期刊文献+
共找到872篇文章
< 1 2 44 >
每页显示 20 50 100
Engineering of copper sulfide-based nanomaterials for thermoelectric application
1
作者 Binqi He Kai Zhang Maiyong Zhu 《Green Energy & Environment》 2025年第4期619-688,共70页
In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.... In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials. 展开更多
关键词 NANOMATERIALS thermoelectric materials organic thermoelectric materialsthephonon diminishing energy resources sustainable development solid phase method greenhouse effectthermoelectric materials inorganic thermoelectric materialscopper sulfide compounds
在线阅读 下载PDF
Fabrication and development of mechanical metamaterials via additive manufacturing for biomedical applications:a review 被引量:1
2
作者 Junsheng Chen Jibing Chen +4 位作者 Hongze Wang Liang He Boyang Huang Sasan Dadbakhsh Paulo Bartolo 《International Journal of Extreme Manufacturing》 2025年第1期1-44,共44页
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i... In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life. 展开更多
关键词 biomedical application additive manufacturing mechanical metamaterials biomimetic materials
暂未订购
Enhancing performance of mining phenolic filling materials by tailoring closed cell morphology with fly ash geopolymer
3
作者 Yi Zhang Xiaotian Nan +4 位作者 Sitong Zhang Lan Jia Fengbo Zhu Wenwen Yu Qiang Zheng 《International Journal of Mining Science and Technology》 2025年第7期1197-1210,共14页
Phenolic foam(PF)has attracted growing attention in plugging areas due to its lightweight,flame retardancy and high fillability,yet its friable character and high reaction temperature severely weaken its potentials to... Phenolic foam(PF)has attracted growing attention in plugging areas due to its lightweight,flame retardancy and high fillability,yet its friable character and high reaction temperature severely weaken its potentials toward practical coal mining applications.Herein,a novel phenolic composite material filled with modified fly ash(MFA)geopolymer has been proposed to address the above issues.By modifying fly ash(FA)particles with siloxanes,robust interfacial bonding between the organic PF polymer and inorganic geopolymer network has been established,which enables modulation of their micro-morphologies to optimize their macro performances.The foam structure of PF evolves from an open-cell to a closed-cell morphology with the incorporation of MFA,leading to a decreased pulverization ratio(41%)while enhanced mechanical properties(15%).Compared with neat PF,the composite exhibits faster gelation dynamics during curing,with a maximum reaction temperature as low as only 40°C.PF/MFA composite show high reliability against gas leakage during a laboratory designed coal mine plugging test.Furthermore,the formation of a silica hybrid char layer with higher graphitization degree and a multiple continuous closed-cell structure following the combustion of PF/MFA effectively inhibits the release of combustible volatiles and toxic gases.It is provided that this strategy of geopolymer filled polymer cross-linking networks with tunable morphology opens up an avenue for advanced mining phenolic filling materials. 展开更多
关键词 Continuous closed-cell structure Fly ash geopolymer Coal mining Filling and plugging ability Flame retardancy
在线阅读 下载PDF
Microenvironment engineering of nitrogen-doped hollow carbon spheres encapsulated with Pd catalysts for highly selective hydrodeoxygenation of biomass-derived vanillin in water
4
作者 Jun Wu Liqian Liu +5 位作者 Xinyue Yan Gang Pan Jiahao Bai Chengbing Wang Fuwei Li Yong Li 《Chinese Journal of Catalysis》 2025年第4期267-284,共18页
Development of efficient and stable metal catalysts for the selective aqueous phase hydrodeoxygenation(HDO)of biomass-derived oxygenates to value-added biofuels is highly desired.An innovative surface microenvironment... Development of efficient and stable metal catalysts for the selective aqueous phase hydrodeoxygenation(HDO)of biomass-derived oxygenates to value-added biofuels is highly desired.An innovative surface microenvironment modulation strategy was used to construct the nitrogen-doped hollow carbon sphere encapsulated with Pd(Pd@NHCS-X,X:600–800)nanoreactors for catalytic HDO of biomass-derived vanillin in water.The specific surface