The singularly perturbed boundary value problem for quasilinear third-order ordinary differential equation involving two small parameters has been considered. For the three cases epsilon/mu (2) --> 0(mu --> 0), ...The singularly perturbed boundary value problem for quasilinear third-order ordinary differential equation involving two small parameters has been considered. For the three cases epsilon/mu (2) --> 0(mu --> 0), mu (2)/epsilon --> 0(epsilon --> 0) and epsilon = mu (2), the formal asymptotic solutions are constructed by the method of two steps expansions and the existences of solution are proved by using the differential inequality method. In addition, the uniformly valid estimations of the remainder term are given as well.展开更多
文摘The singularly perturbed boundary value problem for quasilinear third-order ordinary differential equation involving two small parameters has been considered. For the three cases epsilon/mu (2) --> 0(mu --> 0), mu (2)/epsilon --> 0(epsilon --> 0) and epsilon = mu (2), the formal asymptotic solutions are constructed by the method of two steps expansions and the existences of solution are proved by using the differential inequality method. In addition, the uniformly valid estimations of the remainder term are given as well.