期刊文献+
共找到50,345篇文章
< 1 2 250 >
每页显示 20 50 100
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
1
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites Mechanical properties Thermal properties Mechanical stirrer Sonication
在线阅读 下载PDF
Kelvin lattice structures fabricated by laser powder bed fusion:Design,preparation,and mechanical performance
2
作者 Yan-peng Wei Huai-qian Li +3 位作者 Ying-chun Ma Zhi-quan Miao Bo Yu Feng Lin 《China Foundry》 2025年第2期117-127,共11页
Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have ga... Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have garnered increasing research interest.However,most metallic lattice structures generally exhibit anisotropic characteristics,which limits their application ranges.Additionally,a limited number of studies have successfully developed precise mechanical models,which have undergone experimental validation,for the purpose of describing the mechanical response exhibited by additively manufactured metallic lattice structures.In this study,Kelvin lattice structures with varying porosities were systematically designed and fabricated using laser powder bed fusion(LPBF)technology.By integrating finite element simulations with experimental characterization,an enhanced mechanical model was developed through a modification of the Gibson-Ashby model,providing an accurate quantitative description of the relationship between porosity and mechanical properties.The results show that the revised mechanical model can accurately describe the relationship between the geometric parameters and properties of metallic lattice structures.Specifically,the designed Kelvin lattice structures exhibit a smooth stress-strain curve with an obvious yield platform,demonstrating isotropic mechanical properties in all the three spatial directions.This enhances their suitability for complex loading conditions.Meanwhile,the microstructure and manufacturing accuracy of the Kelvin lattice structures were observed and analyzed by micro computed tomography.The results show that the fabricated metallic lattice structures achieved precise dimensional control and optimal densification.This study presents the complete process involved in modeling the Kelvin structure,including its conceptualization,manufacturing,implementation,and ultimately,disposal. 展开更多
关键词 Kelvin structure metallic lattice structures laser powder bed fusion mechanical model isotropic mechanical properties
在线阅读 下载PDF
Multiscale Mechanical Failures in Lithium-Ion Batteries:Experimental and Theoretical Approaches
3
作者 Chong Chen Yikun Wu +3 位作者 inbao Fan Zi-Ping Wang Lei Sun Hao-Sen Chen 《Acta Mechanica Solida Sinica》 2025年第3期344-357,共14页
The insertion and extraction of lithium ions in active materials lead to significant volumetric deformation,resulting in stresses that drive the mechanical degradation of these materials.This accumulation of mechanica... The insertion and extraction of lithium ions in active materials lead to significant volumetric deformation,resulting in stresses that drive the mechanical degradation of these materials.This accumulation of mechanical degradation ultimately leads to mechanical failure in lithium-ion batteries(LIB).This paper summarizes the experimental characterization techniques used to observe the mechanical degradation of lithium battery cells,electrodes,and particles across macro,micro,and nano scales.Additionally,the mechanical failure model for LIB that spans from the microscopic to the macroscopic scale has been outlined.Finally,we analyze the current challenges and opportunities,including the standardization of battery measurements,the quantification of mechanical failures,and the correlation between mechanical failures and electrochemical performance. 展开更多
关键词 Mechanical failure Experimental characterization Chemo-mechanical coupling Lithium-ion battery
原文传递
PFC-FDEM multi-scale cross-platform numerical simulation of thermal crack network evolution and SHTB dynamic mechanical response of rocks
4
作者 Yue Zhai Shaoxu Hao +1 位作者 Shi Liu Yu Jia 《International Journal of Mining Science and Technology》 2025年第9期1555-1589,共35页
Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-pla... Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications. 展开更多
