Assuming that the lithiation reaction occurs randomly in individual small particles in the vicinity of the reaction front, a simple model of diffusion- induced dislocations was developed. The diffusion-induced disloca...Assuming that the lithiation reaction occurs randomly in individual small particles in the vicinity of the reaction front, a simple model of diffusion- induced dislocations was developed. The diffusion-induced dislocations are con- trolled by the misfit strain created by the diffusion of solute atoms or the phase transformation in the vicinity of the reaction front. The dislocation density is proportional to the total surface area of the "lithiated particle" and inversely pro- portional to the particle volume. The diffusion-induced dislocations relieve the diffusion-induced stresses.展开更多
Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar f...Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity.展开更多
This research concerns the development of lithium ions conductive electrolyte from poly(vinyl butyral)(PVB)resin for use as a special interlayer film in electrochromic glass.To obtain the final PVB film with high ioni...This research concerns the development of lithium ions conductive electrolyte from poly(vinyl butyral)(PVB)resin for use as a special interlayer film in electrochromic glass.To obtain the final PVB film with high ionic conductivity and thermal stability,a masterbatch was firstly prepared by mixing of PVB resin with lithium salt(LiClO_(4))and additives in an aqueous ethanol solution.After this,the dried masterbatch were converted into final films by an extrusion process.In this study,PVB film with the highest ionic conductivity value of 4.85×10^(-6) was obtained when the masterbatch was diluted with the neat PVB resin at the weight ratio of 2:1 in the extruder prior to fabrication.The results from cyclic voltammetry over 100 cycles,showed that performance of the electrochromic device(ITO/WO_(3)/PVB electrolyte/ITO)fabricated by using the above PVB film is stable and reversible.In overall,this work demonstrates that ion conductive PVB films with compromised ionic conductivity and thermal stability can be prepared via an extrusion process without the need to modify chemical structure of PVB.This was carried out through the masterbatch approach,by introducing (LiClO_(4)) salts into the plasticized PVB via a solution mixing process prior to converting it into a final film via the extrusion process.展开更多
This perspective presents a membraneless direct liquid fuel cell(DLFC)concept based on a catalyst-selective strategy.The membraneless DLFCs are operated at low temperatures by employing a non-precious cathode catalyst...This perspective presents a membraneless direct liquid fuel cell(DLFC)concept based on a catalyst-selective strategy.The membraneless DLFCs are operated at low temperatures by employing a non-precious cathode catalyst with a high catalytic selectivity.The uniqueness is that the inexpensive cathode catalyst only catalyzes the oxygen reduction reaction but does not catalyze the oxidation reaction of a specific fuel.Therefore,during the operation of DLFCs,the liquid fuel can enter the cathode freely without any concern of fuel crossover.This catalyst-selective approach tactfully avoids the use of high-cost or technically unviable ion-exchange polymer membranes in DLFCs.The catalyst-selective operating principle also overcomes the scalability issue of the traditional laminar-flow membraneless DLFCs.Through a proper management of the anode and cathode catalysts in the cell,a variety of inexpensive,renewable alcohols,and small-molecule organics can be employed as anode fuels.This innovative approach of membraneless alkaline DLFCs offers a great opportunity for the development of inexpensive energy-generation systems for both mobile and stationary applications.In addition to summarizing the principle and the research progress of the unique membraneless DLFC platform,the challenges and future research directions are presented.展开更多
We report the characterization of serf-assembled epitaxially grown FeSi2 nanowires (NWs) in terms of electrical and magnetic properties. NWs grown by reactive deposition epitaxy (RDE) on silicon (110) show dimen...We report the characterization of serf-assembled epitaxially grown FeSi2 nanowires (NWs) in terms of electrical and magnetic properties. NWs grown by reactive deposition epitaxy (RDE) on silicon (110) show dimensions of lOnmxSnm, and several micrometres in length. By using conductive-AFM (e-AFM), electron transport properties of one single NW is measured, resistivity of a single crystalline FeSi2 NW is estimated to be 225 μΩ.cm. Using superconducting quantum interference device (SQUID), we measure a magnetic moment of 0.3 ± 0.1 Bohr magneton per iron atom for these FeSi2 NWs.展开更多
Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is inv...Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is investigated and compared to a new generation of shape memory alloys, i.e., 60NiTi. Only limited amount of work has been done to investigate the dependency of superelasticity on loading rate of TiNi under localized compressive loads, but much work is directed towards understanding the effect of strain rate on tensile properties. Understanding the superelastic behavior helps to employ superelastic alloys in applications where high impact loading is expected as in bearings and gears. In the present study, it is found that dent resistance of Ti-Ni alloy is not significantly affected by loading rate (within the employed loading conditions). It has also been found that new-generation 60NiTi alloy exhibits superior wear and dent resistance, as well as higher hardness compared to equiatomic TiNi.展开更多
The effect of ethylene diamine tetraacetic acid(EDTA) modification on the physico-chemical properties and catalytic performance of silica nanosprings(NS) supported cobalt(Co) catalyst was investigated in the conversio...The effect of ethylene diamine tetraacetic acid(EDTA) modification on the physico-chemical properties and catalytic performance of silica nanosprings(NS) supported cobalt(Co) catalyst was investigated in the conversion of syngas(H^(2+) CO) to hydrocarbons by Fischer-Tropsch synthesis(FTS). The unmodified Co/NS and modified Co/NS-EDTA catalysts were synthesized via an impregnation method. The prepared Co/NS and Co/NS-EDTA catalysts were characterized before the FTS reaction by BET surface area,X-ray diffraction(XRD),transmission electron microscopy(TEM),temperature programmed reduction(TPR),X-ray photoelectron spectroscopy(XPS),differential thermal analysis(DTA) and thermogravimetric analysis(TGA) in order to find correlations between physico-chemical properties of catalysts and catalytic performance. FTS was carried out in a quartz fixedbed microreactor(H_2/CO of 2 ∶1,230 ℃ and atmospheric pressure) and the products trapped and analyzed by GC-TCD and GC-MS to determine CO conversion and reaction selectivity. The experimental results indicated that the modified Co/NS-EDTA catalyst displayed a more-dispersed phase of Co_3O_4 nanoparticles(10.9%) and the Co_3O_4 average crystallite size was about 12.4 nm. The EDTA modified catalyst showed relatively higher CO conversion(70.3%) and selectivity toward C_(6-18)(JP-8,Jet A and diesel) than the Co/NS catalyst(C_(6-14))(JP-4).展开更多
The competing reactions between existing Ni silicides surrounded by Si and Ni were investigated by thermal annealing and MeV Si ion beam mixing. With high energy irradiation, the energy deposition at both interfaces, ...The competing reactions between existing Ni silicides surrounded by Si and Ni were investigated by thermal annealing and MeV Si ion beam mixing. With high energy irradiation, the energy deposition at both interfaces, Ni/Ni silicide and Ni silicide/Si, is equal. Two MeV He^- RBS and TEM were used to obtain the reacted layer composition and epitaxial orientation, respectively. Also glancing angle Co K_a. X-ray diffraction was utilized to identify phase formation. The main results indicate that the existing silicides preferentially react with Ni layer, and that there are pronounced differences of Ni silicide phase transition between thermal annealing and MeV Si ion beam mixing, even though the mixing was performed in radiation enhanced diffusion regime. The results can be explained in term of the heat of silicide formation and surface energy change.展开更多
Yellow-emitting BCNO phosphors,applied for white light-emitting-diodes(LEDs),were synthesized by a facile microwave heating route at lower temperature within short duration.The prepared BCNO phosphors exhibited amor...Yellow-emitting BCNO phosphors,applied for white light-emitting-diodes(LEDs),were synthesized by a facile microwave heating route at lower temperature within short duration.The prepared BCNO phosphors exhibited amorphous form and tunable yellow emission in the range of 510–550 nm under the excitation of 450-nm blue light.The effects of carbon content on the photoluminescence properties for these BCNO phosphors and their application performances in white LEDs were investigated in detail.The demonstrated microwave synthesis route is promising in preparing low-cost phosphors,and the prepared BCNO phosphor may find potential application in blue-based white LEDs.展开更多