microenvironments of Pd@NHCS catalysts including the electronic property of active Pd centers and the surface wettability and porous structure of NHCS supports could be well-controlled by the calcination temperature of catalysts.Intrinsic kinetic evaluations demonstrated that the Pd@NHCS-600 catalyst presented a high turnover frequency of 337.77 h^(–1)and a low apparent activation energy of 18.63 kJ/mol.The excellent catalytic HDO performance was attributed to the unique surface microenvironment of Pd@NHCS catalyst based on structure-performance relationship analysis and DFT calculations.It revealed that pyridinic N species dominated the electronic property regulation of Pd sites through electronic metal-support interaction(EMSI)and produced numerous electron-rich active Pd centers,which not only intensified the dissociation and activation of H2 molecules,but also substantially improved the activation capability of vanillin via the enhanced adsorption of–C=O group.The fine hydrophilicity and abundant porous structure promoted the uniform dispersion of catalyst and ensured the effective access of reactants to catalytic active centers in water.Additionally,the Pd@NHCS-600 catalyst exhibited excellent catalytic stability and broad substrate applicability for the selective aqueous phase HDO of various biomass-derived carbonyl compounds.The proposed surface microenvironment modulation strategy will provide a new consideration for the rational design of high-performance nitrogen-doped carbon-supported metal catalysts for catalytic biomass transformation. 展开更多
关键词 Microenvironment modulation Nitrogen-doped hollow carbon sphere Pd-based catalyst Electronic metal-support interaction HYDRODEOXYGENATION VANILLIN
在线阅读 下载PDF
Advancements and Challenges in Enhancing Thermal Stability of Lithium-Ion Battery Separators: Review on CoatingMaterials, High-Temperature Resistant Materials and Future Trends
5
作者 Haoran Li Yayou Xu +3 位作者 Zihan Zhang Feng Han Ye-Tang Pan Rongjie Yang 《Journal of Polymer Materials》 2025年第1期33-55,共23页
The thermal stability of lithium-ion battery separators is a critical determinant of battery safety and performance,especially in the context of rapidly expanding applications in electric vehicles and energy storage s... The thermal stability of lithium-ion battery separators is a critical determinant of battery safety and performance,especially in the context of rapidly expanding applications in electric vehicles and energy storage systems.While traditional polyolefin separators(PP/PE)dominate the market due to their cost-effectiveness and mechanical robustness,their inherent poor thermal stability poses significant safety risks under high-temperature conditions.This review provides a comprehensive analysis of recent advancements in enhancing separator thermal stability through coating materials(metal,ceramic,inorganic)and novel high-temperature-resistant polymers(e.g.,PVDF copolymers,PI,PAN).Notably,we critically evaluate the trade-offs between thermal resilience and electrochemical performance,such as the unintended increase in electronic conductivity from metal coatings(e.g.,Cu,MOFs)and reduced electrolyte wettability in ceramic coatings(e.g.,Al_(2)O_(3)).Innovations in hybrid coatings(e.g.,BN/PAN composites,gradient-structured MOFs)and scalable manufacturing techniques(e.g.,roll-to-roll electrospinning)are highlighted as promising strategies to balance these competing demands.Furthermore,a comparative analysis of next-generation high-temperature-resistant separators underscores their ionic conductivity,mechanical strength,and scalability,offering actionable insights for material selection.The review concludes with forward-looking perspectives on integrating machine learning for material discovery,optimizing interfacial adhesion in ceramic coatings,and advancing semi-/all-solid-state batteries to address both thermal and electrochemical challenges.This work aims to bridge the gap between laboratory innovations and industrial applications,fostering safer and more efficient lithium battery technologies. 展开更多
关键词 Lithium battery thermal stability SEPARATOR COATING
在线阅读 下载PDF
Interfacial engineering and rapid thermal crystallization of Sb_(2)S_(3)photoanodes for enhanced photoelectrochemical performances
