In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics....In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials.展开更多
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ...Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.展开更多
Spinal cord injury(SCI)is a debilitating ailment that leads to the loss of motor and sensory functions,often leaving the patient paralyzed below the injury site(Chen et al.,2013).Globally around 250,000-300,000 people...Spinal cord injury(SCI)is a debilitating ailment that leads to the loss of motor and sensory functions,often leaving the patient paralyzed below the injury site(Chen et al.,2013).Globally around 250,000-300,000 people are diagnosed with SCI annually(Singh et al.,2014),and while this number appears quite low,the effect that an SCI has on the patient’s quality of life is drastic,due to the current difficulties to comprehensively treat this illness.The cost of patient care can also be quite costly,amounting to an estimated$1.69 billion in healthcare costs in the USA alone(Mahabaleshwarkar and Khanna,2014).展开更多
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off...The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.展开更多
Neural injuries can cause considerable functional impairments,and both central and peripheral nervous systems have limited regenerative capacity.The existing conventional pharmacological treatments in clinical practic...Neural injuries can cause considerable functional impairments,and both central and peripheral nervous systems have limited regenerative capacity.The existing conventional pharmacological treatments in clinical practice show poor targeting,rapid drug clearance from the circulatory system,and low therapeutic efficiency.Therefore,in this review,we have first described the mechanisms underlying nerve regeneration,characterized the biomaterials used for drug delivery to facilitate nerve regeneration,and highlighted the functionalization strategies used for such drug-delivery systems.These systems mainly use natural and synthetic polymers,inorganic materials,and hybrid systems with advanced drug-delivery abilities,including nanoparticles,hydrogels,and scaffoldbased systems.Then,we focused on comparing the types of drug-delivery systems for neural regeneration as well as the mechanisms and challenges associated with targeted delivery of drugs to facilitate neural regeneration.Finally,we have summarized the clinical application research and limitations of targeted delivery of these drugs.These biomaterials and drug-delivery systems can provide mechanical support,sustained release of bioactive molecules,and enhanced intercellular contact,ultimately reducing cell apoptosis and enhancing functional recovery.Nevertheless,immune reactions,degradation regulation,and clinical translations remain major unresolved challenges.Future studies should focus on optimizing biomaterial properties,refining delivery precision,and overcoming translational barriers to advance these technologies toward clinical applications.展开更多
The rapid development of portable electronics,wearable technologies,and healthcare monitoring systems necessitates the innovation of flexible energy storage systems.Considering environmental pollution and the depletio...The rapid development of portable electronics,wearable technologies,and healthcare monitoring systems necessitates the innovation of flexible energy storage systems.Considering environmental pollution and the depletion of fossil resources,the utilization of renewable resources to engineer advanced flexible materials has become especially crucial.Cellulose,the most abundant natural polymer,has emerged as a promising precursor for advanced functional materials due to its unique structure and properties.Typically,the easy processability,tunable chemical structure,self-assembly behavior,mechanical strength,and reinforcing capability enable its utilization as binder,substrate,hybrid electrode,separator,and electrolyte reservoir for flexible energy storage devices.This review comprehensively summarizes the design,fabrication,and mechanical and electrochemical performances of cellulose-based materials.The structure and unique properties of cellulose are first briefly introduced.Then,the construction of cellulose-based materials in the forms of 1D fibers/filaments,2D films/membranes,3D hydrogels and aerogels is discussed,and the merits of cellulose in these materials are emphasized.After that,the various advanced applications in supercapacitors,lithium-ion batteries,lithium-sulfur batteries,sodium-ion batteries,metal-air batteries,and Zn-ion batteries are presented in detail.Finally,an outlook of the potential challenges and future perspectives in advanced cellulose-based materials for flexible energy storage systems is discussed.展开更多
As silicon-based transistors face fundamental scaling limits,the search for breakthrough alternatives has led to innovations in 3D architectures,heterogeneous integration,and sub-3 nm semiconductor body thicknesses.Ho...As silicon-based transistors face fundamental scaling limits,the search for breakthrough alternatives has led to innovations in 3D architectures,heterogeneous integration,and sub-3 nm semiconductor body thicknesses.However,the true effectiveness of these advancements lies in the seamless integration of alternative semiconductors tailored for next-generation transistors.In this review,we highlight key advances that enhance both scalability and switching performance by leveraging emerging semiconductor materials.Among the most promising candidates are 2D van der Waals semiconductors,Mott insulators,and amorphous oxide semiconductors,which offer not only unique electrical properties but also low-power operation and high carrier mobility.Additionally,we explore the synergistic interactions between these novel semiconductors and advanced gate dielectrics,including high-K materials,ferroelectrics,and atomically thin hexagonal boron nitride layers.Beyond introducing these novel material configurations,we address critical challenges such as leakage current and long-term device reliability,which become increasingly crucial as transistors scale down to atomic dimensions.Through concrete examples showcasing the potential of these materials in transistors,we provide key insights into overcoming fundamental obstacles—such as device reliability,scaling down limitations,and extended applications in artificial intelligence—ultimately paving the way for the development of future transistor technologies.展开更多
