Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption,ultimately resulting in implant failure.Dental implants for clinical use barely have antibacterial pr...Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption,ultimately resulting in implant failure.Dental implants for clinical use barely have antibacterial properties,and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis.Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque.However,it is particularly important to prevent the occurrence of peri-implantitis rather than treatment.Therefore,the current research spot has focused on improving the antibacterial properties of dental implants,such as the construction of specific micro-nano surface texture,the introduction of diverse functional coatings,or the application of materials with intrinsic antibacterial properties.The aforementioned antibacterial surfaces can be incorporated with bioactive molecules,metallic nanoparticles,or other functional components to further enhance the osteogenic properties and accelerate the healing process.In this review,we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration.Furthermore,we summarized the obstacles existing in the process of laboratory research to reach the clinic products,and propose corresponding directions for future developments and research perspectives,so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy,biological safety,and osteogenic property.展开更多
The School of Materials Science and Engineering at Southeast University is nestled along the scenic Jiulong Lake in Nanjing,south of the Yangtze River and west of the Zhongshan Mountains.As early as 1928,Southeast Uni...The School of Materials Science and Engineering at Southeast University is nestled along the scenic Jiulong Lake in Nanjing,south of the Yangtze River and west of the Zhongshan Mountains.As early as 1928,Southeast University(then known as National Central University)introduced undergraduate majors in engineering materials,as well as casting and forging materials.To advance materials science,the university established the Department of Materials Science and Engineering in December 1984,building upon the foundations of metal materials and heat treatment.Over time,majors such as Civil Engineering Materials from the Civil Engineering Department and Advanced Materials Processing from the Mechanical Engineering Department were integrated into this new department.In 2006,the department evolved into the School of Materials Science and Engineering,and in 2017,its Materials Science discipline was recognized as a“Double First-Class”national initiative.展开更多
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv...Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.展开更多
Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening ...Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening weapon safety.Therefore,a stealth material compatible with radar and infrared was designed based on the photonic bandgap characteristics of photonic crystals.The radar stealth lay-er(bottom layer)is a composite of carbonyl iron/silicon dioxide/epoxy resin,and the infrared stealth layer(top layer)is a 1D photonic crystal with alternately and periodically stacked germanium and silicon nitride.Through composition optimization and structural adjust-ment,the effective absorption bandwidth of the compatible stealth material with a reflection loss of less than-10 dB has reached 4.95 GHz.The average infrared emissivity of the proposed design is 0.1063,indicating good stealth performance.The theoretical analysis proves that photonic crystals with this structural design can produce infrared waves within the photonic bandgap,achieving high radar wave transmittance and low infrared emissivity.Infrared stealth is achieved without affecting the absorption performance of the radar stealth layer,and the conflict between radar and infrared stealth performance is resolved.This work aims to promote the application of photonic crystals in compatible stealth materials and the development of stealth technology and to provide a design and theoretical found-ation for related experiments and research.展开更多
Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring...Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials.展开更多
Composed of natural materials but constructed using artificial structures through ingenious design,metamaterials possess properties beyond nature.Unlike traditional materials studies,metamaterials research requires gr...Composed of natural materials but constructed using artificial structures through ingenious design,metamaterials possess properties beyond nature.Unlike traditional materials studies,metamaterials research requires great human creativity in order to realize the desired properties and thereby the required functionalities through design.Such properties and functionalities are not necessarily available in nature,and their design can break through the existing materials ideology.This paper reviews progress in metamaterials research over the past 20 years in terms of the materials innovations that have achieved the designation of “meta.” In particular,we discuss future trends in metamaterials in the fields of both fundamental science and engineering.展开更多
A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate t...A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.展开更多
