Recent years have witnessed growing interests in solving partial differential equations by deep neural networks,especially in the high-dimensional case.Unlike classical numerical methods,such as finite difference meth...Recent years have witnessed growing interests in solving partial differential equations by deep neural networks,especially in the high-dimensional case.Unlike classical numerical methods,such as finite difference method and finite element method,the enforcement of boundary conditions in deep neural networks is highly nontrivial.One general strategy is to use the penalty method.In the work,we conduct a comparison study for elliptic problems with four different boundary conditions,i.e.,Dirichlet,Neumann,Robin,and periodic boundary conditions,using two representative methods:deep Galerkin method and deep Ritz method.In the former,the PDE residual is minimized in the least-squares sense while the corresponding variational problem is minimized in the latter.Therefore,it is reasonably expected that deep Galerkin method works better for smooth solutions while deep Ritz method works better for low-regularity solutions.However,by a number of examples,we observe that deep Ritz method can outperform deep Galerkin method with a clear dependence of dimensionality even for smooth solutions and deep Galerkin method can also outperform deep Ritz method for low-regularity solutions.Besides,in some cases,when the boundary condition can be implemented in an exact manner,we find that such a strategy not only provides a better approximate solution but also facilitates the training process.展开更多
This paper introduces a domain decomposition preconditioner for elliptic equations with rough coefficients. The coarse space of the domain decomposition method is constructed via the so-called rough polyharmonic splin...This paper introduces a domain decomposition preconditioner for elliptic equations with rough coefficients. The coarse space of the domain decomposition method is constructed via the so-called rough polyharmonic splines (RPS for short). As an approximation space of the eUiptic problem, RPS is known to recover the quasi-optimal convergence rate and attain the quasi-optimal localization property. The authors lay out the formulation of the RPS based domain decomposition preconditioner, and numerically verify the performance boost of this method through several examples.展开更多
基金the grants NSFC 11971021National Key R&D Program of China(No.2018YF645B0204404)NSFC 11501399(R.Du)。
文摘Recent years have witnessed growing interests in solving partial differential equations by deep neural networks,especially in the high-dimensional case.Unlike classical numerical methods,such as finite difference method and finite element method,the enforcement of boundary conditions in deep neural networks is highly nontrivial.One general strategy is to use the penalty method.In the work,we conduct a comparison study for elliptic problems with four different boundary conditions,i.e.,Dirichlet,Neumann,Robin,and periodic boundary conditions,using two representative methods:deep Galerkin method and deep Ritz method.In the former,the PDE residual is minimized in the least-squares sense while the corresponding variational problem is minimized in the latter.Therefore,it is reasonably expected that deep Galerkin method works better for smooth solutions while deep Ritz method works better for low-regularity solutions.However,by a number of examples,we observe that deep Ritz method can outperform deep Galerkin method with a clear dependence of dimensionality even for smooth solutions and deep Galerkin method can also outperform deep Ritz method for low-regularity solutions.Besides,in some cases,when the boundary condition can be implemented in an exact manner,we find that such a strategy not only provides a better approximate solution but also facilitates the training process.
基金supported by the National Natural Science Foundation of China(No.11471214)the One Thousand Plan of China for young scientists
文摘This paper introduces a domain decomposition preconditioner for elliptic equations with rough coefficients. The coarse space of the domain decomposition method is constructed via the so-called rough polyharmonic splines (RPS for short). As an approximation space of the eUiptic problem, RPS is known to recover the quasi-optimal convergence rate and attain the quasi-optimal localization property. The authors lay out the formulation of the RPS based domain decomposition preconditioner, and numerically verify the performance boost of this method through several examples.