6
作者 Runfa Tan Seo Yeong Hong +2 位作者 Yoo Jae Jeong Seong Sik Shin In Sun Cho 《Journal of Energy Chemistry》 2025年第9期417-426,I0012,共11页
Antimony sulfide(Sb_(2)S_(3))is a promising material for photoelectrochemical(PEC)devices that generate green hydrogen from sunlight and water.In this study,we present a synthesis of high-performance Sb_(2)S_(3)photoa... Antimony sulfide(Sb_(2)S_(3))is a promising material for photoelectrochemical(PEC)devices that generate green hydrogen from sunlight and water.In this study,we present a synthesis of high-performance Sb_(2)S_(3)photoanodes via an interface-engineered hydrothermal growth followed by rapid thermal annealing(RTA).A TiO_(2)interfacial layer plays a crucial role in ensuring homogeneous precursor deposition,enhancing light absorption,and forming efficient heterojunctions with Sb_(2)S_(3),thereby significantly improving charge separation and transport.RTA further improves crystallinity and interfacial contact,resulting in dense and uniform Sb_(2)S_(3)films with enlarged grains and fewer defects.The optimized Sb_(2)S_(3)photoanode achieves a photocurrent density of 2.51 mA/cm^(2)at 1.23 V vs.the reversible hydrogen electrode(RHE),one of the highest reported for Sb_(2)S_(3)without additional catalysts or passivation layers.To overcome the limitations of oxygen evolution reaction(OER),we employ the iodide oxidation reaction(IOR)as an alternative,significantly lowering the overpotential and improving charge transfer kinetics.Consequently,it produces a record photocurrent density of 8.9 mA/cm^(2)at 0.54 V vs.RHE.This work highlights the synergy between TiO_(2)interfacial engineering,RTA-induced crystallization,and IOR-driven oxidation,offering a promising pathway for efficient and scalable PEC hydrogen production. 展开更多
关键词 Antimony sulfide(Sb_(2)S_(3)) TiO_(2)heterojunction Hydrothermal synthesis Rapid thermal annealing(RTA) Photoelectrochemical hydrogen production Iodide oxidation reaction(IOR)
在线阅读 下载PDF
Modulation of inactive Li_(2)O via iodinated MOF nanocapsules interfacial transformation engineering for high-performance solid electrolyte interphase
7
作者 Xingxing Zhang Qingmei Su +8 位作者 Gaohui Du Bingshe Xu Xuehan Hou Xiaowei Yang Weihao Shi Zhuo Chen Yang Shi Yujie Lv Wenhuan Huang 《Journal of Energy Chemistry》 2025年第5期482-493,共12页
Lithium(Li)deposition and nucleation at solid electrolyte interphase(SEI)is the main origin for the capacity decay in Li metal batteries(LMBs).SEI conversion with enhanced electrochemical and mechanical properties is ... Lithium(Li)deposition and nucleation at solid electrolyte interphase(SEI)is the main origin for the capacity decay in Li metal batteries(LMBs).SEI conversion with enhanced electrochemical and mechanical properties is an effective approach to achieve uniform nucleation of Li^(+)and stabilize the lithium metal anode.However,complex interfacial reaction mechanisms and interface compatibility issues hinder the development of SEI conversion strategies for stabilizing lithium metal anodes.Herein,we presented the release of I_(3)^(-)in–NH_(2)-modified metal–organic frameworks for a Li metal surface SEI phase conversion strategy.The–NH_(2)group in MOF pores induced the formation of I_(3)^(-)from I_(2),which was further spontaneously reacted with inactive Li_(2)O transforming into high-performance LiI and LiIO_(3)interphase.Furthermore,theoretical calculation provided deeply insight into the unique reconstructed interfacial formation and electrochemical mechanism of rich LiI and LiIO_(3)SEI.As a result,the Li^(+)deposition and nucleation were improved,facilitating the transport kinetics of Li^(+)and inhibiting the growth of lithium dendrites.The assembled solid-state Li||LiFePO_(4)full cells exhibited superior long-term stability of 800 cycles and high Coulombic efficiency(>99%),Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)pouch cell also displayed superior practical performance over 200 cycles at 2 C,high loading of 5 mg cm^(-2)and safety performance.This innovative SEI design strategy promotes the development of high-performance solid-state Li metal batteries. 展开更多
关键词 Solid electrolyte interphase(SEI) SEI phase conversion MOF Nano-capsule Solid-state electrolytes Li metal battery