The convergence of materials science and biotechnology has catalyzed the development of innovative platforms,including nanotechnology,smart sensors,and supramolecular materials,significantly advancing the progress in ...The convergence of materials science and biotechnology has catalyzed the development of innovative platforms,including nanotechnology,smart sensors,and supramolecular materials,significantly advancing the progress in the field of life sciences[1−7].Among them,supramolecular materials have garnered increasing attention in life sciences owing to their distinctive self-assembly capabilities and intelligent responsiveness[8−12].展开更多
The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-lear...The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.展开更多
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed...Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries.展开更多
The urgent demand for renewable energy solutions,propelled by the global energy crisis and environmental concerns,has spurred the creation of innovative materials for solar thermal storage.Photothermal phase change ma...The urgent demand for renewable energy solutions,propelled by the global energy crisis and environmental concerns,has spurred the creation of innovative materials for solar thermal storage.Photothermal phase change materials(PTPCMs)represent a novel type of composite phase change material(PCM)aimed at improving thermal storage efficiency by incorporating photothermal materials into traditional PCMs and encapsulating them within porous structures.Various porous encapsulation materials have been studied,including porous carbon,expanded graphite,and ceramics,but issues like brittleness hinder their practical use.To overcome these limitations,flexible PTPCMs using organic porous polymers—like foams,hydrogels,and porous wood—have emerged,offering high porosity and lightweight characteristics.This review examines recent advancements in the preparation of PTPCMs based on porous polymer supports through techniques like impregnation and in situ polymerization,assessing the impact of different porous polymer materials on PCM performance and clarifying the mechanisms of photothermal conversion and heat storage.Subsequently,the most recent advancements in the applications of porous polymer-based PTPCMs are systematically summarized,and future research challenges and possible solutions are discussed.This review aims to foster awareness about the potential of PTPCMs in promoting environmentally friendly energy practices and catalyzing further research in this promising field.展开更多
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma...Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.展开更多
Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high co...Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high costs.With the development of physics,statistics,computer science,and other fields,machine learning offers opportunities for systematically discovering new materials.Especially through machine learning-based inverse design,machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties.This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse design.Then,three main inverse design methods—exploration-based,model-based,and optimization-based—are analyzed in the context of different application scenarios.Finally,the applications of inverse design methods in alloys,optical materials,and acoustic materials are elaborated on,and the prospects for materials inverse design are discussed.The authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods.展开更多
1|Introduction Metamaterials are artificially engineered systems in which the geometry and arrangement of designed unit cells give rise to effective properties that are not available in natural materials.Intelligent m...1|Introduction Metamaterials are artificially engineered systems in which the geometry and arrangement of designed unit cells give rise to effective properties that are not available in natural materials.Intelligent metamaterials extend this concept by integrating stimulus-responsive materials with programmable architectures,thereby creating functional matter that blurs the conventional boundary between materials and structures and enables dynamic,adaptive,and reconfigurable functionalities.These systems can respond to diverse stimuli such as thermal,electrical,optical,magnetic,and mechanical inputs,and convert them into tunable shape change,adaptive mechanical/optical responses,and other reconfigurable functionalities[1–5].Through this synergy,they acquire lifelike and emergent behaviors,making them attractive platforms for next-generation applications in soft robotics,bioengineering,information encryption,and mechanical computation.展开更多
The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly ...The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly emerged in the field of optoelectronic applications due to their unique size-,composition-,surface-,and process-dependent optoelectronic properties.More importantly,their ultra-high specific surface area allows for the application of various surface chemical engineering techniques to regulate and optimize their optoelectronic performance.Furthermore,three-dimensionally confined QDs can achieve nearly perfect photoluminescence quantum yields and extended hot carrier cooling times.Particularly,their ability to be colloidally synthesized and processed using industrially friendly solvents is driving transformative changes in the fields of electronics,photonics,and optoelectronics.展开更多