In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadin...In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1).展开更多
To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration signific...To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration significance and systematic research re-quirements.By utilizing the low-cost and excellent magnetic and stable chemical characteristics of barium ferrite(BaFe_(12)O_(19))and using the high dielectric loss and excellent chemical inertia of nanocarbon clusters,a new type of nanocomposites with carbon nanoclusters en-capsulating BaFe_(12)O_(19)was designed and synthesized by combining an impregnation method and a high-temperature calcination strategy.Furthermore,Ce-Mn ions were introduced into the BaFe_(12)O_(19)lattice to improve the dielectric and magnetic properties of BaFe_(12)O_(19)cores significantly,and the energy band structure of the doped lattice and the orders of Ce replacing Fe sites were calculated.Benefiting from Ce-Mn ion doping and carbon nanocluster encapsulation,the composite material exhibited excellent dual functionality of corrosion resist-ance and EWA.When BaCe_(0.2)Mn_(0.3)Fe_(11.5)O_(19)-C(BCM-C)was calcined at 600°C,the minimum reflection loss of-20.1 dB was achieved at 14.43 GHz.The Ku band’s effective absorption bandwidth of 4.25 GHz was achieved at an absorber thickness of only 1.3 mm.The BCM-C/polydimethylsiloxane coating had excellent corrosion resistance in the simulated marine environment(3.5wt%NaCl solution).The|Z|0.01Hz value of BCM-C remained at 106Ω·cm^(2)after 12 soaking days.The successful preparation of the BaFe_(12)O_(19)composite en-capsulated with carbon nanoclusters provides new insights into the preparation of multifunctional absorbent materials and the fabrication of absorbent devices applied in humid marine environments in the future.展开更多
Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future applicat...Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future application potential of bionic microwave-absorbing materials(BMAMs).It outlines the significance of achieving high-performance microwave-absorbing materials through ingenious microstructural design and judicious composition selection,while emphasizing the innovative strategies offered by bionic manufacturing.Furthermore,this work meticulously analyzes how inspiration can be drawn from the intricate structures of marine organisms,plants,animals,and nonmetallic minerals in nature to devise and develop BMAMs with superior electromagnetic wave absorption properties.Additionally,the paper provides an in-depth exploration of the theoretical underpinnings of BMAMs,particularly the latest breakthroughs in broadband absorption.By incorporating advanced methodologies such as simulation modeling and bionic gradient design,we unravel the scientific principles governing the microwave absorption mechanisms of BMAMs,thereby furnishing a solid theoretical foundation for understanding and optimizing their performance.Ultimately,this review aims to offer valuable insights and inspiration to researchers in related fields,fostering the collective advancement of research on BMAMs.展开更多
Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the...Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the focus of current research in the field of bone damage repair.To this regard, a preferential combination of materials and preparation techniques is considered crucial for the preparation of advanced bone tissue engineering scaffolds to better facilitate the regeneration of broken bone.In this review, current research advances and challenges in bone tissue engineering scaffolds are discussed and analyzed in detail.First, we elucidated the structure and self-healing mechanism of bone tissue.Subsequently, the main applications of different materials, including inorganic and organic materials, in bone tissue engineering scaffolds are summarized.Moreover, we overview the latest research progress of the mainstream preparation strategies of bone tissue engineering scaffolds, and provide an in-depth analysis of the different advantages of each method.Finally, promising future directions and challenges of bone tissue engineering scaffolds are systematically discussed.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ...Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.展开更多
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the ...Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.展开更多
Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoe...Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.展开更多
LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LN...LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LNMO-1%AP|Li cell prepared with a 1%mass ratio of Al PO_(4and) LNMO had better electrochemical performance;after 450 cycles at 1C,its discharge specific capacity maintained 108.78 m Ah·g^(-1),while that of the LNMO|Li cell was only 86.04 m Ah·g^(-1).Especially at the high rates of 5C and 10C,the electrochemical properties of the former were far superior to the latter.This was attributed to the fact that the AP coating made the surface of LNMO in contact with the electrolyte more stable,effectively promoted the Li~+transport,and reduced the polarization voltage of the electrode.展开更多
Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the...Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.展开更多
Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.Ho...Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.However,understanding the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance from a comprehensive perspective is crucial for guiding their future development.This review provides a timely and comprehensive overview of the applications of 2D nanomaterials in oil-based lubrication.First,the bottlenecks and mechanisms of action of 2D nanomaterials are outlined,including adsorption protective films,charge adsorption effects,tribochemical reaction films,interlayer slip,and synergistic effects.On this basis,the review summarizes recent structural regulation strategies for 2D nanomaterials,including doping engineering,surface modification,structural optimization,and interfacial mixing engineering.Then,the focus was on analyzing the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance.The effects of thickness,number of layers,sheet diameter,interlayer spacing,Moiré patterns,wettability,functional groups,concentration,as well as interfacial compatibility and dispersion behavior of 2D nanomaterials were systematically investigated in oil-based lubrication,with the intrinsic correlations resolved through computational simulations.Finally,the review offers a preliminary summary of the significant challenges and future directions for 2D nanomaterials in oil-based lubrication.This review aims to provide valuable insights and development strategies for the rational design of high-performance oil-based lubrication materials.展开更多
In the realm of biomedical materials,biomedical magnesium(Mg)alloy materials are progressively emerging as a highly salient research focal point,capitalizing on their distinctive advantages.Mg,as a unique metallic ele...In the realm of biomedical materials,biomedical magnesium(Mg)alloy materials are progressively emerging as a highly salient research focal point,capitalizing on their distinctive advantages.Mg,as a unique metallic element,by virtue of its specific properties,has ushered in novel development opportunities for the biomedical domain[1-3].Firstly,Mg manifests outstanding biodegradability.展开更多
基金supported by the National Key Research and Development Program of China(2023YFC2412600)the National Natural Science Foundation of China(52271243,52171233,82370924,82170929)+3 种基金the Beijing Natural Science Foundation(L212014)the Beijing Nova Program(20230484459)the National Clinical Key Discipline Construction Project(PKUSSNKP-T202103)the Research Foundation of Peking University School and Hospital of Stomatology(PKSS20230104).
文摘Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption,ultimately resulting in implant failure.Dental implants for clinical use barely have antibacterial properties,and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis.Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque.However,it is particularly important to prevent the occurrence of peri-implantitis rather than treatment.Therefore,the current research spot has focused on improving the antibacterial properties of dental implants,such as the construction of specific micro-nano surface texture,the introduction of diverse functional coatings,or the application of materials with intrinsic antibacterial properties.The aforementioned antibacterial surfaces can be incorporated with bioactive molecules,metallic nanoparticles,or other functional components to further enhance the osteogenic properties and accelerate the healing process.In this review,we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration.Furthermore,we summarized the obstacles existing in the process of laboratory research to reach the clinic products,and propose corresponding directions for future developments and research perspectives,so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy,biological safety,and osteogenic property.
文摘The School of Materials Science and Engineering at Southeast University is nestled along the scenic Jiulong Lake in Nanjing,south of the Yangtze River and west of the Zhongshan Mountains.As early as 1928,Southeast University(then known as National Central University)introduced undergraduate majors in engineering materials,as well as casting and forging materials.To advance materials science,the university established the Department of Materials Science and Engineering in December 1984,building upon the foundations of metal materials and heat treatment.Over time,majors such as Civil Engineering Materials from the Civil Engineering Department and Advanced Materials Processing from the Mechanical Engineering Department were integrated into this new department.In 2006,the department evolved into the School of Materials Science and Engineering,and in 2017,its Materials Science discipline was recognized as a“Double First-Class”national initiative.
基金supported by the National Natural Science Foundation of China(No.52127816),the National Key Research and Development Program of China(No.2020YFA0715000)the National Natural Science and Hong Kong Research Grant Council Joint Research Funding Project of China(No.5181101182)the NSFC/RGC Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the National Natural Science Foundation of China(No.N_PolyU513/18).
文摘Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability.
基金supported by the National Natural Science Foundation of China(Nos.52071053,U1704253,and 52103334).