关键词 Thermal geomechanics Thermo-mechanical coupling phenomena Fracture network propagation PFC-FDEM Dynamic mechanical response
在线阅读 下载PDF
Interfacial Structure and Mechanical Properties of Diamond/Copper Joint Brazed by Ag-Cu-In-Ti Low-Temperature Brazing Filler 被引量:2
5
作者 Pan Yufan Liang Jiabin +10 位作者 Nie Jialong Liu Xin Sun Huawei Chang Yunfeng Li Huaxin Lu Chuanyang Xu Dong Wang Xingxing Yang Yang Yang Jianguo He Yanming 《稀有金属材料与工程》 北大核心 2025年第2期301-310,共10页
Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In ad... Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In addition,the joint formation mechanism was discussed,and the correlation between joint microstructure and mechanical performance was established.Results show that adding appropriate amount of In into the filler can significantly reduce the filler melting point and enhance the wettability of filler on diamond.When the brazing temperature is 750°C and the soaking time is 10 min,a uniformly dense braze seam with excellent metallurgical bonding can be obtained,and its average joint shear strength reaches 322 MPa.The lower brazing temperature can mitigate the risk of diamond graphitization and also reduce the residual stresses during joining. 展开更多
关键词 diamond microwave window vacuum brazing Ag-Cu-In-Ti microstructure mechanical properties
原文传递
Mechanical and Permeability Properties of Radial-Gradient Bone Scaffolds Developed by Voronoi Tessellation for Bone Tissue Engineering 被引量:2
6
作者 XU Qingyu HAI Jizhe +1 位作者 SHAN Chunlong LI Haijie 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期433-445,共13页
Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recen... Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recent years.However,studies on the radial-gradient design of irregular bionic scaffolds are limited.Therefore,this study aims to develop a radial-gradient structure similar to that of natural long bones,enhancing the development of bionic bone scaffolds.A novel gradient method was adopted to maintain constant porosity,control the seed site-specific distribution within the irregular porous structure,and vary the strut diameter to generate radial gradients.The irregular scaffolds were compared with four conventional scaffolds(cube,pillar BCC,vintiles,and diamond)in terms of permeability,stress concentration characteristics,and mechanical properties.The results indicate that the radial-gradient irregular porous structure boasts the widest permeability range and superior stress distribution compared to conventional scaffolds.With an elastic modulus ranging from 4.20 GPa to 22.96 GPa and a yield strength between 68.37 MPa and 149.40 MPa,it meets bone implant performance requirements and demonstrates significant application potential. 展开更多
关键词 Voronoi tessellation radial-gradient structure PERMEABILITY mechanical properties
原文传递
Collaborative enhancement of thermal diffusivities and mechanical properties of C_(sf)-Cu/Mg composites via introducing Cu coating with different thicknesses 被引量:1
7
作者 Yuan Ma Lingjun Guo +3 位作者 Jiancheng Wang Baolin Chen Lehua Qi Hejun Li 《Journal of Magnesium and Alloys》 2025年第1期229-242,共14页
Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excell... Mg alloy matrix composites reinforced with short carbon fibers(C_(sf)/Mg)are considered as potential candidates for integrated structural-functional electronic parts that satisfy the requirements of lightweight,excellent mechanical properties,and heat dissipation.However,the different characteristics of C_(sf)and Mg alloy make the interface a critical issue affecting the synergistic improvement of thermal and mechanical properties of the composites.Here,Cu coating with different thicknesses is introduced to modify the C_(sf)/Mg interface,so as to simultaneously enhance the thermal and mechanical performances,which can combine the advantages of coating modification and matrix alloying.Results reveal that thermal diffusivity(TD)of 3-C_(sf)-Cu/Mg composites is as high as 22.12 mm^(2)/s and an enhancement of 52.97%is achieved compared with C_(sf)/Mg composites,as well as 16.3%enhancement of ultimate compressive strength(UCS)in the longitudinal direction,8.84%improvement of UCS in the transverse direction,and 53.08%increasement of ultimate tensile strength(UTS).Such improvement can be ascribed to the formation of intermetallic compounds.The formation of intermetallic compounds can not only effectively alleviate the lattice distortion of the matrix and decrease interfacial thermal resistance,but also bear the loads.Our work is of great significance for designing C_(sf)/Mg composites with integrated structure and function. 展开更多
