the same form. Just say a few examples to illustrate the frontier of dynamics: missile shooting missile is important in our defense, the author covered this as an example in particle dynamics. Space ship travels from Earth to Mars is another example. Several rotational motions with different axes can be combined to one through the use of rotation operator. This is important because it usually can save time. All these examples will be included in this paper in some details. 展开更多
关键词 Advanced dynamics graduate study mechanical engineering.
在线阅读 下载PDF
DYNAMIC STABILITY OF SPINDLE BLADE IN RING SPINNING Zhou Bingrong(Department of Mechanical Engineering)
4
作者 周炳荣 《Journal of Donghua University(English Edition)》 EI CAS 1989年第Z1期55-61,共7页
It is discussed that a tangential force T induces a self-excited vibration in the motion ofspindle blades of a ring spinning frame.Depending on the relative magnitude of the tangentialforce compared with the tangentia... It is discussed that a tangential force T induces a self-excited vibration in the motion ofspindle blades of a ring spinning frame.Depending on the relative magnitude of the tangentialforce compared with the tangential damping force the motion of blade is either stable orunstable.The chief factors causing the self-excited vibration can also be traced from the charac-ter of the experimental locus. 展开更多
关键词 dynamic stability ring SPINNING SPINDLES vibration self EXCITATION stablity theory of motion
在线阅读 下载PDF
Mechanical and Permeability Properties of Radial-Gradient Bone Scaffolds Developed by Voronoi Tessellation for Bone Tissue Engineering 被引量:2
5
作者 XU Qingyu HAI Jizhe +1 位作者 SHAN Chunlong LI Haijie 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期433-445,共13页
Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recen... Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recent years.However,studies on the radial-gradient design of irregular bionic scaffolds are limited.Therefore,this study aims to develop a radial-gradient structure similar to that of natural long bones,enhancing the development of bionic bone scaffolds.A novel gradient method was adopted to maintain constant porosity,control the seed site-specific distribution within the irregular porous structure,and vary the strut diameter to generate radial gradients.The irregular scaffolds were compared with four conventional scaffolds(cube,pillar BCC,vintiles,and diamond)in terms of permeability,stress concentration characteristics,and mechanical properties.The results indicate that the radial-gradient irregular porous structure boasts the widest permeability range and superior stress distribution compared to conventional scaffolds.With an elastic modulus ranging from 4.20 GPa to 22.96 GPa and a yield strength between 68.37 MPa and 149.40 MPa,it meets bone implant performance requirements and demonstrates significant application potential. 展开更多
关键词 Voronoi tessellation radial-gradient structure PERMEABILITY mechanical properties
原文传递
Information mining and mechanical analysis of new-generation aero-engine turbine discs with industrial computed laminography reverse engineering
6
作者 Yenan GAO 《Chinese Journal of Aeronautics》 2025年第4期361-377,共17页
Aero engines are key power components that provide thrust for the aircraft.The cerme turbine disc allows the new-generation domestic fighter aircraft to increase the overall thrust of the aero engine.Quantifying coati... Aero engines are key power components that provide thrust for the aircraft.The cerme turbine disc allows the new-generation domestic fighter aircraft to increase the overall thrust of the aero engine.Quantifying coatings and analyzing the stress on the teeth play critical roles in improving the turbine disc’s performance,which are two issues must be solved urgently.First,this work pro poses a quantitative analysis algorithm to conduct the Three-Dimensional(3D)distribution informa tion mining of the extracted coatings.Then,it proposes an Industrial Computed Laminography(ICL)reconstruction algorithm for non-destructively reconstructing the turbine disc’s high-quality3D morphological actual feature.Finally,a Finite Element Analysis(FEA)under the ultimate thrus is conducted on ICL reconstruction to verify the working status of the new-generation aero-engine turbine disc.The results show that the proposed quantitative analysis algorithm digitizes the aggre gated conditions of the coating with a statistically normalized Z_(1)value of–2.15 and a confidence leve higher than 95%.Three image-quality quantitative indicators:Peak Signal-to-Noise Ratio(PSNR)Structural Similarity Index Measure(SSIM),and Normalized Mean Square Distance(NMSD)of the proposed ICL reconstruction algorithm on turbine disc laminographic image are 26.45,0.88,and 0.73respectively,which are better than other algorithms.The mechanical analysis of ICL more realisti cally reflects the stress and deformation than that of 3D modeling.This work provides new ideas for the iterative research of new-generation aero-engine turbine discs. 展开更多
