期刊文献+
共找到199篇文章
< 1 2 10 >
每页显示 20 50 100
Enhancement of Mechanical Properties of Natural Rubber Filled Activated Carbon Materials from Agricultural Waste
1
作者 Pollawat Charoeythornkhajhornchai Piyamas Saehia +2 位作者 Thidaporn Butchan Nawapol Lertumpai Worawut Muangrat 《Journal of Renewable Materials》 2025年第4期817-827,共11页
Herein,cure characteristics,morphology,and mechanical properties of natural rubber filled with activated carbon-based materials were investigated.Carbon-based materials were prepared from bagasse,coffee grounds and pi... Herein,cure characteristics,morphology,and mechanical properties of natural rubber filled with activated carbon-based materials were investigated.Carbon-based materials were prepared from bagasse,coffee grounds and pineapple crowns by the pyrolysis method at temperatures in the range of 300℃.As-synthesized carbon materials were characterized by optical microscopy(OM),scanning electron microscopy(SEM),and Fourier-transform infrared spectroscopy(FTIR)to analyze size distribution,morphology,and functional groups,respectively.OM and SEM analysis revealed that particles,flakes,and a small quantity of fiber-like carbon were obtained using bagasse and pineapple crown as raw materials,while honeycomb-like carbon materials can be derived from coffee grounds.To investigate the mechanical properties,natural rubber was filled with carbon black and as-synthesized carbon materials by the internal mixing and compression molding process.Transmission electron microscopy(TEM)was utilized to characterize the dispersion of carbon materials in the rubber matrix.The results of tensile testing showed that the natural rubber mixed with as-synthesized carbon materials from pineapple crowns exhibited 54%and 74%improvement in the ultimate tensile strength and Young’s modulus,respectively,compared with natural rubber without filled carbon materials.The enhancement in mechanical properties by activated carbon materials derived from pineapple crowns can be attributed to the flake-and fiber-like structures and good dispersion of carbon materials in the rubber matrix.In addition,it is higher than that of rubber mixed with carbon black.The results demonstrated that as-synthesized carbon materials from pineapple crowns have the potential materials to substitute carbon black in the rubber compound industry. 展开更多
关键词 Carbon materials agricultural waste natural rubber cure characteristics mechanical properties
在线阅读 下载PDF
A comprehensive review on Mg-based materials as filler in mixed matrix membranes for CO_(2)separation
2
作者 Payam Veisi Alireza Askari Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 2025年第2期539-561,共23页
The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered signi... The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered significant interest among researchers.However,this method encounters challenges related to selectivity and permeability.Therefore,modifying and reinforcing the polymer membranes to improve gas separation performance seems essential.Among the various methods for polymer membrane modification,modification with magnesium-based fillers to prepare a mixed matrix membrane(MMM)is considered an efficient method.Owing to magnesium metal's low weight,low density,high strength,and good selectivity,magnesium-based materials(Mg-based materials)have more porosity,higher available surface area,more adsorption sites,lighter weight,and more gas absorption tendency than other fillers,which makes them an attractive choice for the preparation of gas separation MMMs.This research deals with the introduction of Mg-based materials,various methods of synthesis of Mg-based materials,different methods of introducing Mg-based materials into the membrane matrix,and their effect on the performance of MMMs in CO_(2)gas separation applications.Therefore,this review can provide researchers with light horizons in using the high potential of Mg-based materials as efficient fillers in MMMs to achieve excellent permeability and selectivity and generally improve their performance in CO_(2)gas separation applications. 展开更多
关键词 Mg-based materials Mg-based fillers Mixed matrix membrane(mmm) Co2 separation Gas separation applications
在线阅读 下载PDF
Damage analysis caused by ^(60)Co ions in functionally graded materials
3
作者 Zübeyde Özkan Ugur Gökmen Sema Bilge Ocak 《Defence Technology(防务技术)》 2025年第2期248-256,共9页