关键词 Magnesium matrix composites Cu coating thickness Intermetallic compounds Thermal performances Mechanical properties
在线阅读 下载PDF
Fabrication and development of mechanical metamaterials via additive manufacturing for biomedical applications:a review 被引量:1
8
作者 Junsheng Chen Jibing Chen +4 位作者 Hongze Wang Liang He Boyang Huang Sasan Dadbakhsh Paulo Bartolo 《International Journal of Extreme Manufacturing》 2025年第1期1-44,共44页
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i... In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life. 展开更多
关键词 biomedical application additive manufacturing mechanical metamaterials biomimetic materials
暂未订购
Development of mechanical equivalent porous structures for 3Dprinted artificial femoral heads 被引量:1
9
作者 Moyu Liu Jun Wang +3 位作者 Yu Li Kaiyuan Cheng Yong Huan Ning Li 《Acta Mechanica Sinica》 2025年第4期176-187,共12页
The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design m... The current artificial bone is unable to accurately replicate the inhomogeneity and anisotropy of human cancellous bone.To address this issue,we proposed a personalized approach based on clinical CT images to design mechanical equivalent porous structures for artificial femoral heads.Firstly,supported by Micro and clinical CT scans of 21 bone specimens,the anisotropic mechanical parameters of human cancellous bone in the femoral head were characterized using clinical CT values(Hounsfield unit).After that,the equivalent porous structure of cancellous bone was designed based on the gyroid surface,the influence of its degree of anisotropy and volume fraction on the macroscopic mechanical parameters was investigated by finite element analysis.Furthermore,a mapping relationship between CT values and the porous structure was established by jointly solving the mechanical parameters of the porous structure and human cancellous bone,allowing the design of personalized gradient porous structures based on clinical CT images.Finally,to verify the mechanical equivalence,implant press-in tests were conducted on 3D-printed artificial femoral heads and human femoral heads,the influence of the porous structure’s cell size in bone-implant interaction problems was also explored.Results showed that the minimum deviations of press-in stiffness(<15%)and peak load(<5%)both occurred when the cell size was 20%to 30%of the implant diameter.In conclusion,the designed porous structure can replicate the human cancellous bone-implant interaction at a high level,indicating its effectiveness in optimizing the mechanical performance of 3D-printed artificial femoral head. 展开更多
关键词 Mechanical equivalence Porous structure ANISOTROPY Femoral head Artificial bone
原文传递
Microstructure and mechanical properties of extruded Mg-Sn alloys with a heterogeneous grain structure 被引量:1
10
作者 Lin Tong Jing Jiang +4 位作者 Guangli Bi Yuandong Li Tijun Chen Xiaoru Zhang Daqing Fang 《Journal of Magnesium and Alloys》 2025年第6期2825-2844,共20页
The high-strength Mg-7Sn alloys(wt.%)with a heterogeneous grain structure were prepared by low-temperature extrusion(230°C)with the extrusion ratio of 9:1(9E230)and 17:1(17E230).The two extruded alloys contained ... The high-strength Mg-7Sn alloys(wt.%)with a heterogeneous grain structure were prepared by low-temperature extrusion(230°C)with the extrusion ratio of 9:1(9E230)and 17:1(17E230).The two extruded alloys contained fine dynamic recrystallization(DRX)grains(FG)and coarse un DRX grains(CG).The difference in deformability between CG and FG leads to the formation of heterogeneous grain structure.The average grain size and basal texture intensities increased while the volume fraction of CG decreased with increasing extrusion ratio.Tensile testing results indicated that the extruded 17E230 alloy exhibited higher tensile strengths than 9E230 alloy,whose tensile yield strength(σ_(0.2)),ultimate tensile strengths(σ_(b)),and elongation to failure(ε_(f))were 231.1 MPa,319.5MPa,and 12.54%respectively.The high tensile strengths of the extruded alloy mainly originated from grain refinement,texture strengthening,precipitation strengthening from a great number of nano-scale Mg_(2)Sn phases,solid solution strengthening and hetero-deformation induced(HDI)strengthening,while the good ductility of the alloy was also mainly attributed to grain refinement,activation of the non-basal slip systems and HDI hardening. 展开更多
