期刊文献+
共找到4,555篇文章
< 1 2 228 >
每页显示 20 50 100
New technology for recycling materials from oily cold rolling mill sludge 被引量:3
1
作者 Bo Liu Shen-gen Zhang +3 位作者 Jian-jun Tian De-an Pan Ling Meng Yang Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第12期1141-1147,共7页
Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new proces... Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge. 展开更多
关键词 cold rolling mills sludge disposal HYDROMETALLURGY hydrothermal synthesis recycling waste utilization
在线阅读 下载PDF
Research progress of lignin-derived materials in lithium/sodium ion batteries 被引量:1
2
作者 Jingke Zhang Hengxue Xiang +2 位作者 Zhiwei Cao Shichao Wang Meifang Zhu 《Green Energy & Environment》 2025年第2期322-344,共23页
With the increase of energy consumption,the shortage of fossil resource,and the aggravation of environmental pollution,the development of cost-effective and environmental friendly bio-based energy storage devices has ... With the increase of energy consumption,the shortage of fossil resource,and the aggravation of environmental pollution,the development of cost-effective and environmental friendly bio-based energy storage devices has become an urgent need.As the second most abundant natural polymer found in nature,lignin is mainly produced as the by-product of paper pulping and bio-refining industries.It possesses several inherent advantages,such as low-cost,high carbon content,abundant functional groups,and bio-renewable,making it an attractive candidate for the rechargeable battery material.Consequently,there has been a surge of research interest in utilizing lignin or lignin-based carbon materials as the components of lithium-ion(LIBs)or sodium-ion batteries(SIBs),including the electrode,binder,separator,and electrolyte.This review provides a comprehensive overview on the research progress of lignin-derived materials used in LIBs/SIBs,especially the application of lignin-based carbons as the anodes of LIBs/SIBs.The preparation methods and properties of lignin-derived materials with different dimensions are systemically discussed,which emphasizes on the relationship between the chemical/physical structures of lignin-derived materials and the performances of LIBs/SIBs.The current challenges and future prospects of lignin-derived materials in energy storage devices are also proposed. 展开更多
关键词 Lignin-based carbons Lithium battery Sodium battery Chemical structure evolution
在线阅读 下载PDF
ACF Artificial Cartilage Biomimetic Energy-Absorbing Materials:Research and Development Journey,Transformation Practices,and Deep Insights and Paradigm Construction for Technological Innovation Ecosystems
3
作者 Bowei Wang 《Proceedings of Business and Economic Studies》 2025年第2期198-208,共11页
This paper focuses on ACF artificial cartilage biomimetic energy-absorbing materials,exploring the entire process from fundamental research to industrial transformation.By analyzing the key nodes and technological bre... This paper focuses on ACF artificial cartilage biomimetic energy-absorbing materials,exploring the entire process from fundamental research to industrial transformation.By analyzing the key nodes and technological breakthroughs in the research and development journey,as well as the market strategies and collaboration models in the transformation practices,this study reveals the profound insights ACF provides to the technological innovation ecosystem in terms of concepts,mechanisms,and resource integration,and constructs a universally applicable and forward-looking paradigm for technological innovation.Aiming to provide comprehensive and in-depth case studies for materials science and the entire technological innovation system,facilitating the innovative development and progress in related areas. 展开更多
关键词 Material science Bionic energy absorption Scientific and technological innovation Organizational innovation Interdisciplinary integration Industry-university-research cooperation
在线阅读 下载PDF
Research Progress on Biomimetic Drag Reduction Materials Inspired by Diverse Organisms:from Principle to Application
4
作者 Lei Tang Hongyi Hu +1 位作者 Zhixiang Zeng Qunji Xue 《Journal of Bionic Engineering》 2025年第5期2151-2193,共43页