在线阅读 下载PDF
Crystal orientation engineering toward high-performance photodetectors and their multifunctional optoelectronic applications
8
作者 Huanrong Liang Jianing Tan +10 位作者 Yu Chen Yuhang Ma Xinyi Guan Yichao Zou Yuqiao Zhou Zhaoqiang Zheng Wenjing Huang Chun Du Gang Ouyang Jiandong Yao Guowei Yang 《Nano Materials Science》 2025年第4期522-532,共11页
Pulsed-laser deposition has been developed to prepare large-area In_(2)S_(3)nanofilms and their photoelectric characteristics have been investigated.The In_(2)S_(3)nanofilm grown under 500℃is highly oriented along th... Pulsed-laser deposition has been developed to prepare large-area In_(2)S_(3)nanofilms and their photoelectric characteristics have been investigated.The In_(2)S_(3)nanofilm grown under 500℃is highly oriented along the(103)direction with exceptional crystallinity.The corresponding(103)-oriented In_(2)S_(3)photodetectors exhibit broadband photoresponse from 370.6 nm to 1064 nm.Under 635 nm illumination,the optimized responsivity,external quantum efficiency,and detectivity reach 19.8 A/W,3869%,and 2.59×10^(12)Jones,respectively.In addition,the device exhibits short rise/decay time of 3.9/3.0 ms.Of note,first-principles calculations have unveiled that the effective carrier mass along the(103)lattice plane is much smaller than those along the(100),(110)and(111)lattice planes,which thereby enables high-efficiency transport of photocarriers and thereby the excellent photosensitivity.Profited from the sizable bandgap,the In_(2)S_(3)photodetectors also showcase strong robustness against elevated operating temperature.In the end,proof-of-concept imaging application beyond human vision and under high operating temperature as well as heart rate monitoring have been achieved by using the In_(2)S_(3)device of the sensing component.This study introduces a novel crystal orientation engineering paradigm for the implementation of next-generation advanced optoelectronic systems. 展开更多
关键词 PHOTODETECTORS Indium trisulfide Pulsed-laser deposition Broadband photoresponse High-temperature durability
在线阅读 下载PDF
Spatial configuration engineering of perylenediimide-based non-fullerene electron transport materials for efficient inverted perovskite solar cells 被引量:1
9
作者 Mengmeng Zheng Yawei Miao +5 位作者 Ali Asgher Syed Cheng Chen Xichuan Yang Liming Ding Huaming Li Ming Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期374-382,共9页
Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates fo... Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates for perovskite solar cells(PSCs).However,the conjugated rigid plane structure of PDI units result in PDI-based ETMs tending to form large aggregates,limiting their application and photovoltaic performance.In this study,to restrict aggregation and further enhance the photovoltaic performance of PDI-type ETMs,two PDI-based ETMs,termed PDO-PDI2(dimer)and PDO-PDI3(trimer),were constructed by introducing a phenothiazine 5,5-dioxide(PDO)core building block.The research manifests that the optoelectronic properties and film formation property of PDO-PDI2 and PDO-PDI3 were deeply affected by the molecular spatial configuration.Applied in PSCs,PDO-PDI3 with threedimensional spiral molecular structure,exhibits superior electron extraction and transport properties,further achieving the best PCE of 18.72%and maintaining 93%of its initial efficiency after a 720-h aging test under ambient conditions. 展开更多
关键词 Non-fullerene Electron transport material Perovskite solar cell Inverted structure
在线阅读 下载PDF
Stable Cycling of All-Solid-State Lithium Metal Batteries Enabled by Salt Engineering of PEO-Based Polymer Electrolytes 被引量:2
10
作者 Lujuan Liu Tong Wang +6 位作者 Li Sun Tinglu Song Hao Yan Chunli Li Daobin Mu Jincheng Zheng Yang Dai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期67-74,共8页
Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibi... Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃. 展开更多
关键词 all-solid-state battery high voltage li-ion conductivity molecular interaction poly(ethylene oxide)
在线阅读 下载PDF
Regulating the electromagnetic balance of materials by electron transfer for enhanced electromagnetic wave absorption 被引量:2
11