文摘Traditional stealth materials do not fulfill the requirements of high absorption for radar waves and low emissivity for infrared waves.Furthermore,they can be detected by various technologies,considerably threatening weapon safety.Therefore,a stealth material compatible with radar and infrared was designed based on the photonic bandgap characteristics of photonic crystals.The radar stealth lay-er(bottom layer)is a composite of carbonyl iron/silicon dioxide/epoxy resin,and the infrared stealth layer(top layer)is a 1D photonic crystal with alternately and periodically stacked germanium and silicon nitride.Through composition optimization and structural adjust-ment,the effective absorption bandwidth of the compatible stealth material with a reflection loss of less than-10 dB has reached 4.95 GHz.The average infrared emissivity of the proposed design is 0.1063,indicating good stealth performance.The theoretical analysis proves that photonic crystals with this structural design can produce infrared waves within the photonic bandgap,achieving high radar wave transmittance and low infrared emissivity.Infrared stealth is achieved without affecting the absorption performance of the radar stealth layer,and the conflict between radar and infrared stealth performance is resolved.This work aims to promote the application of photonic crystals in compatible stealth materials and the development of stealth technology and to provide a design and theoretical found-ation for related experiments and research.
基金supported by the National Key Research and Development Program(No.2022YFE0122000)National Natural Science Foundation of China under Grant Nos.52234009,52274383,52222409,and 52201113。
文摘Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials.
基金supported by the National Key Research and Development Program of China (2022YFB3806000)the Key Program of National Natural Science Foundation of China (52332006)。
文摘Composed of natural materials but constructed using artificial structures through ingenious design,metamaterials possess properties beyond nature.Unlike traditional materials studies,metamaterials research requires great human creativity in order to realize the desired properties and thereby the required functionalities through design.Such properties and functionalities are not necessarily available in nature,and their design can break through the existing materials ideology.This paper reviews progress in metamaterials research over the past 20 years in terms of the materials innovations that have achieved the designation of “meta.” In particular,we discuss future trends in metamaterials in the fields of both fundamental science and engineering.
基金National Natural Science Foundation of China(Nos.52174269,52374293)Science and Technology Innovation Program of Hunan Province,China(Nos.2024CK1009,2022RC1123)。
文摘A tunable oxidization and reduction strategy was proposed to directly regenerate spent LiFePO_(4)/C cathode materials by oxidizing excessive carbon powders with the addition of FePO_(4).Experimental results indicate that spent LiFePO_(4)/C cathode materials with good performance can be regenerated by roasting at 650℃ for 11 h with the addition ofLi_(2)CO_(3),FePO_(4),V_(2)O_(5),and glucose.V_(2)O_(5) is added to improve the cycle performance of regenerated cathode materials.Glucose is used to revitalize the carbon layers on the surface of spent LiFePO_(4)/C particles for improving their conductivity.The regenerated V-doped LiFePO_(4)/C shows an excellent electrochemical performance with the discharge specific capacity of 161.36 mA·h/g at 0.2C,under which the capacity retention is 97.85%after 100 cycles.
基金financially supported by the National Natural Science Foundation of China(52172245)the Key Scientific and Technological Innovation Project of Shandong(2023CXGC010302)the Qingdao Flexible Materials Precision Die-cutting Technology Innovation Center。
文摘In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1).
基金supported by the National Key R&D Program of China(Nos.2022YFB3504804 and 2023YFF0718303)the National Natural Science Foundation of China(Nos.51871219,52071324,52031014,and 52401255)+1 种基金Science and Technology Project of Shenyang City(No.22-101-0-27)Liaoning Institute of Science and Technology Doctoral Initiation Fund Project(No.2307B19).
文摘To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration significance and systematic research re-quirements.By utilizing the low-cost and excellent magnetic and stable chemical characteristics of barium ferrite(BaFe_(12)O_(19))and using the high dielectric loss and excellent chemical inertia of nanocarbon clusters,a new type of nanocomposites with carbon nanoclusters en-capsulating BaFe_(12)O_(19)was designed and synthesized by combining an impregnation method and a high-temperature calcination strategy.Furthermore,Ce-Mn ions were introduced into the BaFe_(12)O_(19)lattice to improve the dielectric and magnetic properties of BaFe_(12)O_(19)cores significantly,and the energy band structure of the doped lattice and the orders of Ce replacing Fe sites were calculated.Benefiting from Ce-Mn ion doping and carbon nanocluster encapsulation,the composite material exhibited excellent dual functionality of corrosion resist-ance and EWA.When BaCe_(0.2)Mn_(0.3)Fe_(11.5)O_(19)-C(BCM-C)was calcined at 600°C,the minimum reflection loss of-20.1 dB was achieved at 14.43 GHz.The Ku band’s effective absorption bandwidth of 4.25 GHz was achieved at an absorber thickness of only 1.3 mm.The BCM-C/polydimethylsiloxane coating had excellent corrosion resistance in the simulated marine environment(3.5wt%NaCl solution).The|Z|0.01Hz value of BCM-C remained at 106Ω·cm^(2)after 12 soaking days.The successful preparation of the BaFe_(12)O_(19)composite en-capsulated with carbon nanoclusters provides new insights into the preparation of multifunctional absorbent materials and the fabrication of absorbent devices applied in humid marine environments in the future.