关键词 Extruded Mg-7Sn alloys HETEROSTRUCTURE Extrusion ratio Microstructure Mechanical properties
在线阅读 下载PDF
Coupled thermo-hydro-mechanical analysis of porous rocks:Candidate of surrounding rocks for deep geological repositories 被引量:1
11
作者 Tao Meng Zaobao Liu +6 位作者 Fengbiao Wu Zhijiang Zhang Xufeng Liang Yi He Xiaomeng Wu Yizhang Yang Haoran Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3073-3092,共20页
Deep geological sequestration is widely recognized as a reliable method for nuclear waste management,with expanded applications in thermal energy storage and adiabatic compressed air energy storage systems.This study ... Deep geological sequestration is widely recognized as a reliable method for nuclear waste management,with expanded applications in thermal energy storage and adiabatic compressed air energy storage systems.This study evaluated the suitability of granite,basalt,and marble as reservoir rocks capable of withstanding extreme high-temperature and high-pressure conditions.Using a custom-designed triaxial testing apparatus for thermal-hydro-mechanical(THM)coupling,we subjected rock samples to temperatures ranging from 20℃to 800℃,triaxial stresses up to 25 MPa,and seepage pressures of 0.6 MPa.After THM treatment,the specimens were analyzed using a Real-Time Load-Synchronized Micro-Computed Tomography(MCT)Scanner under a triaxial stress of 25 MPa,allowing for high-resolution insights into pore and fissure responses.Our findings revealed distinct thermal stability profiles and microscopic parameter changes across three phasesdslow growth,slow decline,and rapid growthdwith critical temperature thresholds observed at 500℃for granite,600℃for basalt,and 300℃for marble.Basalt showed minimal porosity changes,increasing gradually from 3.83%at 20℃to 12.45%at 800℃,indicating high structural integrity and resilience under extreme THM conditions.Granite shows significant increases in porosity due to thermally induced microcracking,while marble rapidly deteriorated beyond 300℃due to carbonate decomposition.Consequently,basalt,with its minimal porosity variability,high thermal stability,and robust mechanical properties,emerges as an optimal candidate for nuclear waste repositories and other high-temperature geological engineering applications,offering enhanced reliability,structural stability,and long-term safety in such settings. 展开更多
关键词 Deep geological repository Coupled thermal-hydro-mechanical environment Pore structure Microcomputer tomography 3D reconstruction
在线阅读 下载PDF
Explainable machine learning for predicting mechanical properties of hot-rolled steel pipe 被引量:1
12
作者 Jing-dong Li You-zhao Sun +4 位作者 Xiao-chen Wang Quan Yang Guo-dong Liu Hao-tang Qie Feng-xia Li 《Journal of Iron and Steel Research International》 2025年第8期2475-2490,共16页
Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction an... Mechanical properties are critical to the quality of hot-rolled steel pipe products.Accurately understanding the relationship between rolling parameters and mechanical properties is crucial for effective prediction and control.To address this,an industrial big data platform was developed to collect and process multi-source heterogeneous data from the entire production process,providing a complete dataset for mechanical property prediction.The adaptive bandwidth kernel density estimation(ABKDE)method was proposed to adjust bandwidth dynamically based on data density.Combining long short-term memory neural networks with ABKDE offers robust prediction interval capabilities for mechanical properties.The proposed method was deployed in a large-scale steel plant,which demonstrated superior prediction interval performance compared to lower upper bound estimation,mean variance estimation,and extreme learning machine-adaptive bandwidth kernel density estimation,achieving a prediction interval normalized average width of 0.37,a prediction interval coverage probability of 0.94,and the lowest coverage width-based criterion of 1.35.Notably,shapley additive explanations-based explanations significantly improved the proposed model’s credibility by providing a clear analysis of feature impacts. 展开更多