Recent work on magnetic quantum point contacts (QPCs) was discussed. Complete magnetoresistance loops across Co QPCs as small as a single atom was measured. The remarkable feature of these QPCs is the rapid oscillator...Recent work on magnetic quantum point contacts (QPCs) was discussed. Complete magnetoresistance loops across Co QPCs as small as a single atom was measured. The remarkable feature of these QPCs is the rapid oscillatory decay in magnetoresistance with the increase of contact size. In addition, stepwise or quantum magnetoresistance loops are observed, resulting from varying transmission probability of the available discrete conductance channels because the sample is cycled between the ferromagnetic (F) and antiferromagnetic (AF) aligned states. Quantized conductance combined with spin dependent transmission of electron waves gives rise to a multi-channel system with a quantum domain wall acting as a valve, i.e., a quantum spin-valve. Behavior of a few-atom QPC is built on the behavior of a single-atom QPC and hence the summarization of results as ‘single-atom spintronics’. An evolutionary trace of spin-dependent electron transmission from a single atom to bulk is provided, the requisite hallmarks of artefact-free magnetoresistance is established across a QPC – stepwise or quantum magnetoresistance loops and size dependent oscillatory magnetoresistance.展开更多
Defects in materials significantly alter their electronic and structural properties,which affect the per-formance of electronic devices,structural alloys,and functional materials.However,calculating all the possible d...Defects in materials significantly alter their electronic and structural properties,which affect the per-formance of electronic devices,structural alloys,and functional materials.However,calculating all the possible defects in complex materials with conventional Density Functional Theory(DFT)can be compu-tationally prohibitive.To enhance the efficiency of these calculations,we interfaced Density Functional Tight Binding(DFTB)with the Clusters Approach to Statistical Mechanics(CASM)software package for the first time.Using SiC and ZnO as representative examples,we show that DFTB gives accurate results and can be used as an efficient computational approach for calculating and pre-screening formation ener-gies/convex hulls.Our DFTB+CASM implementation allows for an efficient exploration(up to an order of magnitude faster than DFT)of formation energies and convex hulls,which researchers can use to probe other complex systems.展开更多
We report the characterization of self-assembled epitaxially grown transition metal, Fe, Co, Ni, silicide nanowires (TM-NW) growth and electrical transport properties. NWs grown by reactive deposition epitaxy on var...We report the characterization of self-assembled epitaxially grown transition metal, Fe, Co, Ni, silicide nanowires (TM-NW) growth and electrical transport properties. NWs grown by reactive deposition epitaxy on various silicon surfaces show a dimension of 10nm by 5nm, and several micrometers in length. NW orientations strongly depend on substrate crystal orientation, and follow the substrate symmetry. By using conductive-AFM (c-AFM), the electron transport properties of one single NW were measured, the resistivity of crystalline nickel silicide NW was estimated to be 2×10-2Ω・cm.展开更多
High temperature treatment of tungsten alloy of W-5wt.% TM (transition metals, TM = Ni, Fe, Cu, Co) nanopowder was run under different temperatures to cover the oxidation rate at different temperatures. The correlat...High temperature treatment of tungsten alloy of W-5wt.% TM (transition metals, TM = Ni, Fe, Cu, Co) nanopowder was run under different temperatures to cover the oxidation rate at different temperatures. The correlation was developed for certain temperatures to find an equation for the relation between time and weight. The thermal treatment was done for different quantities at certain times. The proposed equation studies the correlation between temperature, time, and weight. For each temperature, a number of points were recorded from the measured oxidation curve. The shape of the curves is well-represented in this paper. The final results will present the highest temperature, the maximum weight, and the maximum time for full oxidation at high and low temperatures.展开更多
In this paper,we perform two-layer high-throughput calculations.In the first layer,which involves changing the crystal structure and/or chemical composition,we analyze selected Ⅲ-Ⅴ semiconductors,filled and unfilled...In this paper,we perform two-layer high-throughput calculations.In the first layer,which involves changing the crystal structure and/or chemical composition,we analyze selected Ⅲ-Ⅴ semiconductors,filled and unfilled skutterudites,as well as rock salt and layered chalcogenides.The second layer searches the full Brillouin zone(BZ)for critical points within 1.5 eV(1 eV=1.602176×10^(-19)J)of the Fermi level and characterizes those points by computing the effective masses.We introduce several methods to compute the effective masses from first principles and compare them to each other.Our approach also includes the calculation of the density-of-states effective masses for warped critical points,where traditional approaches fail to give consistent results due to an underlying non-analytic behavior of the critical point.We demonstrate the need to consider the band structure in its full complexity and the value of complementary approaches to compute the effective masses.We also provide computational evidence that warping occurs only in the presence of degeneracies.展开更多