Reducing the resistance of vehicles,ships,aircraft and other means of transport during movement can significantly improve the speed,save energy and reduce emissions.After billions of years of continuous evolution,orga... Reducing the resistance of vehicles,ships,aircraft and other means of transport during movement can significantly improve the speed,save energy and reduce emissions.After billions of years of continuous evolution,organisms in nature have gradually developed the ability to move at high speed to achieve better survival.These evolved organisms provide a perfect template for the human development of drag reduction materials.Revealing the unique physiological structural characteristics of organisms and their relationship with resistance during movement can provide a feasible approach tosolving the problem of reducing friction resistance.Whether flying in the sky,running on the ground,swimming in the water,or even living in the soil,many creatures in various environments have the ability to reduce resistance.Driven by these inspirations,researchers have done a lot of work to explore and imitate these biological epidermis structures to achieve drag reduction.In this paper,the biomimetic drag reduction materials is introduced in detail in the order of drag reduction mechanism,structural characteristics of biological epidermis(including marine animals,flying animals,soil animals and plants),biomimetic preparation methods,performance testing methods and application fields.Finally,the potential of various biomimetic drag reduction materials in engineering application and the problems to be overcome are summarized and prospected.This paper can help readers comprehensively understand the research progress of biomimetic drag reduction materials,and provide reference for further designing the next generation of drag reduction materials. 展开更多
关键词 Biomimetic drag reduction material PRINCIPLE INSPIRATION Fabrication EXAMINATION APPLICATION
在线阅读 下载PDF
Adjustable corrosion and mechanical properties of Mg-Zn-Ca-Ni alloys for fracturing materials 被引量:2
5
作者 Dawei Wang Xiangshuang Jiang +7 位作者 Changxin Chen Xun Zhang Zhong-Zheng Jin Fuyong Cao Jia-Ning Zhu Cheng Wang Yinlong Ma Min Zha 《Journal of Magnesium and Alloys》 2025年第6期2618-2635,共18页
Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring... Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials. 展开更多
关键词 Mg-Zn-Ca alloy Fracturing material Galvanic corrosion Corrosion barrier
在线阅读 下载PDF
Synthesis and characterization of carbonaceous materials for lead adsorption
6
作者 Benyapha Glingasorn Sarute Ummartyotin 《Resources Chemicals and Materials》 2025年第2期1-11,共11页
Protein fibers derived from silk fibroin(SF)were chemically extracted and purified from cocoons.It was used as a reinforced fiber for hydrogel formation with collagen(Col)and hyaluronic acid(HA).Calcium chloride(8 wt.... Protein fibers derived from silk fibroin(SF)were chemically extracted and purified from cocoons.It was used as a reinforced fiber for hydrogel formation with collagen(Col)and hyaluronic acid(HA).Calcium chloride(8 wt.%)was employed as a crosslinking reagent to synthesize the SF/Col/HA-based hydrogel composite.FTIR spec-troscopy confirmed the presence of N-H stretching due to the plane bending of amide II in theβ-sheet structure.XRD analysis confirmed the crystallinity of the SF/Col/HA-based hydrogel composite.Scanning electron mi-croscopy revealed three-dimensional porous structures with interconnected pores.These porous structures can serve as reservoirs for storing adsorbent media.The hydrogel composite was thermally stable at 250℃.The lowboiling bound solvent evaporation temperature,glass transition temperature,and degradation temperature were 102℃-105℃,298℃-300℃,and 524℃-545℃,respectively.The ranges of porosity and gel fraction were 60%-80%and 90%-95%,respectively.The hydrogel composite was rapidly swollen within 1 h,reaching a plateau afterward.The compressive strength was 4-6 MPa.As absorbent media,hydrogels can easily adhere to lead ions via electrostatic interactions.They can be used as reservoirs for the adsorption of heavy metals. 展开更多
关键词 COCOON Silk Fibroin(SF) COMPOSITE HYDROGEL Heavy metal ADSORPTION
在线阅读 下载PDF
Unanticipated optical properties of π-conjugated cyclometalated Pt(Ⅱ)complexes for advanced information storage and anti-counterfeiting materials
7
作者 Yinghao Zhang Ke Shao +5 位作者 Yihang Zhu Haokun Zhang Yinuo Zhuo Huihui Bao Yeye Ai Yongguang Li 《Chinese Chemical Letters》 2025年第9期434-438,共5页