关键词 Aero engines Quantitative analysis algorithm Information mining Industrial computed laminography reconstruction algorithm Finite element analysis
原文传递
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
7
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
The Application of Mechatronics Technology in Mechanical Engineering and Its Developing Direction
8
作者 Youwei Zhang 《International Journal of Technology Management》 2013年第3期8-10,共3页
The development of modern science and technology has promoted the overlapping and mutual penetration among different disciplines, which led to the technological innovations in the field of mechanical engineering. The ... The development of modern science and technology has promoted the overlapping and mutual penetration among different disciplines, which led to the technological innovations in the field of mechanical engineering. The mechatronics technology conforms to the law of development of science and technology in today, and combines the mechanical technology and electronic technology together to integrate the logistics, energy flow and information flow. This paper briefly describes the concept of mechatronics and the elements of mechatronics technology, and elaborates on the application of mechatronics technology in three different areas of the Machinery Industry in the form of living examples, finally introduces the future developing direction of mechatronics technology. 展开更多
关键词 MECHATRONICS TECHNOLOGY Mechanical Engineering Application Development
在线阅读 下载PDF
Reduced graphene oxide-grafted bovine serum albumin/bredigite nanocomposites with high mechanical properties and excellent osteogenic bioactivity for bone tissue engineering 被引量:1
9
作者 Esfandyar Askari Mohammad Rasouli +3 位作者 Seyedeh F.Darghiasi Seyed M.Naghib Yasser Zare Kyong Y.Rhee 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第2期243-257,共15页
The optimization of the scaffolds to provide a suitable matrix and accelerate the regeneration process is vital for bone tissue engineering.However,poor mechanical and biological characteristics remain the primary cha... The optimization of the scaffolds to provide a suitable matrix and accelerate the regeneration process is vital for bone tissue engineering.However,poor mechanical and biological characteristics remain the primary challenges that must be addressed.For example,although bredigite(Br)has shown great potential for application in bone tissue engineering,it easily fails in replacement.In the present work,these challenges are addressed by reinforcing the Br matrix with nanosheets of graphene oxide(rGO)that have been reduced by bovine serum albumin(BSA)in order to enhance the mechanical properties and biological behavior.The reduction of graphene oxide by BSA improves the water stability of the nanosheets and provides an electrostatic interaction between theBSA-rGO nanosheets and theBr particles.The high thermal conductivity of theBSA-rGO nanosheets decreases the porosity of the Br by transferring heat to the core of the tablet.Furthermore,the addition of BSA-rGO nanosheets into the Br matrix enhances the adhesion of G-292 cells on the surface of the tablets.These findings suggest that the tablet consisting of BSA-rGO-reinforced Br has encouraging potential for application in bone tissue engineering. 展开更多
关键词 Bovine serum albumin(BSA) Reduced graphene oxide(rGO) Bredigite Mechanical properties Bone tissue engineering
暂未订购
Interfacial Structure and Mechanical Properties of Diamond/Copper Joint Brazed by Ag-Cu-In-Ti Low-Temperature Brazing Filler 被引量:2
10
作者 Pan Yufan Liang Jiabin +10 位作者 Nie Jialong Liu Xin Sun Huawei Chang Yunfeng Li Huaxin Lu Chuanyang Xu Dong Wang Xingxing Yang Yang Yang Jianguo He Yanming 《稀有金属材料与工程》 北大核心 2025年第2期301-310,共10页
Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In ad... Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In addition,the joint formation mechanism was discussed,and the correlation between joint microstructure and mechanical performance was established.Results show that adding appropriate amount of In into the filler can significantly reduce the filler melting point and enhance the wettability of filler on diamond.When the brazing temperature is 750°C and the soaking time is 10 min,a uniformly dense braze seam with excellent metallurgical bonding can be obtained,and its average joint shear strength reaches 322 MPa.The lower brazing temperature can mitigate the risk of diamond graphitization and also reduce the residual stresses during joining. 展开更多
关键词 diamond microwave window vacuum brazing Ag-Cu-In-Ti microstructure mechanical properties
原文传递
Assessing Mechanical Properties of Natural Fibre Reinforced Composites for Engineering Applications
11
作者 O. D. Samuel S. Agbo T. A. Adekanye 《Journal of Minerals and Materials Characterization and Engineering》 2012年第8期780-784,共5页
Mechanical properties of ukam, banana, sisal, coconut, hemp and e-glass fibre reinforced laminates were evaluated to assess the possibility of using it as new material in engineering applications. Samples were fabrica... Mechanical properties of ukam, banana, sisal, coconut, hemp and e-glass fibre reinforced laminates were evaluated to assess the possibility of using it as new material in engineering applications. Samples were fabricated by the hand lay-up process (30:70 fibre and matrix ratio by weight) and the properties evaluated using the INSTRON material testing system. The mechanical properties were tested and showed that glass laminate has the maximum tensile strength of 63 MPa, bending strength of 0.5 MPa, compressive strength of 37.75 MPa and the impact strength of 17.82 J/m2. The ukam plant fibre laminate has the maximum tensile strength of 16.25 MPa and the impact strength of 9.8J/m among the natural fibres;the sisal laminate has the maximum compressive strength of 42 MPa and maximum bending strength of 0.0036 MPa among the natural fibres. Results indicated that natural fibres are of interest for low-cost engineering applications and can compete with artificial glass fibres (E-glass fibre) when a high stiffness per unit weight is desirable. Results also indicated that future research towards significant improvements in tensile and impact strength of these types of composites should focus on the optimisation of fibre strength rather than interfacial bond strength. 展开更多
关键词 REINFORCED LAMINATES HAND LAY-UP Method E-GLASS FIBRE REINFORCED Natural FIBRE
暂未订购
Development of an In-Situ Composite Doped Coating for Corrosion Protection and Mechanical Properties Enhancements in Process Engineering
12
作者 Oluwasegun T. Joshua Ojo S. I. Fayomi Enejoh T. Omeje 《Journal of Minerals and Materials Characterization and Engineering》 2019年第4期171-179,共9页
Process engineering has been seen as one of the vital tools for improving surface coating phenomena for advance application. In an attempt to improve the mechanical, physical and chemical performance of the steel stru... Process engineering has been seen as one of the vital tools for improving surface coating phenomena for advance application. In an attempt to improve the mechanical, physical and chemical performance of the steel structure for ex-tended application, Zn-CeO2/ZnCeO2-Al2SiO5 thin film composite was fabri-cated on mild steel using direct electrolytic route. Process variation of Al2SiO5 particulate ranges from 5 to 15 g per litre. The embedded coating was charac-terized using Scanning electron microscope (SEM). The chemical effect of the developed alloy was characterized through linear potentiodynamic polarization experiment and the performances of samples were examined in simulated 3.5% sodium chloride. The microhardness verification study proves that there is sig-nificant improvement in hardness trend. The tribological assessment indicated that there is less plastic deformation as a result of the counter body. In all, Zn-CeO2/Zn-CeO2-Al2SiO5 exhibits good stability, with agglomeration and great built up of crystal at the interface. 展开更多
关键词 COATING MILD Steel Corrosion HARDNESS
暂未订购
Intelligent marine waterborne epoxy coating based on functionalized multiscale nanocomposite:Mechanical enhancement,self-reporting,and active/passive anti-corrosion 被引量:3
13
作者 Hao Li Xian-Ze Meng +6 位作者 Hao-Jie Yan Run-Chao Zheng Hui-Song Hu Bing Lei Qin-Hao Zhang Lian-Kui Wu Fa-He Cao 《Journal of Materials Science & Technology》 2025年第18期68-83,共16页