Due to their light weight, high corrosion resistance and good heat conductivity, aluminium alloys are used in many industries today. They are suitable for manufacturing many automotive components such as clutch housin...Due to their light weight, high corrosion resistance and good heat conductivity, aluminium alloys are used in many industries today. They are suitable for manufacturing many automotive components such as clutch housings. These alloys can be fabricated by powder metallurgy and casting methods, in which porosity is a common feature. The presence of pores is responsible for reducing their strength, ductility and wear resistance. The present study aims to establish an understanding of the tribological behavior of high pressure die cast Al A380M and powder metallurgy synthesized Al 6061. In this study, dry sliding wear behavior of Al A380M and Al 6061 alloys was investigated under low loads (1.5 N – 5 N) against AISI 52100 bearing steel ball using a reciprocating ball-on-flat configuration and frequency of 10 Hz. Wear mechanisms were studied through microscopic examination of the wear tracks. This study revealed that due to combined effect of real area of contact and subsurface cracking, wear rate increased with increasing porosity content. The difference in friction and wear behavior between received Al A380M and Al 6061 is attributed to their hardness differences.展开更多
Phage Display technology provides a mechanism for us to make bio-recognition elements on biosensors for detection of Salmonella enterica serovars. In the procedure, the filamentous M13 bacteriophage is used for acquir...Phage Display technology provides a mechanism for us to make bio-recognition elements on biosensors for detection of Salmonella enterica serovars. In the procedure, the filamentous M13 bacteriophage is used for acquiring peptides that have a high affinity for the target recognition. Our approach in this study was to develop peptide structures in the pIII region of this thread-shaped virus. A phage pIII library was used to perform biopanning for the phage clones to bind the target Salmonella serovars. The clones were bound, washed, eluted and amplified four times. Then, the phage peptides were sequenced tested for specificity using ELISA procedures. In this project to make a biosensor for all relevant Salmonella enterica serovars, we used common LPS salmonellae antigens as targets in the biopanning procedure. This enabled us to have a phage probe specific for all serovars of Salmonella enterica excluding the typhoid organisms. The final phage was then immobilized onto an electromagnetic platform to complete the biosensor, which gives us the real-time ability to measure resonance changes that indicate mass loading. The mass loading is an indication of binding to the target cells. Our current data with an ELISA procedure show the phage probe’s high affinity for salmonellae, very low cross-reactivity with Escherichia coli, Shigella, and no cross-reactivity to Staphylococcus aureus and Listeria monocytogenes. The biosensor with the phage showed that the capture ability for Salmonella serovars is thirty times higher than the control sensor. This biosensor is a candidate for detection of Salmonella in food and other settings.展开更多
文摘Assuming that the lithiation reaction occurs randomly in individual small particles in the vicinity of the reaction front, a simple model of diffusion- induced dislocations was developed. The diffusion-induced dislocations are con- trolled by the misfit strain created by the diffusion of solute atoms or the phase transformation in the vicinity of the reaction front. The dislocation density is proportional to the total surface area of the "lithiated particle" and inversely pro- portional to the particle volume. The diffusion-induced dislocations relieve the diffusion-induced stresses.
基金supported by the Ministry of Science and ICT in Korea(2021R1A2C2009459)X-ray absorption spectra were obtained from Pohang Accelerator Laboratory(PAL)10C beamlinesupported by the US Department of Energy,Office of Science,Office of Advanced Scientific Computing Research,and Scientific Discovery through Advanced Computing(SciDAC)program under Award Number DE-SC0022209.
文摘Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity.
基金support by the"Thailand Science Research and Innovation(TSRI)under Fundamental Fund 2022"(Sustainable Energy&EnvironmentTheme).