作者 Kunyao Cao Weiping Ye +4 位作者 Yue Zhang Lewei Shen Rui Zhao Weidong Xue Xiaoyu Yang 《Journal of Materials Science & Technology》 CSCD 2024年第28期63-73,共11页
The fact that single dielectric loss materials have disadvantages of excessive conductivities and impedance mismatches has given rise to a large effort to develop effective strategies to fabricate electromagnetic wave... The fact that single dielectric loss materials have disadvantages of excessive conductivities and impedance mismatches has given rise to a large effort to develop effective strategies to fabricate electromagnetic wave(EMW)absorbing materials comprised of components that bring about a balance between dielectric loss and magnetic loss.Moreover,little is known about the essential features that regulate EMW absorption propensities.This study focused on the development of a new EMW absorbing material and gaining information about factors that govern EMW absorption abilities.The materials at the center of the effort are light weight and porous cobalt sulfonated phthalocyanine-reduced graphene oxide(CoSPcrGO)aerogels that were synthesized by using a simple hydrothermal method followed by freeze-drying.The properties of these materials that contribute to the electromagnetic balance between dielectric and magnetic loss were elucidated by first formulating a reasonable hypothesis about how the relative orien-tation of the components in CoSPc-rGO govern p-conjugation and electron transfer from rGO to CoSPc,which is proposed to be a key factor contributing to the regulation of the electromagnetic balance.Polarization relaxation process of materials was analyzed in detail using a variety of approaches including theoretical calculation,spectroscopic measurements,and experimental and simulation studies.The fabricated CoSPc-rGO aerogels that contain an ultra-low content of 4%were found to exhibit an extraordinary microwave absorption performance associated with a strong reflection loss of-53.23 dB and a broad effective absorption bandwidth of 8.04 GHz.The results of this study should provide an effective guide for new designs of composite materials for EMW absorption. 展开更多
关键词 Microwave absorption Polarization relaxation Electromagnetic balance Electrons transfer DFT calculation
原文传递
Alkylene-functionality in bridged and fused nitrogen-rich poly-cyclic energetic materials:Synthesis,structural diversity and energetic properties
12
作者 Man Xu Nanxi Xiang +2 位作者 Ping Yin Qi Lai Siping Pang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期18-46,共29页
From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exh... From the standpoint of chemical structures,the organic backbones of energetic materials can be classified into aromatic rings,nonaromatic rings,and open chains.Although the category of aromatic energetic compounds exhibits several advantages in the regulation of energetic properties,the nonaromatic heterocycles,assembling nitramino explosophores with simple alkyl bridges,still have prevailed in benchmark materials.The methylene bridge plays a pivotal role in the constructions of the classic nonaromatic heterocycle-based energetic compounds,e.g.,hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),whereas ethylene bridge is the core moiety of state-of-the-art explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20).In this context,it is of great interest to employ simple and practical bridges to assemble aromatic and nonaromatic nitrogen-rich heterocycles,thereby expanding the structural diversity of energetic materials,e.g.,bridged and fused nitrogen-rich poly-heterocycles.Furthermore,alkyl-bridged poly-heterocycles highlight the potential for the open chain type of energetic materials.In this review,the development of alkyl bridges in linking nitrogen-rich heterocycles is presented,and the perspective of the newly constructed energetic backbones is summarized for the future design of advanced energetic materials. 展开更多
关键词 Energetic materials Alkyl bridge strategy Nitrogen-rich azoles Fused heterocycles AZOLES
在线阅读 下载PDF
Multi-electron reaction and fast Al ion diffusion of δ-MnO_(2) cathode materials in rechargeable aluminum batteries via first-principle calculations
13
作者 Lumin Zheng Ying Bai Chuan Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期248-254,共7页