In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactio... In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactions in the crystal state.Unexpectedly,substituting pyridine with the more extensivelyπ-conjugated quinoline significantly increases the dihedral angles between the phenyl and quinolyl groups of the bidentate ligands.This alteration disrupts theπ-πinteractions between molecules,resulting in distinct optical properties upon exposure to external stimuli.By integrating these complexes into polymers,we fabricate electrospun films containing luminescent nanofibers that exhibit reversible optical changes.These findings have paved the way for the development of high-performance optical encryption and anti-counterfeiting materials,achieved through the employment of simple chromophores. 展开更多
关键词 Pt(Ⅱ)complexes Electrospun film Anti-counterfeiting material THERMOCHROMISM Mechanochromism
原文传递
Challenges and strategies for the cyclic stability of Ni-rich layered oxide cathode materials
8
作者 Hongbing Ding Yang Su +8 位作者 Xinlu Wang Yue Hu Xin Li Hongbo Zhang Guixia Liu Wensheng Yu Xiangting Dong Jinxian Wang Xin Wang 《Journal of Energy Chemistry》 2025年第9期427-457,I0012,共32页
Ni-rich cathode materials have become the mainstream choice in the mileage electric vehicle sector due to their high specific capacity and safety factor.However,the volume changes occurring during charging and dischar... Ni-rich cathode materials have become the mainstream choice in the mileage electric vehicle sector due to their high specific capacity and safety factor.However,the volume changes occurring during charging and discharging lead to microcracking and surface remodeling,posing challenges to achieving such as high specific capacity and long cycle stability.This paper reviews existing modification strategies for Ni-rich layered oxide cathode materials.Unlike previous reviews and related papers,we comprehensively discuss a variety of modification strategies and deeply discuss the synergistic modification effect of surface coating and bulk doping,which is how to improve the cycling stability of the Ni-rich cathode.In addition,based on recent research advances,the prospects and challenges of modifying Ni-rich layered cathodes for cycle stability upgrading of the lithium-ion battery,as well as the potential application prospects in the field of power automobiles,are comprehensively analyzed. 展开更多
关键词 Ni-rich cathode materials Modified strategy Surface coating Ionic doping Single crystallization
在线阅读 下载PDF
Synergistic non-covalent interactions enable high-strength fluorescent supramolecular materials with water-assisted selfhealing and remolding properties
9
作者 Xiaoye Zhang Haohui Wang +3 位作者 Pan Li Hualin Tang Tao Chen Wei Lu 《Smart Molecules》 2025年第3期99-107,共9页
Supramolecular materials,characterized by dynamic reversibility and responsiveness to environmental stimuli,have found widespread applications in numerous fields.Unlike traditional materials,supramolecular materials t... Supramolecular materials,characterized by dynamic reversibility and responsiveness to environmental stimuli,have found widespread applications in numerous fields.Unlike traditional materials,supramolecular materials that rely on non-covalent interactions can allow spontaneous reorganization and self-healing at room temperature.However,these materials typically exhibit low strength due to the weak bonding energies of non-covalent interactions.This study presents the development of a high-strength self-healing supramolecular material that combines multiple interactions including ionic bonding,hydrogen bonding,and coordination bonding.The material,formed by the aggregation of the negatively charged picolinate-grafted copolymer(PCM)with positively charged hyperbranched molecules(HP),is further enhanced by Eu^(3+)ion complexation.The resulting film exhibits a high modulus of 427 MPa,tensile strength of 10.5 MPa,and toughness of 14.7 MJ m^(−3).Meanwhile,the non-covalent interaction of this supramolecular material endows it with a self-healing efficiency of 92%within 24 h at room temperature,as well as multiple remolding properties.The incorporation of lanthanide ions also imparts tunable fluorescence.This study not only provides insights into the development of high-strength self-healing materials but also offers new possibilities for the functionalization of supramolecular materials. 展开更多
关键词 FLUORESCENCE high strength SELF-HEALING supramolecular materials synergistic interactions
在线阅读 下载PDF
Revealing the mechanism of significant enhancement in interfacial thermal transport in silicon-based ceramic crystalline/amorphous matrix composite phase change materials