Functionally graded composite/hybrid materials(FGCM/FGHCM)were produced by adding B_(4)C,TiO_(2),and B_(4)C+TiO_(2)ceramic materials at various ratios(0-50%)into the AA6082 matrix.The analysis of the damage caused by^... Functionally graded composite/hybrid materials(FGCM/FGHCM)were produced by adding B_(4)C,TiO_(2),and B_(4)C+TiO_(2)ceramic materials at various ratios(0-50%)into the AA6082 matrix.The analysis of the damage caused by^(60) ions'(1.173-1.1332 MeV)on the material was examined using the SRIM/TRIM Monte Carlo simulation software.In the simulation,the following data regarding the atoms of the target materials were obtained:ion distribution,target ionization,total displacements,surface binding energy,lattice binding energy,and displacement energy.Among the studied four materials,the one with the highest ion range value was found to be AA6082 with 8550A.TiO_(2)was found to be the reinforcement material that reduced the ion range the most in the material.Due to its high binding energy,B_(4)C reinforced AA6082+(0-50%)B_(4)C FGCM was found to have the least vacancy with 4782/ion. 展开更多
关键词 SRIM/TRIM Damage analysis AA6082 ^(60)Co ion
在线阅读 下载PDF
Optimization of corrosion resistance of AZ31 Mg alloy through hydration-driven interaction between quinolin-8-ol and plasma electrolytic oxidation-formed MgO layer 被引量:1
4
作者 Mosab Kaseem Talitha Tara Thanaa +2 位作者 Ananda Repycha Safira Alireza Askari Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 2025年第1期71-82,共12页
This study presents a novel approach to improving the anticorrosive performance of AZ31 Mg alloy by exploiting the role of the hydration reaction to induce interactions between Quinolin-8-ol(8HQ)molecules and the poro... This study presents a novel approach to improving the anticorrosive performance of AZ31 Mg alloy by exploiting the role of the hydration reaction to induce interactions between Quinolin-8-ol(8HQ)molecules and the porous MgO layer formed via plasma electrolytic oxidation(PEO).The AZ31 Mg alloy,initially coated with a PEO layer,underwent a dipping treatment in an ethanolic solution of 0.05 M 8HQ at 50℃ for 3 h.The results were compared with those from a different procedure where the PEO layer was subjected to a hydration reaction for 2 h at 90℃ before immersion in the 8HQ solution under the same conditions.The hydration treatment played a crucial role by converting MgO to Mg(OH)_(2),significantly enhancing the surface reactivity.This transformation introduced hydroxyl groups(−OH)on the surface,which facilitated donor-acceptor interactions with the electron-accepting sites on 8HQ molecules.The calculated binding energy(Ebinding)from DFT indicated that the interaction energy of 8HQ with Mg(OH)_(2) was lower compared to 8HQ with MgO,suggesting easier adsorption of 8HQ molecules on the hydrated surface.This,combined with the increased number of active sites and enhanced surface area,allowed for extensive surface coverage by 8HQ,leading to the formation of a stable,flake-like protective layer that sealed the majority of pores on the PEO layer.DFT calculations further suggested that the hydration treatment provided multiple active sites,enabling effective contact with 8HQ and rapid electron transfer,creating ideal conditions for charge-transfer-induced physical and chemical bonding.This study shows that hydration and 8HQ treatments significantly enhance the corrosion resistance of Mg alloys,highlighting their potential for advanced anticorrosive coatings. 展开更多
关键词 Mg alloy Plasma electrolytic oxidation Quinolin-8-ol HYDRATION Corrosion
在线阅读 下载PDF
Advances in multi-phase FAPbI_(3) perovskite: another perspective on photo-inactive δ-phase 被引量:1
5
作者 Junyu Li Songwei Zhang +7 位作者 Mohd Nazim Mohtar Nattha Jindapetch Istvan Csarnovics Mehmet Ertugrul Zhiwei Zhao Jing Chen Wei Lei Xiaobao Xu 《Journal of Semiconductors》 2025年第5期65-79,共15页