文摘This research concerns the development of lithium ions conductive electrolyte from poly(vinyl butyral)(PVB)resin for use as a special interlayer film in electrochromic glass.To obtain the final PVB film with high ionic conductivity and thermal stability,a masterbatch was firstly prepared by mixing of PVB resin with lithium salt(LiClO_(4))and additives in an aqueous ethanol solution.After this,the dried masterbatch were converted into final films by an extrusion process.In this study,PVB film with the highest ionic conductivity value of 4.85×10^(-6) was obtained when the masterbatch was diluted with the neat PVB resin at the weight ratio of 2:1 in the extruder prior to fabrication.The results from cyclic voltammetry over 100 cycles,showed that performance of the electrochromic device(ITO/WO_(3)/PVB electrolyte/ITO)fabricated by using the above PVB film is stable and reversible.In overall,this work demonstrates that ion conductive PVB films with compromised ionic conductivity and thermal stability can be prepared via an extrusion process without the need to modify chemical structure of PVB.This was carried out through the masterbatch approach,by introducing (LiClO_(4)) salts into the plasticized PVB via a solution mixing process prior to converting it into a final film via the extrusion process.
基金This work was supported by the Welch Foundation grant F-1254.
文摘This perspective presents a membraneless direct liquid fuel cell(DLFC)concept based on a catalyst-selective strategy.The membraneless DLFCs are operated at low temperatures by employing a non-precious cathode catalyst with a high catalytic selectivity.The uniqueness is that the inexpensive cathode catalyst only catalyzes the oxygen reduction reaction but does not catalyze the oxidation reaction of a specific fuel.Therefore,during the operation of DLFCs,the liquid fuel can enter the cathode freely without any concern of fuel crossover.This catalyst-selective approach tactfully avoids the use of high-cost or technically unviable ion-exchange polymer membranes in DLFCs.The catalyst-selective operating principle also overcomes the scalability issue of the traditional laminar-flow membraneless DLFCs.Through a proper management of the anode and cathode catalysts in the cell,a variety of inexpensive,renewable alcohols,and small-molecule organics can be employed as anode fuels.This innovative approach of membraneless alkaline DLFCs offers a great opportunity for the development of inexpensive energy-generation systems for both mobile and stationary applications.In addition to summarizing the principle and the research progress of the unique membraneless DLFC platform,the challenges and future research directions are presented.
文摘We report the characterization of serf-assembled epitaxially grown FeSi2 nanowires (NWs) in terms of electrical and magnetic properties. NWs grown by reactive deposition epitaxy (RDE) on silicon (110) show dimensions of lOnmxSnm, and several micrometres in length. By using conductive-AFM (e-AFM), electron transport properties of one single NW is measured, resistivity of a single crystalline FeSi2 NW is estimated to be 225 μΩ.cm. Using superconducting quantum interference device (SQUID), we measure a magnetic moment of 0.3 ± 0.1 Bohr magneton per iron atom for these FeSi2 NWs.
文摘Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is investigated and compared to a new generation of shape memory alloys, i.e., 60NiTi. Only limited amount of work has been done to investigate the dependency of superelasticity on loading rate of TiNi under localized compressive loads, but much work is directed towards understanding the effect of strain rate on tensile properties. Understanding the superelastic behavior helps to employ superelastic alloys in applications where high impact loading is expected as in bearings and gears. In the present study, it is found that dent resistance of Ti-Ni alloy is not significantly affected by loading rate (within the employed loading conditions). It has also been found that new-generation 60NiTi alloy exhibits superior wear and dent resistance, as well as higher hardness compared to equiatomic TiNi.
文摘The effect of ethylene diamine tetraacetic acid(EDTA) modification on the physico-chemical properties and catalytic performance of silica nanosprings(NS) supported cobalt(Co) catalyst was investigated in the conversion of syngas(H^(2+) CO) to hydrocarbons by Fischer-Tropsch synthesis(FTS). The unmodified Co/NS and modified Co/NS-EDTA catalysts were synthesized via an impregnation method. The prepared Co/NS and Co/NS-EDTA catalysts were characterized before the FTS reaction by BET surface area,X-ray diffraction(XRD),transmission electron microscopy(TEM),temperature programmed reduction(TPR),X-ray photoelectron spectroscopy(XPS),differential thermal analysis(DTA) and thermogravimetric analysis(TGA) in order to find correlations between physico-chemical properties of catalysts and catalytic performance. FTS was carried out in a quartz fixedbed microreactor(H_2/CO of 2 ∶1,230 ℃ and atmospheric pressure) and the products trapped and analyzed by GC-TCD and GC-MS to determine CO conversion and reaction selectivity. The experimental results indicated that the modified Co/NS-EDTA catalyst displayed a more-dispersed phase of Co_3O_4 nanoparticles(10.9%) and the Co_3O_4 average crystallite size was about 12.4 nm. The EDTA modified catalyst showed relatively higher CO conversion(70.3%) and selectivity toward C_(6-18)(JP-8,Jet A and diesel) than the Co/NS catalyst(C_(6-14))(JP-4).