10
作者 Ling-Yue Li Lin Qiu +4 位作者 Ning Cao Lei Xu Li-Zhong Yang Jie Lin Yan-Hui Feng 《Rare Metals》 2025年第6期4107-4118,共12页
Investigating thermal transport mechanisms at the interface between phase change materials(PCMs)and high thermally conductive fillers has become increasingly significant in developing phase change energy storage techn... Investigating thermal transport mechanisms at the interface between phase change materials(PCMs)and high thermally conductive fillers has become increasingly significant in developing phase change energy storage technologies.This study explores the interfacial thermal transport between a representative PCM,erythritol,and various fillers,including crystalline(Si C,Si_(3)N_(4))and amorphous(Si O_(2))nanoparticles,using molecular dynamics(MD)simulations.Additionally,time-domain thermoreflectance(TDTR)experiments were performed to quantify the interfacial thermal conductance between erythritol and the three types of fillers,yielding values of 50.1,40.0,and25.6 MW m^(–2)K^(-1).These results align well with the trends observed in the simulations.Furthermore,the underlying mechanisms of interfacial heat transfer were analyzed by examining the phonon density of states,overlap energy,and interaction energy.This research provides innovative insights into nanoscale interfacial thermal transport in composite PCMs.This could lead to significant advancements in thermal management technologies,particularly in developing more efficient thermal energy storage systems. 展开更多
关键词 Interfacial thermal transport Phase change material Molecular dynamic simulation Time-domain thermoreflectance measurement
原文传递
Novel δ-MnO_(2)/MXene Heterostructures as Cathode Materials for Zinc-Ion Hybrid Supercapacitors
11
作者 Shaolin Yang Cheng Zhen +5 位作者 Panpan Fu Fangfang Li Zexi Chen Jiandong Wu Hui Lu Chunping Hou 《Chinese Journal of Chemical Physics》 2025年第6期947-960,I0215-I0218,I0240,共19页
Although manganese-based oxide is regarded as a promising cathode material for zincion hybrid supercapacitors(ZHSCs),its practical application is hindered by slow zinc ion diffusion and the instability of MnO_(2).To o... Although manganese-based oxide is regarded as a promising cathode material for zincion hybrid supercapacitors(ZHSCs),its practical application is hindered by slow zinc ion diffusion and the instability of MnO_(2).To overcome this obstacle,a δ-MnO_(2)/MXene heterostructure was created using a simple one-step process under gentle condition.The ZHSC was assembled using this heterostructure as the cathode,activated carbon(AC)as the anode and 2 mol·L−1 ZnSO_(4) as the electrolyte.The resultingδ-MnO_(2)/MXene//ZnSO4//AC ZHSC shows a maximum specific capacitance of 97.4 F·g^(−1) and an energy density of 32.27 Wh·kg^(−1) at the best cathode-to-anode mass ratio.Ex situ characterizations reveal the reversible energy storage mechanism combing Zn^(2+)insertion/extraction in the cathode,ion adsorption and desorption on the anode surface,and partial reversible formation and dissolution of Zn_(4)SO_(4)(OH)_(6)·5H_(2)O(ZHS)components on both electrodes.Adding of Mn^(2+)to the electrolyte reduced Mn dissolution,improving the ZHSC’s specific capacitance and energy density to 140.4 F·g^(−1) and 49.36 Wh·kg^(−1),respectively,while also enhancing its rate performance and cyclability.The improved electrochemical reaction kinetics was verified through various tests.The results suggest that the δ-MnO_(2)/MXene heterostructure has great potential as a high-performance cathode material for ZHSCs. 展开更多
关键词 δ-MnO_(2) MXene Cathode material Zinc-ion hybrid supercapacitors
在线阅读 下载PDF
Mesoporous Silica-Based Photocatalytic Materials for Solar Energy Storage and Utilization
12
作者 Rui Sun Yaqi Wu +3 位作者 Ning Han Liang Chen Zhangxing Chen Heng Zhao 《Carbon Energy》 2025年第10期120-150,共31页