Rechargeable aluminum batteries with multi-electron reaction have a high theoretical capacity for next generation of energy storage devices. However, the diffusion mechanism and intrinsic property of Al insertion into... Rechargeable aluminum batteries with multi-electron reaction have a high theoretical capacity for next generation of energy storage devices. However, the diffusion mechanism and intrinsic property of Al insertion into MnO_(2) are not clear. Hence, based on the first-principles calculations, key influencing factors of slow Al-ions diffusion are narrow pathways, unstable Al-O bonds and Mn^(3+) type polaron have been identified by investigating four types of δ-MnO_(2)(O3, O'3, P2 and T1). Although Al insert into δ-MnO_(2) leads to a decrease in the spacing of the Mn-Mn layer, P2 type MnO_(2) keeps the long(spacious pathways)and stable(2.007–2.030 A) Al-O bonds resulting in the lower energy barrier of Al diffusion of 0.56 e V. By eliminated the influence of Mn^(3+)(low concentration of Al insertion), the energy barrier of Al migration achieves 0.19 e V in P2 type, confirming the obviously effect of Mn^(3+) polaron. On the contrary, although the T1 type MnO_(2) has the sluggish of Al-ions diffusion, the larger interlayer spacing of Mn-Mn layer,causing by H_(2)O could assist Al-ions diffusion. Furthermore, it is worth to notice that the multilayer δ-MnO_(2) achieves multi-electron reaction of 3|e|. Considering the requirement of high energy density, the average voltage of P2(1.76 V) is not an obstacle for application as cathode in RABs. These discover suggest that layered MnO_(2) should keep more P2-type structure in the synthesis of materials and increase the interlayer spacing of Mn-Mn layer for providing technical support of RABs in large-scale energy storage. 展开更多
关键词 Rechargeable aluminum batteries δ-MnO_(2) First-principles calculations Multi-electron reaction Diffusion mechanism
原文传递
Spatially-graded 3D-printed viscoelastic truss metamaterials for impact trajectory control and energy absorption
14
作者 Kaoutar Radi Raphaël N.Glaesener +1 位作者 Siddhant Kumar Dennis M.Kochmann 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第5期378-385,共8页
This study demonstrates that two-and three-dimensional spatially graded,truss-based polymeric-material metamaterials can be designed for beneficial impact mitigation and energy absorption capabilities.Through a combin... This study demonstrates that two-and three-dimensional spatially graded,truss-based polymeric-material metamaterials can be designed for beneficial impact mitigation and energy absorption capabilities.Through a combination of numerical and experimental techniques,we highlight the broad property space of periodic viscoelastic trusses,realized using 3D printing via selective laser sintering.Extending beyond periodic designs,we investigate the impact response of spatially variant viscoelastic lattices in both two and three dimensions.Our result reveal that introducing spatial variations in lattice topology allows for redirecting of the impact trajectory,opening new opportunities for engineering and tailoring lightweight materials with target impact functionality.This is achieved through the combined selection of base material and metamaterial design. 展开更多
关键词 METAMATERIAL 3D Printing VISCOELASTICITY IMPACT TRUSS Finite element method
在线阅读 下载PDF
Phytic acid-assisted hybrid engineering of MOF-derived composites for tunable electromagnetic wave absorption
15
作者 Xiang Zhang Kai Yao +6 位作者 Xiao Wang Jinli Wang Hongtao Guo Xiaona Ma Yang Yang Hongjing Wu Wei Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第19期164-173,共10页