文摘The competing reactions between existing Ni silicides surrounded by Si and Ni were investigated by thermal annealing and MeV Si ion beam mixing. With high energy irradiation, the energy deposition at both interfaces, Ni/Ni silicide and Ni silicide/Si, is equal. Two MeV He^- RBS and TEM were used to obtain the reacted layer composition and epitaxial orientation, respectively. Also glancing angle Co K_a. X-ray diffraction was utilized to identify phase formation. The main results indicate that the existing silicides preferentially react with Ni layer, and that there are pronounced differences of Ni silicide phase transition between thermal annealing and MeV Si ion beam mixing, even though the mixing was performed in radiation enhanced diffusion regime. The results can be explained in term of the heat of silicide formation and surface energy change.
基金the financial support by the National Natural Science Foundation of China(Nos.50872091and 51102265)Program of Discipline Leader of Colleges and Universities(Tianjin,China)‘‘Foreign Experts’’Thousand Talents Program(Tianjin,China)
文摘Yellow-emitting BCNO phosphors,applied for white light-emitting-diodes(LEDs),were synthesized by a facile microwave heating route at lower temperature within short duration.The prepared BCNO phosphors exhibited amorphous form and tunable yellow emission in the range of 510–550 nm under the excitation of 450-nm blue light.The effects of carbon content on the photoluminescence properties for these BCNO phosphors and their application performances in white LEDs were investigated in detail.The demonstrated microwave synthesis route is promising in preparing low-cost phosphors,and the prepared BCNO phosphor may find potential application in blue-based white LEDs.
文摘Recent work on magnetic quantum point contacts (QPCs) was discussed. Complete magnetoresistance loops across Co QPCs as small as a single atom was measured. The remarkable feature of these QPCs is the rapid oscillatory decay in magnetoresistance with the increase of contact size. In addition, stepwise or quantum magnetoresistance loops are observed, resulting from varying transmission probability of the available discrete conductance channels because the sample is cycled between the ferromagnetic (F) and antiferromagnetic (AF) aligned states. Quantized conductance combined with spin dependent transmission of electron waves gives rise to a multi-channel system with a quantum domain wall acting as a valve, i.e., a quantum spin-valve. Behavior of a few-atom QPC is built on the behavior of a single-atom QPC and hence the summarization of results as ‘single-atom spintronics’. An evolutionary trace of spin-dependent electron transmission from a single atom to bulk is provided, the requisite hallmarks of artefact-free magnetoresistance is established across a QPC – stepwise or quantum magnetoresistance loops and size dependent oscillatory magnetoresistance.
基金supported by the U.S.Department of Energy,Na-tional Energy Technology Laboratory(NETL),under Award No.DE-FE0030582.
文摘Defects in materials significantly alter their electronic and structural properties,which affect the per-formance of electronic devices,structural alloys,and functional materials.However,calculating all the possible defects in complex materials with conventional Density Functional Theory(DFT)can be compu-tationally prohibitive.To enhance the efficiency of these calculations,we interfaced Density Functional Tight Binding(DFTB)with the Clusters Approach to Statistical Mechanics(CASM)software package for the first time.Using SiC and ZnO as representative examples,we show that DFTB gives accurate results and can be used as an efficient computational approach for calculating and pre-screening formation ener-gies/convex hulls.Our DFTB+CASM implementation allows for an efficient exploration(up to an order of magnitude faster than DFT)of formation energies and convex hulls,which researchers can use to probe other complex systems.
基金Supported by the National Natural Science Foundation of China under Grant No 10874016.