Halide perovskites have attracted great interest as active layers in optoelectronic devices. Among perovskites with diverse compositions, α-FAPbI_(3) is of utmost importance with great optoelectronic properties and a... Halide perovskites have attracted great interest as active layers in optoelectronic devices. Among perovskites with diverse compositions, α-FAPbI_(3) is of utmost importance with great optoelectronic properties and a decent bandgap of 1.48 eV.However, the α-phase suffers an irreversible transition to the photo-inactive δ-phase, whereas the δ-phase is usually regarded as useless phase with poor optoelectronic properties. Therefore, it is commonly accepted that the thermodynamic stable δ-FAPbI_(3) greatly limits the application of FAPbI_(3). Every coin has two sides, although the δ-phase is difficult to apply as photoelectrical active layers, it is possible to combine δ-FAPbI_(3) with α-FAPbI_(3) to realize functional applications. Firstly, this review analyzes the cause of the contrasting properties between α-and δ-FAPbI_(3), where the stronger electron-phonon coupling in 1D hexagonal δ-FAPbI_(3) restricts its internal carrier and phonon transport. Secondly, the factors affecting the phase transitions and strategies to control phase transition between α-and δ-FAPbI_(3) are presented. Finally, some functional applications of δ-FAPbI_(3) in combination with α-FAPbI_(3) are given according to previous reports. By and large, we hope to introduce δ-FAPbI_(3) from another perspective and give some insights into its unique properties, hopefully providing new strategies for the subsequent advances to FAPbI_(3). 展开更多
关键词 halide perovskites δ-FAPbI_(3) α-FAPbI_(3) electron-phonon coupling phase transition
在线阅读 下载PDF
A comprehensive overview in improving corrosion resistance of Mg alloys:Enhancing protective coatings with plasma electrolytic oxidation and superhydrophobic coatings
6
作者 Arash Fattah-alhosseini Haniye Salimi Minoo Karbasi 《Journal of Magnesium and Alloys》 2025年第4期1386-1404,共19页
The corrosion resistance of magnesium alloys is a significant concern in industries seeking to use these materials for lightweight structures.Plasma electrolytic oxidation(PEO)is a process that forms a ceramic oxide f... The corrosion resistance of magnesium alloys is a significant concern in industries seeking to use these materials for lightweight structures.Plasma electrolytic oxidation(PEO)is a process that forms a ceramic oxide film on Mg alloy surfaces,effectively enhancing their corrosion performance in the short term.In this regard,optimizing PEO process parameters is crucial for creating a stable oxide layer.An improved level of corrosion resistance is ensured by applying superhydrophobic coating(SHC)on top of the PEO layer to prevent moisture infiltration,creating air pockets on the surface.Various methods are employed to fabricate SHC on Mg alloys,including techniques like electrophoretic deposition(EPD),Hydrothermal(HT),dip,and spray coating.The synergistic combination of PEO and SHC coatings has demonstrated encouraging outcomes in enhancing the corrosion performance of Mg alloys.This study offers an extensive overview of recent progress in the preparation,characterization,and corrosion behavior of Mg alloys by employing PEO coatings and SHC treatment processes. 展开更多
关键词 Mg alloy Plasma electrolytic oxidation(PEO) Corrosion resistance SUPERHYDROPHOBIC
在线阅读 下载PDF
Growth kinetics of borided 316 L stainless steel obtained by selective laser melting
7
作者 DEMIRCI Selim TÜNÇAY Mehmet Masum 《Journal of Central South University》 2025年第2期332-349,共18页
Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Bori... Selective laser melting(SLM)is a cost-effective 3 D metal additive manufacturing(AM)process.However,AM 316 L stainless steel(SS)has different surface and microstructure properties as compared to conventional ones.Boriding process is one of the ways to modify and increase the surface properties.The aim of this study is to predict and understand the growth kinetic of iron boride layers on AM 316 L SS.In this study,the growth kinetic mechanism was evaluated for AM 316 L SS.Pack boriding was applied at 850,900 and 950℃,each for 2,4 and 6 h.The thickness of the boride layers ranged from(1.8±0.3)μm to(27.7±2.2)μm.A diffusion model based on error function solutions in Fick’s second law was proposed to quantitatively predict and elucidate the growth rate of FeB and Fe_(2)B phase layers.The activation energy(Q)values for boron diffusion in FeB layer,Fe_(2)B layer,and dual FeB+Fe_(2)B layer were found to be 256.56,161.61 and 209.014 kJ/mol,respectively,which were higher than the conventional 316 L SS.The findings might provide and open new directions and approaches for applications of additively manufactured steels. 展开更多
关键词 316L stainless steel BORIDING KINETICS additive manufacturing selective laser melting