基金the financial support provided by Graduate Scientific Research and Innovation Foundation of Chongqing,China(CYB22007,CYS22005)Projects(No.2020CDJXZ001)supported by the Fundamental Research Funds for the Central Universities+2 种基金the Technology Innovation and Application Development Special Project of Chongqing(Z20211350 and Z20211351)Scientific Research Project of Chongqing Ecological Environment Bureau(No.CQEE2022STHBZZ118)Fundamental Research Funds for the Central Universities(Grant No.2024IAIS-QN008)。
文摘Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future application potential of bionic microwave-absorbing materials(BMAMs).It outlines the significance of achieving high-performance microwave-absorbing materials through ingenious microstructural design and judicious composition selection,while emphasizing the innovative strategies offered by bionic manufacturing.Furthermore,this work meticulously analyzes how inspiration can be drawn from the intricate structures of marine organisms,plants,animals,and nonmetallic minerals in nature to devise and develop BMAMs with superior electromagnetic wave absorption properties.Additionally,the paper provides an in-depth exploration of the theoretical underpinnings of BMAMs,particularly the latest breakthroughs in broadband absorption.By incorporating advanced methodologies such as simulation modeling and bionic gradient design,we unravel the scientific principles governing the microwave absorption mechanisms of BMAMs,thereby furnishing a solid theoretical foundation for understanding and optimizing their performance.Ultimately,this review aims to offer valuable insights and inspiration to researchers in related fields,fostering the collective advancement of research on BMAMs.
基金financially supported by the Fundamental Research Funds for the Central Universities of China(Nos.DUT22QN203 and DUT22YG201).
文摘Bone damage caused by trauma and tumors is a serious problem for human health, therefore, three-dimensional (3D) scaffolding materials that stimulate and promote the regeneration of broken bone tissues have become the focus of current research in the field of bone damage repair.To this regard, a preferential combination of materials and preparation techniques is considered crucial for the preparation of advanced bone tissue engineering scaffolds to better facilitate the regeneration of broken bone.In this review, current research advances and challenges in bone tissue engineering scaffolds are discussed and analyzed in detail.First, we elucidated the structure and self-healing mechanism of bone tissue.Subsequently, the main applications of different materials, including inorganic and organic materials, in bone tissue engineering scaffolds are summarized.Moreover, we overview the latest research progress of the mainstream preparation strategies of bone tissue engineering scaffolds, and provide an in-depth analysis of the different advantages of each method.Finally, promising future directions and challenges of bone tissue engineering scaffolds are systematically discussed.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金supported by the National Key R&D Plan of China(No.2022YFB3705603)the National Natural Science Foundation of China(No.52101046)+1 种基金the Excellent Youth Overseas Project of National Science and Natural Foundation of China,the Baowu Special Metallurgy Cooperation Limited(No.22H010101336)the Medicine-Engineering Interdisciplinary Project of Shanghai Jiao Tong University(No.YG2022QN076).
文摘Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
基金support by National Key Research and Development Program of China(2022YFB3803502)National Natural Science Foundation of China(52103076)+5 种基金Science and Technology Commission of Shanghai Municipality(23ZR1400300)special fund of Beijing Key Laboratory of Indoor Air Quality Evaluat ion and Control(NO.BZ0344KF21-02)State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22203)JLF is a member of LSRE-LCM–Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials,supported by national funds through FCT/MCTES(PIDDAC):LSRE-LCM,UIDB/50020/2020(DOI:10.54499/UIDB/50020/2020)UIDP/50020/2020(DOI:10.54499/UIDP/50020/2020)ALiCE,LA/P/0045/2020(DOI:10.54499/LA/P/0045/2020).