The efficient storage and application of sustainable solar energy has drawn significant attention from both academic and industrial points of view.However,most developed catalytic materials still suffer from insuffici... The efficient storage and application of sustainable solar energy has drawn significant attention from both academic and industrial points of view.However,most developed catalytic materials still suffer from insufficient mass diffusion and unsatisfactory durability due to the lack of interconnected and regulatable porosity.Developing catalytic architectures with engineered active sites and prominent stability through rational synthesis strategies has become one of the core projects in solar-driven applications.The unique properties of mesoporous silicas render them among the most valuable functional materials for industrial applications,such as high specific surface area,regulatable porosity,adjustable surface properties,tunable particle sizes,and great thermal and mechanical stability.Mesoporous silicas serve as structural templates or catalytic supports to enhance light harvesting via the scattering effect and provide large surface areas for active site generation.These advantages have been widely utilized in solar applications,including hydrogen production,CO_(2)conversion,photovoltaics,biomass utilization,and pollutant degradation.To achieve the specific functionalities and desired activity,various types of mesoporous silicas from different synthesis methods have been customized and synthesized.Moreover,morphology regulation and component modification strategies have also been performed to endow mesoporous silica-based materials with unprecedented efficiency for solar energy storage and utilization.Nevertheless,reviews about synthesis,morphology regulation,and component modification strategies for mesoporous silica-based catalyst design in solar-driven applications are still limited.Herein,the latest progress concerning mesoporous silica-based catalysis in solar-driven applications is comprehensively reviewed.Synthesis principles,formation mechanisms,and rational functionalities of mesoporous silica are systematically summarized.Some typical catalysts with impressive activities in different solar-driven applications are highlighted.Furthermore,challenges and future potential opportunities in this study field are also discussed and proposed.This present review guides the design of mesoporous silica catalysts for efficient solar energy management for solar energy storage and conversion applications. 展开更多
关键词 applications mesoporous silicas MODIFICATION photocatalytic materials synthesis
在线阅读 下载PDF
Role of NH_(4)^(+)/H_(3)O^(+)on the Na+storage performance for aqueous-synthesized Na3(VOPO4)2F cathode materials and their removal
13
作者 Xiaoping Yang Yibo Zhang +8 位作者 Xianshu Wang Wenjiao Li Xiangshao Yin Jun Yao Weihong Jiang Jianguo Duan Yingjie Zhang Lin Xu Ding Wang 《Journal of Energy Chemistry》 2025年第8期612-621,共10页
The aqueous preparation of Na_(3)(VOPO_(4))_(2)F cathode material with low cost and good structural stability has attracted extensive attention for advancing sodium-ion batteries(SIBs).However,the inclusive heterogene... The aqueous preparation of Na_(3)(VOPO_(4))_(2)F cathode material with low cost and good structural stability has attracted extensive attention for advancing sodium-ion batteries(SIBs).However,the inclusive heterogeneous cations incorporated into the material lattice,dominated by coordination chemistry,are always overlooked.Herein,the embroiled NH_(4)^(+)/H_(3)O^(+)cations in the Na_(3)(VOPO_(4))_(2)F lattice have been first disclosed during aqueous co-precipitation.It involves the electrostatic interactions between hydrogen protons(NH_(4)^(+)/H_(3)O^(+))and electronegative oxygen atoms(V=O and V–O–P groups),which induces the terrible Na^(+)-storage performance,as demonstrated by multiple characterizations.Followingly,the very-facile operation,i.e.heat treatment,has been raised to remove NH_(4)^(+)/H_(3)O^(+)cations and then achieved high-performance Na_(3)(VOPO_(4))_(2)F.Therefore,the Na_(3)(VOPO_(4))_(2)F||Na cell contributes to the significantly improved discharge capacity(129.7 mAh g^(−1))and voltage plateau from 3.63 to 3.87 V(vs.Na/Na^(+))at 0.2 C.The ultrahigh capacity retentions of 93.7%and 76.7%after 1000 and 3500 cycles at 1 and 20 C rates under 25°C are harvested,respectively,as well as high/low-temperature performances and rate capability.Eventually,the as-assembled Na_(3)(VOPO_(4))_(2)F||hard carbon full-cell delivers excellent long-term cycling stability over 1000 cycles with 97.5%retention at 3 C.These emphasize the high-efficacy synthesis of Na_(3)(VOPO_(4))_(2)F and provide insights into the aqueous co-precipitation for the development of materials used in SIBs. 展开更多
关键词 Sodium-ion battery Aqueous co-precipitation Na_(3)(VOPO_(4))_(2)F Heat treatment Electrostatic interactions
在线阅读 下载PDF
Cotton-based sandwich architectures for flexible electromagnetic interference shielding materials with superior flame retardancy
14