在线阅读 下载PDF
Pushing the Boundaries of Starch Foams: Novel Laminar Composites with Paper Reinforcement
8
作者 Manisara Phiriyawirut Pukrapee Rodprasert +2 位作者 Peerapat Kulvorakulpitak Ratiwan Cothsila Nattarat Kengkla 《Journal of Renewable Materials》 2025年第1期101-114,共14页
This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rei... This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rein-forcement.Tapioca starch and glutinous starch were blended in varying ratios(100:0–0:100)to optimize the base material’s properties.The morphology,density,flexural strength,and impact strength of these starch blends were evaluated.The results revealed a trade-off between impact strength and density,with increasing glutinous starch content favoring impact resistance but also leading to higher density.The optimal ratio of tapioca to glutinous starch for achieving maximumflexural strength and modulus was determined to be 60:40.Theflexural strength of the composite material at this ratio reached a peak value of 5.3±0.6 MPa,significantly surpassing theflexural strength of pure tapioca foam,which was measured to be 3.5±0.4 MPa.Building on this foundation,novel lami-nar composite foams were fabricated using the 60:40 starch blend reinforced with mulberry paper,kraft paper,and newsprint paper.To enhance the interfacial adhesion between the starch matrix and paper reinforcement,a silane coupling agent was employed at a 10 wt%loading on the paper.The incorporation of paper reinforcement into starch foams was found to enhance their mechanical properties.Specifically,flexural strength values increased from 5.3±0.6 MPa for the unreinforced starch foam to 6.8±0.6 MPa,8.1±0.9 MPa,and 7.4±0.1 MPa when reinforced with mulberry paper,kraft paper,and newsprint paper,respectively.Notably,kraft paper reinforcement led to the most enhancements inflexural strength,flexural modulus,and impact strength.This research paves the way for developing sustainable cushioning materials with competitive mechanical properties using bio-based resources like starch and paper. 展开更多
关键词 Laminar composite starch foam tapioca starch glutinous starch kraft paper
在线阅读 下载PDF
Efficient and smart hybrid coatings for active corrosion protection of magnesium alloys
9
作者 A.S.Gnedenkov S.L.Sinebryukhov +4 位作者 V.S.Marchenko A.D.Nomerovskii A.Yu.Ustinov A.Fattah-alhosseini S.V.Gnedenkov 《Journal of Magnesium and Alloys》 2025年第9期4475-4499,共25页
This article discusses potential solutions to overcome current limitations for clinical implementation of Mg implants by forming the biocompatible hybrid PEO-based inhibitor-and polymer-containing coatings for a contr... This article discusses potential solutions to overcome current limitations for clinical implementation of Mg implants by forming the biocompatible hybrid PEO-based inhibitor-and polymer-containing coatings for a controlled corrosion degradation of the bioresorbable material.Multifunctional hybrid coatings were obtained on MA8 magnesium alloy.The porous ceramic-like coating synthesized by plasma electrolytic oxidation served as a base for further modification with bioresorbable polymer(polycaprolactone,PCL)contained halloysite nanotubes(HNTs)with corrosion inhibitor(benzotriazole,BTA).The method for HNT impregnating with BTA and introducing them into the matrix of PCL was proposed.The chemical composition of the protective layers was studied using SEM-EDX,XRD,XPS,and Raman microspectroscopy.Anticorrosion protection level of the coated specimens was determined by means of electrochemical techniques,weight loss,and hydrogen evolution tests.The samples with hybrid layers showed the best corrosion protection during 23 h exposure to Hanks’Balanced Salt Solution(|Z|_(f=0.1 Hz)=1.02 MΩ·cm^(2),I_(C)=11 nA·cm^(-2),R_(p)=2.4 MΩ·cm^(2))and the lowest degradation rate(0.021 mm/year)after 7 day of exposure to HBSS among all the tested samples.The electrochemical activity on microscale of samples with the studied coatings was estimated by localized electrochemical techniques.The degradation mechanism of specimens with hybrid layers was proposed.The prospects of hybrid layer application in regulating the resorption process of Mg alloys were shown. 展开更多
关键词 MAGNESIUM Protective coating Plasma electrolytic oxidation(PEO) Halloysite nanotubes(HNT) BIODEGRADATION SELF-HEALING
在线阅读 下载PDF