Corrosion activities and related accidents are significant issues for marine facilities,leading to considerable economic losses.Waterborne epoxy(EP)coating has been seen as one of the optimal options for corrosion pro... Corrosion activities and related accidents are significant issues for marine facilities,leading to considerable economic losses.Waterborne epoxy(EP)coating has been seen as one of the optimal options for corrosion protection due to its stable properties and eco-friendliness(0 g/L volatile organic compounds).Nevertheless,several intrinsic deficiencies require improvement,such as fragile mechanical properties and defects(macro and micro),resulting in the continuous deterioration of comprehensive coating performances.In this work,a novel nanocomposite coating with mechanical enhancement,intelligent self-reporting,and active protection is fabricated by integrating the functionalized and compatible graphene oxide/cerium based metal-organic framework multiscale structure(GO-CeMOF-P/M).Notably,the homogenous dispersion of GO-CeMOF-P/M and its chemical interaction with the polymer matrix effectively reduces the defects resulting from solution volatilizing and enhances the compactness,which boosts the tensile strength(32.1 MPa/8.5%)and dry adhesion force(5.8 MPa)of the coating.Additionally,the controllable responsiveness and release of multiscale nanocomposite within external environments endow intelligent active protection and self-reporting characteristics for the GO-CeMOF-P/M-EP coating,making it especially suitable for a variety of practical marine applications.Furthermore,following immersion of 80 d in the aggressive environment,Zf=0.01 Hz value of GO-CeMOF-P/M-EP coating is 1.2×10^(10)Ωcm^(2),which is 164.4 times larger than that of EP coating(7.3×10^(7)Ωcm^(2)),demonstrating remarkably strengthened anti-corrosion ability.Consequently,by offering an intriguing design strategy,the current work anticipates addressing the inherent deficiencies of EP coating and facilitating its practicality and feasibility in real sea environments. 展开更多
关键词 Intelligent coating Graphene oxide Metal-organic framework Active protection ANTI-CORROSION
原文传递
Effects of residual elements on the microstructure and mechanical properties of a Q&P steel 被引量:2
14
作者 Qing Zhu Junheng Gao +10 位作者 Haitao Zhao Dikai Guan Yunfei Zhang Yuhe Huang Shuai Li Wei Yang Kai Wang Shuize Wang Honghui Wu Chaolei Zhang Xinping Mao 《Journal of Materials Science & Technology》 2025年第18期143-154,共12页
Producing steel requires large amounts of energy to convert iron ores into steel,which often comes from fossil fuels,leading to carbon emissions and other pollutants.Increasing scrap usage emerges as one of the most e... Producing steel requires large amounts of energy to convert iron ores into steel,which often comes from fossil fuels,leading to carbon emissions and other pollutants.Increasing scrap usage emerges as one of the most effective strategies for addressing these issues.However,typical residual elements(Cu,As,Sn,Sb,Bi,etc.)inherited from scrap could significantly influence the mechanical properties of steel.In this work,we investigate the effects of residual elements on the microstructure evolution and mechanical properties of a quenching and partitioning(Q&P)steel by comparing a commercial QP1180 steel(referred to as QP)to the one containing typical residual elements(Cu+As+Sn+Sb+Bi<0.3wt%)(referred to as QP-R).The results demonstrate that in comparison with the QP steel,the residual elements significantly refine the prior austenite grain(9.7μm vs.14.6μm)due to their strong solute drag effect,leading to a higher volume fraction(13.0%vs.11.8%),a smaller size(473 nm vs.790 nm)and a higher average carbon content(1.26 wt%vs.0.99 wt%)of retained austenite in the QP-R steel.As a result,the QP-R steel exhibits a sustained transformation-induced plasticity(TRIP)effect,leading to an enhanced strain hardening effect and a simultaneous improvement of strength and ductility.Grain boundary segregation of residual elements was not observed at prior austenite grain boundaries in the QP-R steel,primarily due to continuous interface migration during austenitization.This study demonstrates that the residual elements with concentrations comparable to that in scrap result in significant microstructural refinement,causing retained austenite with relatively higher stability and thus offering promising mechanical properties and potential applications. 展开更多
关键词 Residual elements Q&P steel Retained austenite Strain-hardening rate
原文传递
Electromechanical coupling vibration characteristics of high-speed train transmission system considering gear eccentricity and running resistance 被引量:1
15
作者 Yeping Yuan Junguo Wang 《Acta Mechanica Sinica》 2025年第5期219-241,共23页
The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and run... The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states. 展开更多