关键词 Mechanical property Hot-rolled steel pipe Machine learning Adaptive bandwidth kernel density estimation Shapley additive explanations-based explanation
原文传递
Research on structural design and mechanical properties of precision electroplating machinery for automobiles based on finite element analysis
13
作者 Wang Jie Jiang Xiaobei 《电镀与精饰》 北大核心 2025年第11期10-21,共12页
Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS... Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures. 展开更多
关键词 finite element analysis electroplating machinery structure mechanical properties electroplating process salt spray corrosion bonding strength
在线阅读 下载PDF
Mechanical and microstructural properties of schist exposed to freezethaw cycles,dry-wet cycles,and alternating actions 被引量:2
14
作者 Jiajia Gao Jiajian Jin +5 位作者 Daguo Wang Shaogang Lei Jianguo Lu Huan Xiao Jinhe Li Huadong Li 《International Journal of Mining Science and Technology》 2025年第5期783-800,共18页
In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural prope... In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content. 展开更多
关键词 SCHIST Mechanical property Microstructure Freeze-thaw cycles Dry-wet cycles
在线阅读 下载PDF
Review on Characteristic and Mechanical Behaviour of FGMs Prepared by Additive Manufacturing
15
作者 Sainath Krishna Mani Iyer Prabagaran Subramaniam 《稀有金属材料与工程》 北大核心 2025年第6期1478-1488,共11页
The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manuf... The functionally graded materials(FGMs)are obtained by various processes.Although a few FGMs are obtained naturally,such as oyster,pearl,and bamboo,additive manufacturing(AM),known as 3D printing,is a net-shaped manufacturing process employed to manufacture complex 3D objects without tools,molds,assembly,and joining.Currently,commercial AM techniques mostly use homogeneous composition with simplified geometric descriptions,employing a single material across the entire component to achieve functional graded additive manufacturing(FGAM),in contrast to multi-material FGAM with heterogeneous structures.FGMs are widely used in various fields due to their mechanical property advantages.Because FGM plays a significant role in the industrial production,the characteristics and mechanical behaviour of FGMs prepared by AM were reviewed.In this review,the research on FGMs and AM over the past 30 years was reviewed,suggesting that future researchers should focus on the application of artificial intelligence and machine learning technologies in industry to optimize the process parameters of different gradient systems. 展开更多
关键词 additive manufacturing functionally graded material manufacturing process mechanical behaviour CHARACTERISTIC
原文传递
An effective stress-based DSC model for predicting hydromechanical shear behavior of unsaturated collapsible soils subjected to initial shear stress 被引量:1
16
作者 Saman Soleymani Borujerdi S.Mohsen Haeri +1 位作者 Amir Akbari Garakani Chandrakant SDesai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期539-555,共17页
Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have en... Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results. 展开更多
关键词 Unsaturated collapsible soil Initial shear stress Hydromechanical shear behavior Effective stress Disturbed state concept Critical state
在线阅读 下载PDF
Simulation and Experimental Analysis of Mechanical Properties of a Bidirectional Adjustable Magnetorheological Fluid Damper
17
作者 YANG Zhi−rong YE Zhong−min +2 位作者 LIU Jin−liang RAO Zhu−shi XIAO Wang−qiang 《船舶力学》 北大核心 2025年第6期1000-1012,共13页
The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achie... The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers. 展开更多
关键词 magnetorheological fluid(MRF) DAMPER permanent magnet finite element analysis test of mechanical properties
在线阅读 下载PDF