文摘We report the characterization of self-assembled epitaxially grown transition metal, Fe, Co, Ni, silicide nanowires (TM-NW) growth and electrical transport properties. NWs grown by reactive deposition epitaxy on various silicon surfaces show a dimension of 10nm by 5nm, and several micrometers in length. NW orientations strongly depend on substrate crystal orientation, and follow the substrate symmetry. By using conductive-AFM (c-AFM), the electron transport properties of one single NW were measured, the resistivity of crystalline nickel silicide NW was estimated to be 2×10-2Ω・cm.
文摘High temperature treatment of tungsten alloy of W-5wt.% TM (transition metals, TM = Ni, Fe, Cu, Co) nanopowder was run under different temperatures to cover the oxidation rate at different temperatures. The correlation was developed for certain temperatures to find an equation for the relation between time and weight. The thermal treatment was done for different quantities at certain times. The proposed equation studies the correlation between temperature, time, and weight. For each temperature, a number of points were recorded from the measured oxidation curve. The shape of the curves is well-represented in this paper. The final results will present the highest temperature, the maximum weight, and the maximum time for full oxidation at high and low temperatures.
基金financial support from the Vitreous State Laboratory。
文摘In this paper,we perform two-layer high-throughput calculations.In the first layer,which involves changing the crystal structure and/or chemical composition,we analyze selected Ⅲ-Ⅴ semiconductors,filled and unfilled skutterudites,as well as rock salt and layered chalcogenides.The second layer searches the full Brillouin zone(BZ)for critical points within 1.5 eV(1 eV=1.602176×10^(-19)J)of the Fermi level and characterizes those points by computing the effective masses.We introduce several methods to compute the effective masses from first principles and compare them to each other.Our approach also includes the calculation of the density-of-states effective masses for warped critical points,where traditional approaches fail to give consistent results due to an underlying non-analytic behavior of the critical point.We demonstrate the need to consider the band structure in its full complexity and the value of complementary approaches to compute the effective masses.We also provide computational evidence that warping occurs only in the presence of degeneracies.
文摘Due to their light weight, high corrosion resistance and good heat conductivity, aluminium alloys are used in many industries today. They are suitable for manufacturing many automotive components such as clutch housings. These alloys can be fabricated by powder metallurgy and casting methods, in which porosity is a common feature. The presence of pores is responsible for reducing their strength, ductility and wear resistance. The present study aims to establish an understanding of the tribological behavior of high pressure die cast Al A380M and powder metallurgy synthesized Al 6061. In this study, dry sliding wear behavior of Al A380M and Al 6061 alloys was investigated under low loads (1.5 N – 5 N) against AISI 52100 bearing steel ball using a reciprocating ball-on-flat configuration and frequency of 10 Hz. Wear mechanisms were studied through microscopic examination of the wear tracks. This study revealed that due to combined effect of real area of contact and subsurface cracking, wear rate increased with increasing porosity content. The difference in friction and wear behavior between received Al A380M and Al 6061 is attributed to their hardness differences.
文摘Phage Display technology provides a mechanism for us to make bio-recognition elements on biosensors for detection of Salmonella enterica serovars. In the procedure, the filamentous M13 bacteriophage is used for acquiring peptides that have a high affinity for the target recognition. Our approach in this study was to develop peptide structures in the pIII region of this thread-shaped virus. A phage pIII library was used to perform biopanning for the phage clones to bind the target Salmonella serovars. The clones were bound, washed, eluted and amplified four times. Then, the phage peptides were sequenced tested for specificity using ELISA procedures. In this project to make a biosensor for all relevant Salmonella enterica serovars, we used common LPS salmonellae antigens as targets in the biopanning procedure. This enabled us to have a phage probe specific for all serovars of Salmonella enterica excluding the typhoid organisms. The final phage was then immobilized onto an electromagnetic platform to complete the biosensor, which gives us the real-time ability to measure resonance changes that indicate mass loading. The mass loading is an indication of binding to the target cells. Our current data with an ELISA procedure show the phage probe’s high affinity for salmonellae, very low cross-reactivity with Escherichia coli, Shigella, and no cross-reactivity to Staphylococcus aureus and Listeria monocytogenes. The biosensor with the phage showed that the capture ability for Salmonella serovars is thirty times higher than the control sensor. This biosensor is a candidate for detection of Salmonella in food and other settings.