Structure and electrical conductivity of compositionally complex double perovskite cobaltites
10
作者 Sebastian L Wachowski Hanna Kavaliuk +3 位作者 Maria Sywanycz Paula Rosiak Tadeusz Miruszewski Maria Gazda 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2659-2665,共7页
In this study,compositionally complex cobaltites with the general formula BaLnCo_(2)O_(6−δ)with three to eight different lanthan-ides at the Ln-site were synthesized using the solid-state reaction method and studied.... In this study,compositionally complex cobaltites with the general formula BaLnCo_(2)O_(6−δ)with three to eight different lanthan-ides at the Ln-site were synthesized using the solid-state reaction method and studied.Analysis of entropy metrics and configurational en-tropy calculations indicated that these compounds are medium entropy oxides.All of these crystallize as tetragonal double perovskites from the space group P4/mmm.The unit cell parameters are controlled by the average ionic radius,not the configurational entropy.On the other hand,the oxygen non-stoichiometry is consistently higher than in the case of low entropy double perovskite cobaltites.The total electrical conductivity of all materials in studied conditions is well above 50 S/cm,peaking at 1487 S/cm for BaLa_(1/3)Nd_(1/3)Gd_(1/3)Co_(2)O_(6−δ)at 300℃.The electrical conductivity decreases with the number of substituents. 展开更多
关键词 high entropy oxides COBALTITES double perovskites mixed ionic-electronic conductors
在线阅读 下载PDF
Decoration of CoFe-LDH/porous MgO composite with ZrO_(2) nanoparticles for efficient photocatalytic removal of indigo carmine
11
作者 Tehseen Zehra Ananda Repycha Safira +2 位作者 Arash Fattah-alhosseini Mohammad Alkaseem Mosab Kaseem 《Journal of Magnesium and Alloys》 2025年第3期1203-1217,共15页
This study presents a novel photocatalytic system exploiting the unique properties of ZrO_(2) and its integration with layered double hydroxide(LDH)films on porous coatings produced via plasma electrolytic oxidation(PE... This study presents a novel photocatalytic system exploiting the unique properties of ZrO_(2) and its integration with layered double hydroxide(LDH)films on porous coatings produced via plasma electrolytic oxidation(PEO).Herein,CoFe-LDHfilms were created on the porous surface of PEO-coated AZ31 Mg alloy using a hydrothermal treatment in cobalt and iron nitrate solutions,followed by a secondary hydrothermal process in a ZrO_(2) solution for 10 h at 70℃.The impact of ZrO_(2) on the morphological,compositional,and photocatalytic performance was then compared to the case where ZrO_(2) nanoparticles were electrophoretically incorporated into the porous PEO coating.Characterization results revealed that the ZrO_(2)-modified LDH coatings exhibited a dispersedflake-like structure with an increased surface area,a reduced band gap energy of 3.14 eV,and enhanced electron-hole separation.Experimental results demonstrated an outstanding 99.8%degradation of indigo carmine within 15 mins,with remarkable multi-cycle stability overfive consecutive cycles without significant performance decline.This system demonstrates faster degradation rates and greater durability compared to previously reported catalysts,underscoring its potential for effective and sustainable environmental remediation.The synergistic integration of ZrO_(2),LDH,and PEO highlights a promising strategy for wastewater treatment,particularly for the removal of persistent organic dyes like indigo carmine. 展开更多
关键词 Plasma electrolytic oxidation CoFeLDH Zirconia nanoparticles Indigo carmine PHOTOCATALYSIS
在线阅读 下载PDF
Grafting Modification of Cellulose Nanofibril with 2-(N,N-Dimethylamino)Ethyl Methacrylate and 2-Hydroxyethyl Methacrylate as a Barrier-Improved Coating for Paper-Based Food Packaging
12
作者 Noverra Mardhatillah Nizardo Alifah Nurul Saffanah +4 位作者 Annisa Fitri Salsabila Amanda Aurellia Putri Aniek Sri Handayani Azizah Intan Pangesty Mochamad Chalid 《Journal of Renewable Materials》 2025年第6期1209-1227,共19页
