期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Damage mechanism identification in composites via machine learning and acoustic emission 被引量:4
1
作者 C.Muir B.Swaminathan +6 位作者 A.S.Almansour K.Sevener C.Smith M.Presby J.D.Kiser T.M.Pollock S.Daly 《npj Computational Materials》 SCIE EI CSCD 2021年第1期852-866,共15页
Damage mechanism identification has scientific and practical ramifications for the structural health monitoring,design,and application of composite systems.Recent advances in machine learning uncover pathways to ident... Damage mechanism identification has scientific and practical ramifications for the structural health monitoring,design,and application of composite systems.Recent advances in machine learning uncover pathways to identify the waveform-damage mechanism relationship in higher-dimensional spaces for a comprehensive understanding of damage evolution.This review evaluates the state of the field,beginning with a physics-based understanding of acoustic emission waveform feature extraction,followed by a detailed overview of waveform clustering,labeling,and error analysis strategies.Fundamental requirements for damage mechanism identification in any machine learning framework,including those currently in use,under development,and yet to be explored,are discussed. 展开更多
关键词 COMPOSITES COMPOSITE MECHANISM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部