关键词 Gear eccentricity Electromechanical coupling Running resistance System stability Vibration characteristics
原文传递
Collaborative enhancement of thermal diffusivities and mechanical properties of C_(sf)-Cu/Mg composites via introducing Cu coating with different thicknesses 被引量:1
16
作者 Yuan Ma Lingjun Guo +3 位作者 Jiancheng Wang Baolin Chen Lehua Qi Hejun Li 《Journal of Magnesium and Alloys》 2025年第1期229-242,共14页
Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excell... Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excellent mechanical properties,and heat dissipation.However,the different characteristics of C_(sf)and Mg alloy make the interface a critical issue affecting the synergistic improvement of thermal and mechanical properties of the composites.Here,Cu coating with different thicknesses is introduced to modify the C_(sf)/Mg interface,so as to simultaneously enhance the thermal and mechanical performances,which can combine the advantages of coating modification and matrix alloying.Results reveal that thermal diffusivity(TD)of 3-C_(sf)-Cu/Mg composites is as high as 22.12 mm^(2)/s and an enhancement of 52.97%is achieved compared with C_(sf)/Mg composites,as well as 16.3%enhancement of ultimate compressive strength(UCS)in the longitudinal direction,8.84%improvement of UCS in the transverse direction,and 53.08%increasement of ultimate tensile strength(UTS).Such improvement can be ascribed to the formation of intermetallic compounds.The formation of intermetallic compounds can not only effectively alleviate the lattice distortion of the matrix and decrease interfacial thermal resistance,but also bear the loads.Our work is of great significance for designing C_(sf)/Mg composites with integrated structure and function. 展开更多
关键词 Magnesium matrix composites Cu coating thickness Intermetallic compounds Thermal performances Mechanical properties
在线阅读 下载PDF
Ferroelectric domain engineering of Lithium niobate 被引量:1
17
作者 Jackson J.Chakkoria Aditya Dubey +1 位作者 Arnan Mitchell Andreas Boes 《Opto-Electronic Advances》 2025年第2期46-79,共34页
Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properti... Lithium niobate(LN)has remained at the forefront of academic research and industrial applications due to its rich material properties,which include second-order nonlinear optic,electro-optic,and piezoelectric properties.A further aspect of LN’s versatility stems from the ability to engineer ferroelectric domains with micro and even nano-scale precision in LN,which provides an additional degree of freedom to design acoustic and optical devices with improved performance and is only possible in a handful of other materials.In this review paper,we provide an overview of the domain engineering techniques developed for LN,their principles,and the typical domain size and pattern uniformity they provide,which is important for devices that require high-resolution domain patterns with good reproducibility.It also highlights each technique's benefits,limitations,and adaptability for an application,along with possible improvements and future advancement prospects.Further,the review provides a brief overview of domain visualization methods,which is crucial to gain insights into domain quality/shape and explores the adaptability of the proposed domain engineering methodologies for the emerging thin-film lithium niobate on an insulator platform,which creates opportunities for developing the next generation of compact and scalable photonic integrated circuits and high frequency acoustic devices. 展开更多
关键词 lithium niobate FERROELECTRIC domain engineering lithium niobate on insulator domain visualization periodic poling quasi-phase matching acoustic
在线阅读 下载PDF
Coupled thermo-hydro-mechanical analysis of porous rocks:Candidate of surrounding rocks for deep geological repositories 被引量:1
18
作者 Tao Meng Zaobao Liu +6 位作者 Fengbiao Wu Zhijiang Zhang Xufeng Liang Yi He Xiaomeng Wu Yizhang Yang Haoran Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3073-3092,共20页