作者 Yongqian Shi Junqiang Han +9 位作者 Haoxin Niu Longcheng Tang Jiefeng Gao Pingan Song Libi Fu PeiYin Qiu Pei Li Jiayu Huang Kuanqi Cao Zhaoqingyang Xu 《Nano Research》 2025年第12期563-577,共15页
Electromagnetic pollution is becoming significantly serious.Therefore,it is critical to prepare the advanced electromagnetic interference(EMI)shielding materials with thinness,flexibility and high mechanical strength.... Electromagnetic pollution is becoming significantly serious.Therefore,it is critical to prepare the advanced electromagnetic interference(EMI)shielding materials with thinness,flexibility and high mechanical strength.Herein,the copperbased metal-organic framework(MOF-Cu)and polyethyleneiminemodified ammonium polyphosphate(PEI-APP)were successfully synthesized.The flame-retardant thermoplastic polyurethane(TPU)composite was successfully prepared by compounding MOF-Cu and PEI-APP.The Cotton@PDA@MXene composite was fabricated via a sequential loading process of polydopamine(PDA)and MXene onto cotton fabric.Then,the multilayer TPU composites were prepared by layer-by-layer hot-pressing.The TPU/9PAPP/1MOF/C-3PM composite exhibited exceptional EMI effectiveness of 20.5 dB in X-band and 23.0 dB in K-band,exceeding commercial standards.The TPU/9P-APP/1MOF/C-3PM composite also demonstrated significantly enhanced flame retardancy.Compared with pure TPU/Cotton sample,the peak heat release rate,total heat release and total smoke release of TPU/9PAPP/1MOF/C-3PM composite decreased by 40.7%,31.1%,and 33.3%,respectively.Furthermore,the thickness of the multilayer TPU composites was only 1 mm,demonstrating excellent flexibility.As the outer encapsulation material,TPU endowed the multilayer TPU composites outstanding durability and effectively addressed the common issues of fabric abrasion and conductive filler detachment.This study provides a novel strategy for preparing flexible electromagnetic interference shielding materials with superior flame retardancy. 展开更多
关键词 thermoplastic polyurethane cotton fabric multilayer structure flame retardancy electromagnetic shielding performance
原文传递
Recent advances on additive manufacturing of heterogeneous/gradient metallic materials via laser powder bed fusion
15
作者 Di Wang Linqing Liu +10 位作者 Jinrong Tang Yang Liu Chao Wei Zhixiao Weng Jiawei Shao Hua Tan Wei Zhou Bram Neirinck Nicolas Gianfolcaro Yongqiang Yang Changjun Han 《International Journal of Extreme Manufacturing》 2025年第6期247-295,共49页
Multi-material laser powder bed fusion(LPBF)additive manufacturing is a promising approach for integrating the functionality and mechanical performance of dissimilar materials into complex parts.This review offers a c... Multi-material laser powder bed fusion(LPBF)additive manufacturing is a promising approach for integrating the functionality and mechanical performance of dissimilar materials into complex parts.This review offers a comprehensive overview of the recent advancements in multi-material LPBF,with a particular focus on compositionally heterogeneous/gradient parts and their fabrication methods and equipment,control of interfacial defects,innovative designs,and potential applications.It commences with the introduction of LPBF-processed compositionally heterogeneous/gradient structures with dissimilar material distributions,including Z-direction compositionally heterogeneous structures,compositionally gradient structures in the Z-direction and XY planes,and three-dimensional(3D)compositionally heterogeneous structures.Subsequently,various LPBF methods and equipment for fabricating compositionally heterogeneous/gradient structures have been presented.Furthermore,the interfacial defects and process control during LPBF for these types of compositionally heterogeneous/gradient structures are discussed.Additionally,innovative designs and potential applications of parts made from compositionally heterogeneous/gradient structures are illustrated.Finally,perspectives on the LPBF fabrication methods for compositionally heterogeneous/gradient structures are highlighted to provide guidance for future research. 展开更多
关键词 laser powder bed fusion compositionally heterogeneous structures compositionally gradient structures interfacial defects potential applications
在线阅读 下载PDF
A Review:Functionalized Renewable Natural Fibers as Substrates for Photo-Driven Desalination,Photocatalysis,and Photothermal Biomedical Applications in Sustainable Photothermal Materials
16