Mechanical Constitutive Model for Equivalent Solid of Fission Gas Bubbles in Irradiated U-10Mo Fuels
18
作者 Li Yong Yan Feng +2 位作者 Zhang Jing Zang Liye Ding Shurong 《稀有金属材料与工程》 北大核心 2025年第7期1653-1660,共8页
The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclea... The internal pressure within fission gas bubbles(FGBs)in irradiated nuclear fuels drives mechanical interactions with the surrounding fuel skeleton.To investigate the micromechanical stress fields in irradiated nuclear fuels containing pressurized FGBs,a mechanical constitutive model for the equivalent solid of FGBs was developed and validated.This model was based on the modified Van der Waals equation,incorporating the effects of surface tension.Using this model,the micromechanical fields in irradiated U-10Mo fuels with randomly distributed FGBs were calculated during uniaxial tensile testing via the finite element(FE)method.The macroscopic elastic constants of the irradiated U-10Mo fuels were then derived using homogenization theory,and the influences of bubble pressure,bubble size,and porosity on these constants were examined.Results show that adjacent FGBs exhibit mechanical interactions,which leads to distinct stress concentrations in the surrounding fuel skeleton.The macroscopic elastic constants of irradiated U-10Mo fuels decrease with increasing the macroscopic porosity,which can be quantitatively described by the Mori-Tanaka model.In contrast,bubble pressure and size have negligible effects on these constants. 展开更多
关键词 effective mechanical constitutive model fission gas bubbles FE method U-10Mo nuclear fuels macroscopic elastic constants
原文传递
Hot Isostatic Pressing for Enhancing Mechanical Properties of Mo Alloys Prepared by Laser Powder Bed Fusion
19
作者 Liang Xunwen Fu Zhongxue +3 位作者 Zhang Shiming Che Yusi Cheng Pengming Wang Pei 《稀有金属材料与工程》 北大核心 2025年第3期587-592,共6页
To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.... To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys. 展开更多
关键词 Mo alloys hot isostatic pressing laser powder bed fusion mechanical properties
原文传递
Process Optimization,Microstructure Characterization,and Mechanical Properties of Al-Mg-Sc-Zr alloys Prepared via Laser Powder Bed Fusion
20
作者 Yunfei Nie Haibin Wu +6 位作者 Qian Tang Hao Yi Changliang Qin Binsheng Wang Zhonghua Li Kun Li Quanquan Han 《Additive Manufacturing Frontiers》 2025年第1期136-146,共11页
Aluminum alloys manufactured using traditional processes are increasingly unable to meet the high flexibility and performance requirements of modern engineering.In this study,Al-Mg-Sc-Zr alloys were manufactured via l... Aluminum alloys manufactured using traditional processes are increasingly unable to meet the high flexibility and performance requirements of modern engineering.In this study,Al-Mg-Sc-Zr alloys were manufactured via laser powder bed fusion(LPBF)to obtain high-performance aluminum alloys.To this end,process parameter optimization and heat treatment were adopted.The optimal process parameters were determined by initially analyzing the relative density and defect distribution under varying energy densities.The sample obtained under the optimal process parameters exhibited a relative density of 99.84%.Subsequently,the corresponding phase compositions,microstructures,and mechanical performance of the as-fabricated specimens were determined using the optimal process parameters before and after heat treatment.The microstructures of the samples showed typical equiaxed columnar bimodal grain structures,with Al_(3)(Sc,Zr)precipitates detected.The samples exhibited no significant anisotropy before and after heat treatment,while the grain orientation differences were dominated by high-angle grain boundaries.The mechanical properties of all the samples were characterized using tensile and hardness tests.The yield strength,ultimate tensile strength,and elongation of the sample were 475.0 MPa,508.2 MPa,and 8.3%,respectively.Overall,samples with high density,low porosity,high strength,and high plasticity were obtained by process parameter optimization and appropriate heat treatment. 展开更多
关键词 Laser powder bed fusion Al-Mg-Sc-Zr alloy Processing optimization Microstructure characterization Mechanical properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部