Food packaging is becoming popular as the consumption of ready-to-eat food products rises.Easyto-use,non-biodegradable plastic packaging is commonly used in food packaging,contributing to the deteriorating environment... Food packaging is becoming popular as the consumption of ready-to-eat food products rises.Easyto-use,non-biodegradable plastic packaging is commonly used in food packaging,contributing to the deteriorating environmental situation.This issue increases the concern for the environment and encourages the usage of alternative materials.Cellulose nanofibrils(CNF)are abundant and biodegradable,which makes them ideal candidates to replace plastic coatings.The ability to form H-bonds between the hydroxyl groups makes coated paper with CNF have good strength,but poor barrier properties.The barrier properties can be improved by grafting DMAEMA or HEMA onto CNF(CNF-g-PDMAEMA and CNF-g-PHEMA,respectively).Thus,the objective of this study was to modify CNF chemically to enhance the barrier properties of the food packaging paper.It was found that paper coated with CNFg-PDMAEMA and CNF-g-PHEMA exhibited improvements in mechanical and barrier properties while maintaining the desired viscosity for the coating process.The water contact angle increased for paper coated with CNF-g-PHEMA and CNF-g-PDMAEMA,reaching a maximum of 97.51°and 92.58°,respectively with the decreasing Cobb_(60) values by 49% and 11%.The oil absorption was also reduced for both coated papers compared to the blank paper.Mechanical properties improved,as indicated by a 3% increase in tensile strength for paper coated with CNF-g-PHEMA and a 5% for paper coated with CNF-g-PDMAEMA.The results indicated significant potential for the application of modified CNF in coatings for food packaging paper.Noteworthy,the grafting process should be improved to enhance the mechanical and barrier properties of the coated paper. 展开更多
关键词 Cellulose nanofibril GRAFTING biopolymer modification paper coating barrier properties
在线阅读 下载PDF
New developments and future innovative opportunities for carbon sequestration in South Africa:A review
13
作者 Nkosinomusa Khanyile Kasturie Premlall Major Mabuza 《Chinese Journal of Population,Resources and Environment》 2025年第3期372-385,共14页
The South African government has proven its commitment to the reduction of anthropogenic carbon emissions by unveiling the carbon capture,utilization,and storage(CCUS)pilot demonstration research site on August 30,202... The South African government has proven its commitment to the reduction of anthropogenic carbon emissions by unveiling the carbon capture,utilization,and storage(CCUS)pilot demonstration research site on August 30,2024.The CCUS approach is to form part of the Integrated Resource Plan as one of the critical aspects of the country’s energy mix.This puts CCUS at the forefront of the adoption of clean energy initiatives.This paper reviews the progress on CCUS initiatives in South Africa since the publication of the 2010 technical report on the geological storage of carbon dioxide(CO_(2))with a focus on onshore sequestration.The focus is on the current status,future opportunities,and the possibility of developing numerical models and simulations of various South African coal ranks to simulate CO_(2)sequestration potential with reference to the related literature.The paper also delves into the ongoing Leandra pilot CCS demonstration project in Mpumalanga Province,the status of the identified unmineable coalfields available for CCS in South Africa,collaborations,and future prospects for CCS in the country.The purpose is to contribute to advancing the local CCS technology and mitigating anthropogenic CO_(2)emissions.Through this review paper,it is established that promoting the advancement and implementation of CCS in South Africa requires continuous advanced research activities from scholars and private and government institutions because of the critical need to understand the fluid induced response of geological formations,especially coal formations,for the secure and effective application of this sequestration method. 展开更多
关键词 Anthropogenic carbon dioxide Carbon capture and storage Leandra pilot plant Numerical modelling and simulation Onshore and offshore potential
在线阅读 下载PDF
Enhanced nitrite and phosphate detection through Ag-doped TiO_(2) sensing material
14
作者 Thura Lin Htet Sira Sripirommit +6 位作者 Manasbodin Asava-arunotai Myo Myo Thu Gasidit Panomsuwan Ratchatee Techapiesancharoenkij Pinit Kidkhunthod Jintara Padchasri Oratai Jongprateep 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2280-2293,共14页