作者 Yihang Tang Jing Li +7 位作者 Wentao Xu Yao Xiao Jiayi Deng Ge Rong Jin Zhao Song Xu Man Zhou Zhongyu Li 《Journal of Renewable Materials》 2025年第10期1993-2041,共49页
Natural fibers,as a typical renewable and biodegradable material,have shown great potential for many applications(e.g.,catalysis,hydrogel,biomedicine)in recent years.Recently,the growing importance of natural fibers i... Natural fibers,as a typical renewable and biodegradable material,have shown great potential for many applications(e.g.,catalysis,hydrogel,biomedicine)in recent years.Recently,the growing importance of natural fibers in these photo-driven applications is reflected by the increasing number of publications.The utilization of renewable materials in photo-driven applications not only contributes to mitigating the energy crisis but also facilitates the transition of society toward a low-carbon economy,thus enabling harmonious coexistence between humans and the environment within the context of sustainable development.This paper provides an overview of the recent advances of natural fibers which acted as substrates or precursors to construct an efficient system of light utilization.The different chemical properties and pretreatment methods of cellulose affect its performance in final photo-driven applications,including solar-driven water purification,photocatalysis,and photothermal biomedical applications.Nevertheless,current research rarely conducts a comprehensive comparisonof themfromabroadperspective.As a whole,this review first reveals the different structural advantages as well as thematching degree between natural fibers(bacterial cellulose,plant cellulose,and animal fiber)and three typical photo-driven applications.Besides,new strategies for optimizing the utilization of natural fibers are an important subject under the background of low-carbon and circular economy.Finally,some suggestions and prospects are put forward for the limitations and research prospects of natural fibers in photo-driven applications,which provides a new idea for the synthesis of renewable functional materials. 展开更多
关键词 Natural fibers photo-driven DESALINATION PHOTOCATALYSIS photothermal biomedical applications
在线阅读 下载PDF
Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries
17
作者 Xiangyue Li Dexin Zhu +5 位作者 Kunmin Pan Xiaoye Zhou Jiaming Zhu Yingxue Wang Yongpeng Ren Hong-Hui Wu 《Chinese Chemical Letters》 2025年第5期691-694,共4页
Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To addr... Although lithium-ion batteries(LIBs)currently dominate a wide spectrum of energy storage applications,they face challenges such as fast cycle life decay and poor stability that hinder their further application.To address these limitations,element doping has emerged as a prevalent strategy to enhance the discharge capacity and extend the durability of Li-Ni-Co-Mn(LNCM)ternary compounds.This study utilized a machine learning-driven feature screening method to effectively pinpoint four key features crucially impacting the initial discharge capacity(IC)of Li-Ni-Co-Mn(LNCM)ternary cathode materials.These features were also proved highly predictive for the 50^(th)cycle discharge capacity(EC).Additionally,the application of SHAP value analysis yielded an in-depth understanding of the interplay between these features and discharge performance.This insight offers valuable direction for future advancements in the development of LNCM cathode materials,effectively promoting this field toward greater efficiency and sustainability. 展开更多
关键词 LNCM ternary cathode material Discharge capacity Feature engineering Machine learning SHAP analysis
原文传递
Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes:A review
18
作者 Haobo Wang Fei Wang +6 位作者 Yong Liu Zhongxiu Liu Yingjie Miao Wanhong Zhang Guangxin Wang Jiangtao Ji Qiaobao Zhang 《Chinese Chemical Letters》 2025年第2期133-144,共12页