Hybrid engineering is gradually deemed as a powerful approach to solving the bottleneck problem of metal-organic framework (MOF) derived absorbers for practical application. Herein, a new type of semiconductor/carbon-... Hybrid engineering is gradually deemed as a powerful approach to solving the bottleneck problem of metal-organic framework (MOF) derived absorbers for practical application. Herein, a new type of semiconductor/carbon-based hybrid material was successfully prepared by phytic acid (PA) modification and carbonization of MOF/bacterial cellulose (BC) precursors, which remedied the drawbacks of structural instability, lethal byproducts and complicated steps reported previously. Specifically, the obtained Fe(PO3)2@C/phosphorus-doped carbon foam (Fe(PO3)2@C/PCF) had a 3D hybrid micro-nanostructure that integrated spatial microcurrent network, multi-level pores, heterogeneous interfaces and lattice defects, showing its unique advantages of low filler content (15 wt.%), moderate surface reflectivity, multi-band microwave absorption and radar stealth. The experimental analysis and CST simulation further revealed that PA dosage can precisely adjust the hybrid phase content, pore texture and electromagnetic parameters of the final product to achieve synergistic enhancement of multiple dielectric response, impedance matching and attenuation capacity. As a result, an effective bandwidth (EAB) of 6 GHz and a minimum reflection loss (RLmin) of -57.0 dB were obtained in the Ku- and C-bands, respectively. These encouraging results may advance the development of novel MOF-derived absorbents based on the hybridization principle. 展开更多
关键词 Hybrid engineering MOF derivatives Phytic acid Microwave absorption
原文传递
Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
16
作者 陈思汗 黎俊 +5 位作者 刘可可 孙笑晨 万京伟 翟慧宇 唐新峰 谭刚健 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期560-567,共8页
Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivit... Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivity.However,the typical synthesis of Ga-LLZO is usually accompanied by the formation of undesired LiGaO_(2) impurity phase that causes severe instability of the electrolyte in contact with molten Li metal during half/full cell assembly.In this study,we show that by simply engineering the defect chemistry of Ga-LLZO,namely,the lithium deficiency level,LiGaO_(2) impurity phase is effectively inhibited in the final synthetic product.Consequently,defect chemistry engineered Ga-LLZO exhibits excellent electrochemical stability against lithium metal,while its high room temperature ionic conductivity(~1.9×10^(-3)S·cm^(-1))is well reserved.The assembled Li/Ga-LLZO/Li symmetric cell has a superior critical current density of 0.9 mA·cm^(-2),and cycles stably for 500 hours at a current density of 0.3 mA·cm^(-2).This research facilitates the potential commercial applications of high performance Ga-LLZO solid electrolytes in ASSLBs. 展开更多
关键词 Ga-doped Li_7La_3Zr_2O_(12)(Ga-LLZO) defect chemistry engineering high room temperature ionic conductivity electrochemical stability
原文传递
Efficient chlorination reaction of Pt/RuO_(2)/g-C_(3)N_(4)under visible light irradiation for simultaneous removal of ammonia and bacteria from mariculture wastewater 被引量:1
17
作者 Yizhan Zhang Min Zhao +2 位作者 Yida Huang Yan-Ling Hu Lei Wang 《Journal of Environmental Sciences》 2025年第4期490-502,共13页
The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by deposit... The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by depositing Pt and RuO_(2)particles onto g-C_(3)N_(4).The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),X-ray diffraction(XRD),and UV–vis diffuse reflectance spectrometer(UV–vis DRS).The photocatalysts were then applied to the removal of both NH_(4)^(+)-N and bacteria from simulated mariculture wastewater.The results clarified that the removals of both NH_(4)^(+)-N and bacteria were in the sequence of g-C_(3)N_(4)<RuO_(2)/g-C_(3)N_(4)<Pt/g-C_(3)N_(4)<Pt/RuO_(2)/g-C_(3)N_(4).This magnificent photocatalytic ability of Pt/RuO_(2)/g-C_(3)N_(4)can be interpreted by the transfer of holes from g-C_(3)N_(4)to RuO_(2)to facilitate the in situ generation of HClO from Cl^(−)in wastewater,while Pt extracts photogenerated electrons for H_(2)formation to enhance the reaction.The removal of NH_(4)^(+)-N and disinfection effect were more pronounced in simulated seawater than in purewater.The removal efficiency ofNH_(4)^(+)-N increases with an increase in pH of wastewater,while the bactericidal effect was more significant under a lower pH in a pH range of 6–9.In actual seawater aquaculture wastewater,Pt/RuO_(2)/g-C_(3)N_(4)still exhibits effective removal efficiency of NH_(4)^(+)-N and bactericidal performance under sunlight.This study provides an alternative avenue for removement of NH_(4)^(+)-N and bacteria from saline waters under sunlight. 展开更多