To prevent bacterial growth and ensure food safety,common practice involves the use of nitrite and phosphate salts.Neverthe-less,elevated nitrite levels in the body can contribute to the development of stomach and eso... To prevent bacterial growth and ensure food safety,common practice involves the use of nitrite and phosphate salts.Neverthe-less,elevated nitrite levels in the body can contribute to the development of stomach and esophageal cancers,while excessive phosphate levels may increase the risk of kidney dysfunction and the onset of osteoporosis.Electrochemical sensing has emerged as a reliable tech-nique for detecting nitrites and phosphates.This study specifically focuses on the use of TiO_(2)-based sensing materials for such detection.The synthesis of nanoparticulate TiO_(2) and Ag-doped TiO_(2) was successfully achieved through a solution combustion technique.The com-position of the materials was examined using X-ray diffraction(XRD)and X-ray absorption near-edge structure(XANES)methods,re-vealing a predominant anatase composition.Doping resulted in particle refinement,contributing to an increased specific surface area and enhanced electron transfer efficiency,as indicated in the examination by electrochemical impedance spectroscopy(EIS).Cyclic voltam-metry(CV)assessed the electrochemical behavior,demonstrating that in nitrite detection,a significant oxidation reaction occurred at an applied voltage of approximately 1.372 V,while in phosphate detection,the main reduction peak occurred at a voltage close to-0.48 V.High sensitivity(2μA·μM^(-1)·mm^(-2) for sodium nitrite and 2.1μA·μM^(-1)·mm^(-2) for potassium phosphate)and low limits of detection(0.0052 mM for sodium nitrite and 0.0045 mM for potassium phosphate)were observed.Experimental results support the potential use of Ag-doped TiO_(2) as a sensing device for nitrites and phosphates. 展开更多
关键词 electrochemical sensor sodium nitrite silver-doped titanium dioxide glassy carbon electrode cyclic voltammetry
在线阅读 下载PDF
Erratum to:Evolution of microstructure and mechanical properties in multi-layer 316 L-TiC composite fabricated by selective laser melting additive manufacturing
15
作者 Sasan YAZDANI Suleyman TEKELI +2 位作者 Hossein RABIEIFAR Ufuk TAŞCI Elina AKBARZADEH 《Journal of Central South University》 2025年第2期691-691,共1页
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic... Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research. 展开更多
关键词 additive manufacturing microstructure mechanical properties fellowship program multi layer L TIC composite selective laser melting
在线阅读 下载PDF
Highly corrosion-resistant and photocatalytic hybrid coating on AZ31 Mg alloy via plasma electrolytic oxidation with organic-inorganic integration
16
作者 Talitha Tara Thanaa Mohammad Aadil +3 位作者 Alireza Askari Arash Fattah-alhosseini Mohammad Alkaseem Mosab Kaseem 《Journal of Magnesium and Alloys》 2025年第1期260-282,共23页
This study explores the development of an organic-inorganic hybrid coating to enhance the corrosion resistance and photocatalytic properties of AZ31 Mg alloy modified by plasma electrolytic oxidation(PEO).The PEO proc... This study explores the development of an organic-inorganic hybrid coating to enhance the corrosion resistance and photocatalytic properties of AZ31 Mg alloy modified by plasma electrolytic oxidation(PEO).The PEO process typically generates a porous oxide layer,which can reduce corrosion protection by allowing corrosive agents to penetrate the substrate.To address this limitation,phenopyridine(PHEN)and 2-methylimidazole(2-IMD)were incorporated into the PEO surface to form a robust organic layer on the Mg alloy.Potassium hydroxide(KOH)was used to adjust the pH,improving the interaction and solubility between the organic molecules and the PEO coating.The hybrid coating exhibited unique twig-like surface structures that contributed to forming a multifunctional coating with high corrosion resistance and superior photocatalytic activity.The PEO-PHEN-2IMD sample on the Mg alloy demonstrated exceptional corrosion resistance,with the lowest corrosion current density(I_(corr))of 1.92×10^(-10) A/cm^(2),a high corrosion potential(E_(corr)),and the highest top layer resistance(R_(top))of 2.57×10^(6)Ω·cm^(2),indicating excellent barrier properties.Additionally,the coating achieved complete(100%)degradation of methylene blue(MB)within 30 min under visible light.Density Functional Theory(DFT)calculations provide deeper insights into the bonding mechanisms and interaction stability between PHEN,2-IMD,and the PEO layer on the Mg alloy and MB dye.These findings confirmed the enhanced performance of the hybrid coating in both corrosion resistance and photocatalytic applications. 展开更多