Lithium metal is one of the most promising anodes for lithium batteries because of their high theoretical specific capacity and the low electrochemical potential.However,the commercialization of lithium metal anodes(L... Lithium metal is one of the most promising anodes for lithium batteries because of their high theoretical specific capacity and the low electrochemical potential.However,the commercialization of lithium metal anodes(LMAs)is facing significant obstacles,such as uncontrolled lithium dendrite growth and unstable solid electrolyte interface,leading to inferior Coulombic efficiency,unsatisfactory cycling stability and even serious safety issues.Introducing low-cost natural clay-based materials(NCBMs)in LMAs is deemed as one of the most effective methods to solve aforementioned issues.These NCBMs have received considerable attention for stabilizing LMAs due to their unique structure,large specific surface areas,abundant surface groups,high mechanical strength,excellent thermal stability,and environmental friendliness.Considering the rapidly growing research enthusiasm for this topic in the last several years,here,we review the recent progress on the application of NCBMs in stable and dendrite-free LMAs.The different structures and modification methods of natural clays are first summarized.In addition,the relationship between their modification methods and nano/microstructures,as well as their impact on the electrochemical properties of LMAs are systematically discussed.Finally,the current challenges and opportunities for application of NCBMs in stable LMAs are also proposed to facilitate their further development. 展开更多
关键词 Natural clay-based materials Aolid-state electrolyte Surface modification Li metal anodes Rechargeable batteries
原文传递
Reinforcement Learning in Materials Science:Recent Advances,Methodologies and Applications
19
作者 Jiaye Li Xinyuan Zhang +7 位作者 Chunlei Shang Xing Ran Zhe Wang Chengjiang Tang Xiaohang Zhang Mingshuo Nie Wei Xu Xin Lu 《Acta Metallurgica Sinica(English Letters)》 2025年第12期2077-2101,共25页
In the era of big data,reinforcement learning(RL)has emerged as a powerful data-driven optimization approach in materials science,enabling unprecedented advances in material design and performance improvement.Unlike t... In the era of big data,reinforcement learning(RL)has emerged as a powerful data-driven optimization approach in materials science,enabling unprecedented advances in material design and performance improvement.Unlike traditional trial-and-error and physics-based approaches,RL agents autonomously identify optimal strategies across high-dimensional and dynamic design spaces by iterative interactions with complex environments.This capability makes RL especially effective for target optimization and sequential decision-making in challenging materials science problems.In this review,we present a comprehensive overview of fundamental RL algorithms,including Q-learning,deep Q-networks(DQN),actor-critic methods,and deep deterministic policy gradient(DDPG).Then,the core mechanisms,advantages,limitations,and representative applications of RL in materials discovery,property optimization,process control,and manufacturing are discussed systematically.Lastly,key future research directions and opportunities are outlined.The perspectives presented herein aim to foster interdisciplinary collaboration and drive innovation at the frontier of AI‑driven materials science. 展开更多
关键词 Reinforcement learning DATA-DRIVEN Objective optimization Material design Material application
原文传递
Pressure-Modulated Activation Energy as a Unified Descriptor of Mechanical Behavior in Metallic Glass
20
作者 Huanrong Liu Jian Li +1 位作者 Shan Zhang Pengfei Guan 《Chinese Physics Letters》 2026年第1期71-82,共12页
The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ... The functional properties of glasses are governed by their formation history and the complex relaxation processes they undergo.However,under extreme conditions,glass behaviors are still elusive.In this study,we employ simulations with varied protocols to evaluate the effectiveness of different descriptors in predicting mechanical properties across both low-and high-pressure regimes.Our findings demonstrate that conventional structural and configurational descriptors fail to correlate with the mechanical response following pressure release,whereas the activation energy descriptor exhibits robust linearity with shear modulus after correcting for pressure effects.Notably,the soft mode parameter emerges as an ideal and computationally efficient alternative for capturing this mechanical behavior.These findings provide critical insights into the influence of pressure on glassy properties,integrating the distinct features of compressed glasses into a unified theoretical framework. 展开更多
关键词 pressure modulated activation energy predicting mechanical properties metallic glass relaxation processes functional properties mechanical behavior simulations varied protocols structural configurational descriptors
原文传递
上一页 1 2 228 下一页 到第
使用帮助 返回顶部