文摘Direct seawater splitting has emerged as a popular and promising research direction for synthesising clean,green,non-polluting,and sustainable hydrogen energy without depending on high-purity water in the face of the world’s shortage of fossil energy.However,efficient seawater splitting is hindered by slow kinetics caused by the ultra-low conductivity and the presence of bacteria,microorganisms,and stray ions in seawater.Additionally,producing hydrogen on an industrial scale is challenging due to the high production cost.The present review addresses these challenges from the catalyst point of view,namely,that designing catalysts with high catalytic activity and stability can directly affect the rate and effect of seawater splitting.From the ion transfer perspective,designing membranes can block harmful ions,improving the stability of seawater splitting.From the energy point of view,mixed seawater systems and self-powered systems also provide new and low-energy research systems for seawater splitting.Finally,ideas and directions for further research on direct seawater splitting in the future are pointed out,with the aim of achieving low-cost and high-efficiency hydrogen production.
基金National Natural Science Foundation of China (52202139, 52072178)。
文摘Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.
文摘LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LNMO-1%AP|Li cell prepared with a 1%mass ratio of Al PO_(4and) LNMO had better electrochemical performance;after 450 cycles at 1C,its discharge specific capacity maintained 108.78 m Ah·g^(-1),while that of the LNMO|Li cell was only 86.04 m Ah·g^(-1).Especially at the high rates of 5C and 10C,the electrochemical properties of the former were far superior to the latter.This was attributed to the fact that the AP coating made the surface of LNMO in contact with the electrolyte more stable,effectively promoted the Li~+transport,and reduced the polarization voltage of the electrode.
文摘Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance.However,traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects.With an aim of realizing devisable structures,adjustable functions,and performance breakthroughs,superstructured carbons is proposed and represent a category of carbon-based materials,characterized by precisely-built pores,networks,and interfaces.Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices.We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure,a dense carbon network framework,and a multi-component highly coupled interface between the different components.Finally,we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.
基金supported by the National Natural Science Foundation of China(No.51874036)the Natural Science Foundation of Ningxia(No.2024AAC02034)。
文摘Two-dimensional(2D) nanomaterials have always been regarded as having great development potential in the field of oil-based lubrication due to their designable structures,functional groups,and abundant active sites.However,understanding the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance from a comprehensive perspective is crucial for guiding their future development.This review provides a timely and comprehensive overview of the applications of 2D nanomaterials in oil-based lubrication.First,the bottlenecks and mechanisms of action of 2D nanomaterials are outlined,including adsorption protective films,charge adsorption effects,tribochemical reaction films,interlayer slip,and synergistic effects.On this basis,the review summarizes recent structural regulation strategies for 2D nanomaterials,including doping engineering,surface modification,structural optimization,and interfacial mixing engineering.Then,the focus was on analyzing the structure-performance relationship between the chemical structure of 2D nanomaterials and their lubrication performance.The effects of thickness,number of layers,sheet diameter,interlayer spacing,Moiré patterns,wettability,functional groups,concentration,as well as interfacial compatibility and dispersion behavior of 2D nanomaterials were systematically investigated in oil-based lubrication,with the intrinsic correlations resolved through computational simulations.Finally,the review offers a preliminary summary of the significant challenges and future directions for 2D nanomaterials in oil-based lubrication.This review aims to provide valuable insights and development strategies for the rational design of high-performance oil-based lubrication materials.
文摘In the realm of biomedical materials,biomedical magnesium(Mg)alloy materials are progressively emerging as a highly salient research focal point,capitalizing on their distinctive advantages.Mg,as a unique metallic element,by virtue of its specific properties,has ushered in novel development opportunities for the biomedical domain[1-3].Firstly,Mg manifests outstanding biodegradability.