Deep geological sequestration is widely recognized as a reliable method for nuclear waste management,with expanded applications in thermal energy storage and adiabatic compressed air energy storage systems.This study ... Deep geological sequestration is widely recognized as a reliable method for nuclear waste management,with expanded applications in thermal energy storage and adiabatic compressed air energy storage systems.This study evaluated the suitability of granite,basalt,and marble as reservoir rocks capable of withstanding extreme high-temperature and high-pressure conditions.Using a custom-designed triaxial testing apparatus for thermal-hydro-mechanical(THM)coupling,we subjected rock samples to temperatures ranging from 20℃to 800℃,triaxial stresses up to 25 MPa,and seepage pressures of 0.6 MPa.After THM treatment,the specimens were analyzed using a Real-Time Load-Synchronized Micro-Computed Tomography(MCT)Scanner under a triaxial stress of 25 MPa,allowing for high-resolution insights into pore and fissure responses.Our findings revealed distinct thermal stability profiles and microscopic parameter changes across three phasesdslow growth,slow decline,and rapid growthdwith critical temperature thresholds observed at 500℃for granite,600℃for basalt,and 300℃for marble.Basalt showed minimal porosity changes,increasing gradually from 3.83%at 20℃to 12.45%at 800℃,indicating high structural integrity and resilience under extreme THM conditions.Granite shows significant increases in porosity due to thermally induced microcracking,while marble rapidly deteriorated beyond 300℃due to carbonate decomposition.Consequently,basalt,with its minimal porosity variability,high thermal stability,and robust mechanical properties,emerges as an optimal candidate for nuclear waste repositories and other high-temperature geological engineering applications,offering enhanced reliability,structural stability,and long-term safety in such settings. 展开更多
关键词 Deep geological repository Coupled thermal-hydro-mechanical environment Pore structure Microcomputer tomography 3D reconstruction
在线阅读 下载PDF
Laser shock processing of titanium alloys:A critical review on the microstructure evolution and enhanced engineering performance 被引量:2
19
作者 Qian Liu Shuangjie Chu +6 位作者 Xing Zhang Yuqian Wang Haiyan Zhao Bohao Zhou Hao Wang Genbin Wu Bo Mao 《Journal of Materials Science & Technology》 2025年第6期262-291,共30页
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ... Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends. 展开更多
关键词 Laser shock peening Titanium alloys Microstructure evolution Mechanical properties
原文传递
Comparative study of dynamic recrystallization behavior,microstructural characteristics,and mechanical properties of high-speed-extruded AZ31 and BA56 magnesium alloys 被引量:1
20
作者 Gun Woong An Sang-Cheol Jin +2 位作者 Taekyung Lee Sumi Jo Sung Hyuk Park 《Journal of Magnesium and Alloys》 2025年第7期3004-3019,共16页
This study compares the microstructural evolution,dynamic recrystallization(DRX)behavior,tensile properties,and age-hardenability between the newly developed high-speed-extrudable BA56 alloy and those of the widely re... This study compares the microstructural evolution,dynamic recrystallization(DRX)behavior,tensile properties,and age-hardenability between the newly developed high-speed-extrudable BA56 alloy and those of the widely recognized AZ31 alloy in industry.Unlike the AZ31 alloy,which retains partially unrecrystallized grains,the high-speed-extruded BA56 alloy demonstrates a coarser but entirely recrystallized and more homogeneous microstructure.The fine-grained structure and abundant Mg_(3)Bi_(2) particles in the BA56 extrusion billet significantly enhance its DRX behavior,thus enabling rapid and complete recrystallization during extrusion.The BA56 alloy contains band-like fragmented Mg_(3)Bi_(2) particles and numerous fine Mg_(3)Bi_(2) particles distributed throughout the material,in contrast to the sparse Al_(8)Mn_(5) particles in the AZ31 alloy.These features contribute to superior mechanical properties of the BA56 alloy,which achieves tensile yield and ultimate tensile strengths of 205 and 292 MPa,respectively,compared to 196 and 270 MPa for the AZ31 alloy.The superior strength of the BA56 alloy,even with its coarser grain size,can be explained by its elevated Hall-Petch constant and the strengthening contribution from the fine Mg_(3)Bi_(2) particles.Additionally,the BA56 alloy demonstrates significant age-hardenability,achieving a 22%enhancement in hardness following T5 aging,attributed to the precipitation of nanoscale Mg_(3)Bi_(2) and Mg_(17)Al_(12) phases.By contrast,the AZ31 alloy shows minimal hardening due to the absence of precipitate formation during aging.These findings suggest that the BA56 alloy is a promising candidate for the production of extruded Mg components requiring a combination of high productivity,superior mechanical performance,and wide-ranging process adaptability. 展开更多
关键词 High-speed extrusion Mg-Bi-Al alloy Dynamic recrystallization Strengthening Age-hardenability
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部