关键词 Mg alloy Hybrid coating Phenopyridine-2methylimidazole complex CORROSION Photocatalytic activity
在线阅读 下载PDF
Surface Modification of Activated Carbon by Nitrogen Doping and KOH Activation for Enhanced Carbon Dioxide Adsorption Performance
17
作者 Thanattha Chobsilp Alongkot Treetong +5 位作者 Visittapong Yordsri Mattana Santasnachok Pollawat Charoeythornkhajhornchai Jaruvit Sukkasem Winadda Wongwiriyapan Worawut Muangrat 《Journal of Renewable Materials》 2025年第11期2155-2168,共14页
Nitrogen-doped activated carbon(N-AC)was successfully prepared by KOH-activation and nitrogen doping using ammonia(NH3)heat treatment.Coconut shell-derived activated carbon(AC)was heat-treated under NH3 gas in the tem... Nitrogen-doped activated carbon(N-AC)was successfully prepared by KOH-activation and nitrogen doping using ammonia(NH3)heat treatment.Coconut shell-derived activated carbon(AC)was heat-treated under NH3 gas in the temperature range of 700℃-900℃.Likewise,the mixture of potassium hydroxide(KOH)and AC was heated at 800℃,followed by heat treatment underNH3 gas at 800℃(hereafter referred to asKOH-N-AC800).Scanning electron microscopy(SEM),Raman spectroscopy,X-ray photoelectron spectroscopy(XPS)and Brunauer-Emmett-Teller(BET)method were utilized to analyze morphology,crystallinity,chemical bonding,chemical composition and surface area.The surface area and porosity of N-AC increased with increasing NH3 heat treatment.Similarly,the nitrogen content in the N-AC increased from 3.23%to 4.84 at%when the NH3 heat treatment was raised from 700℃ to 800℃.However,the nitrogen content of N-AC decreased to 3.40 at% after using NH3 heat treatment at 900℃.The nitrogen content of KOH-N-AC800 is 5.43 at%.KOH-N-AC800 and N-AC800 exhibited improvements of 33.66% and 26.24%,respectively,in CO_(2) adsorption compared with AC.The enhancement of CO_(2) adsorption of KOH-N-AC800 is attributed to the synergic effect of the nitrogen doping,high surface area,and porosity.The results exhibited that nitrogen sites on the surface play a more significant role in CO_(2) adsorption than surface area and porosity.This work proposes the potential synergistic effect of KOH-activation and nitrogen doping for enhancing the CO_(2) adsorption capacity of activated carbon. 展开更多
关键词 Nitrogen-doped activated carbon nitrogen doping ammonia heat treatment carbon dioxide adsorption carbon capture sustainable development goals
在线阅读 下载PDF
Mechanical Properties of Epoxy Composite Materials Produced with Different Ceramic Powders
18
作者 Yelda Akcin Ergün 《Journal of Materials Science and Chemical Engineering》 2019年第12期1-8,共8页
In this study, production and mechanical properties of polymer composite materials obtained by using Al2O3, SiO2, MgO and TiO2 hard ceramic fillers were studied. Epoxy resin was used as the matrix material, and four d... In this study, production and mechanical properties of polymer composite materials obtained by using Al2O3, SiO2, MgO and TiO2 hard ceramic fillers were studied. Epoxy resin was used as the matrix material, and four different ceramic powders were mechanically mixed into the resin at 3% and 5% as reinforcement. The mechanical properties of the polymer composite materials were then characterized. For this purpose, flexural modulus and flexural strength of composite materials were determined by using three point bending test and impact toughness of the materials were determined by Charpy impact test. In addition, the hardness values of the samples were determined by Shore D hardness test. 展开更多
关键词 Polymer Composite EPOXY Ceramic Powders Mechanical Properties
在线阅读 下载PDF
Advancements in enhancing corrosion protection of Mg alloys:A comprehensive review on the synergistic effects of combining inhibitors with PEO coating 被引量:3
19
作者 Arash Fattah-alhosseini Abdelhameed Fardosi +1 位作者 Minoo Karbasi Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期465-489,共25页
Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica... Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments. 展开更多
关键词 INHIBITOR Mg alloy Self-healing coating Plasma electrolytic oxidation(PEO) Corrosion protection
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部