关键词 PHOTOCATALYSIS Mariculture wastewater Ammonia nitrogen Visible light irradiation Microbial inactivation
原文传递
Porous sorbents for direct capture of carbon dioxide from ambient air 被引量:1
18
作者 Yuchen Zhang Lifeng Ding +3 位作者 Zhenghe Xie Xin Zhang Xiaofeng Sui Jian-Rong Li 《Chinese Chemical Letters》 2025年第3期125-133,共9页
Large-scale deployment of carbon dioxide(CO_(2))removal technology is an essential step to cope with global warming and achieve carbon neutrality.Direct air capture(DAC)has recently received increasing attention given... Large-scale deployment of carbon dioxide(CO_(2))removal technology is an essential step to cope with global warming and achieve carbon neutrality.Direct air capture(DAC)has recently received increasing attention given the high flexibility to remove CO_(2)from discrete sources.Porous materials with adjustable pore characteristics are promising sorbents with low or no latent heat of vaporization.This review article has summarized the recent development of porous sorbents for DAC,with a focus of pore engineering strategy and adsorption mechanism.Physisorbents such as zeolites,porous carbons,metal-organic frameworks(MOFs),and amine-modified chemisorbents have been discussed and their challenges in practical application have been analyzed.At last,future directions have been proposed,and it is expected to inspire collaborations from chemistry,environment,material science and engineering communities. 展开更多
关键词 Direct air capture Carbon neutrality Porous materials PHYSISORPTION CHEMISORPTION
原文传递
High-throughput screening of CO_(2) cycloaddition MOF catalyst with an explainable machine learning model
19
作者 Xuefeng Bai Yi Li +3 位作者 Yabo Xie Qiancheng Chen Xin Zhang Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS 2025年第1期132-138,共7页
The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF str... The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction. 展开更多
关键词 Metal-organic frameworks High-throughput screening Machine learning Explainable model CO_(2)cycloaddition
在线阅读 下载PDF
Research advances of metal fluoride for energy conversion and storage 被引量:1
20
作者 Runlin Zhang Zijin Xu +3 位作者 Zeyu Hao Zeshuo Meng Xiufeng Hao Hongwei Tian 《Carbon Energy》 2025年第1期76-120,共45页
In recent years,renewable energy sources,which aim to replace rapidly depleting fossil fuels,face challenges due to limited energy storage and conversion technologies.To enhance energy storage and conversion efficienc... In recent years,renewable energy sources,which aim to replace rapidly depleting fossil fuels,face challenges due to limited energy storage and conversion technologies.To enhance energy storage and conversion efficiency,extensive research has been conducted in the academic community on numerous potential materials.Among these materials,metal fluorides have attracted significant attention due to their ionic metal-fluorine bonds and tunable electronic structures,attributed to the highest electronegativity of fluorine in their chemical composition.This makes them promising candidates for future electrochemical applications in various fields.However,metal fluorides encounter various challenges in different application directions.Therefore,we comprehensively review the applications of metal fluorides in the field of energy storage and conversion,aiming to deepen our understanding of their exhibited characteristics in different electrochemical processes.In this paper,we summarize the difficulties and improvement methods encountered in different types of battery applications and several typical electrode optimization strategies in the field of supercapacitors.In the field of water electrolysis,we focus on surface reconstruction and the critical role of fluorine,demonstrating the catalytic performance of metal fluorides from the perspectives of reconstruction mechanism and process analysis.Finally,we provide a summary and outlook for this field,aiming to offer guidance for future breakthroughs in the energy storage and conversion applications of metal fluorides. 展开更多
关键词 BATTERIES ELECTROCATALYSIS metal fluoride SUPERCAPACITORS
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部