Ultrafast Joule heating(JH)has emerged as a powerful and scalable platform for rapid thermal processing of advanced nanomaterials.By delivering transient,high-intensity electrical pulses,JH induces ultrafast heating a...Ultrafast Joule heating(JH)has emerged as a powerful and scalable platform for rapid thermal processing of advanced nanomaterials.By delivering transient,high-intensity electrical pulses,JH induces ultrafast heating and cooling rates on the order of milliseconds,facilitating nonequilibrium phase transitions,defect modulation,and tailored nanostructural evolution.This technique offers unprecedented control over material synthesis and has been successfully applied to a broad spectrum of functional property-driven materials,including graphene,single-atom catalysts,transition metal carbides,oxides,nitrides,phosphides,and chalcogenides,as well as complex multicomponent frameworks such as high-entropy alloys.This review systematically explores the principles governing JH,highlights recent advances in its application to diverse materials systems,and critically assesses current limitations related to process uniformity,scalability,and mechanistic understanding.Particular attention is given to its intrinsic advantages,including energy efficiency,fast rate,environmental sustainability,and compatibility with sustainable manufacturing.Finally,we propose guidance for expanding the utility of JH for new materials discovery,including integration with in-situ diagnostics,theoretical compatibility and data-driven optimization of synthesis to effectively correlate structure-property relationships.展开更多
We are delighted to introduce this Special Issue of Acta Metallurgica Sinica(English Letters)dedicated to"Thermoelectric Materials and Devices."Thermoelectric materials and devices have emerged as a promisin...We are delighted to introduce this Special Issue of Acta Metallurgica Sinica(English Letters)dedicated to"Thermoelectric Materials and Devices."Thermoelectric materials and devices have emerged as a promising technology for sustainable energy solutions,enabling efficient conversion between heat and electricity.This special collection highlights the latest advancements in the field,showcasing cutting-edge research and fostering interdisciplinary collaboration among researchers worldwide.展开更多
1.Introduction.The Ti6Al4V alloy is extensively utilized across various indus-trial sectors due to its favorable characteristics,such as lightweight design,high strength,and resistance to corrosion[1].In effort s to f...1.Introduction.The Ti6Al4V alloy is extensively utilized across various indus-trial sectors due to its favorable characteristics,such as lightweight design,high strength,and resistance to corrosion[1].In effort s to further reduce weight,functional elements like electric actuators can be substituted with intelligent materials like shape memory alloys(SMAs)[2,3].Among SMAs,NiTi alloy stands out for its sens-ing and actuation capabilities,significantly enhancing the safety and reliability of engineering structures[4,5].Integrating Ti6Al4V and NiTi alloys within a single component holds the potential to provide precise feedback on mechanical,thermal,or environmen-tal conditions[6,7].展开更多
In the realm of biomedical materials,biomedical magnesium(Mg)alloy materials are progressively emerging as a highly salient research focal point,capitalizing on their distinctive advantages.Mg,as a unique metallic ele...In the realm of biomedical materials,biomedical magnesium(Mg)alloy materials are progressively emerging as a highly salient research focal point,capitalizing on their distinctive advantages.Mg,as a unique metallic element,by virtue of its specific properties,has ushered in novel development opportunities for the biomedical domain[1-3].Firstly,Mg manifests outstanding biodegradability.展开更多
In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applic...In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applications.We proposed the thermal-percolation electrical-resistive TIM incorporating binary fillers of both insulating and metallic nanowires with an orientation in the insulating polymer matrix.High thermal conductivity can be achieved through thermal percolation,while electrical non-conductivity is preserved by carefully controlling the electrical percolation threshold through metallic nanowire orientation.The electrical conductivity of the composite can be further regulated by adjusting the orientation and aspect ratio of the metallic fillers.A thermal conductivity of 10 W·m^(-1)·K^(-1)is achieved,with electrical non-conductive behavior preserved.This approach offers a pathway to realizing“thermal-percolation electrical-resistive”in hybrid TIMs,providing a strategic framework for designing high-performance TIMs.展开更多
文摘In the context of diminishing energy resources and worsening greenhouse effect,thermoelectric materials have great potential for sustainable development due to their green and environmentally friendly characteristics.Among inorganic thermoelectric materials,copper sulfide compounds have greater potential than others due to their abundant element reserves on Earth,lower usage costs,non-toxicity,and good biocompatibility.Compared to organic thermoelectric materials,the"phonon liquid-electron crystal"(PLEC)feature of copper sulfide compounds makes them have stronger thermoelectric performance.This review summarizes the latest research progress in the synthesis methods and thermoelectric modification strategies of copper sulfide compounds.It first explains the importance of the solid-phase method in the manufacture of thermoelectric devices,and then focuses on the great potential of nanoscale synthesis technology based on liquid-phase method in the preparation of thermoelectric materials.Finally,it systematically discusses several strategies for regulating the thermoelectric performance of copper sulfide compounds,including adjusting the chemical proportion of Cu_(2-x)S and introducing element doping to regulate the crystal structure,phase composition,chemical composition,band structure,and nanoscale microstructure of copper sulfide compounds,and directly affecting ZT value by adjusting conductivity and thermal conductivity.In addition,it discusses composite engineering based on copper sulfide compounds,including inorganic,organic,and metal compounds,and discusses tri-component compounds derived from sulfide copper.Finally,it discusses the main challenges and prospects of the development of copper sulfide-based thermoelectric materials,hoping that this review will promote the development of copper sulfide-based thermoelectric materials.
基金supported by the National Natural Science Foundation of China(No.52242305).
文摘Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.
基金supported by the Irish Research Council under the Government of Ireland Postdoctoral Fellowship Project ID-GOIPD/2023/1431(to AS).
文摘Spinal cord injury(SCI)is a debilitating ailment that leads to the loss of motor and sensory functions,often leaving the patient paralyzed below the injury site(Chen et al.,2013).Globally around 250,000-300,000 people are diagnosed with SCI annually(Singh et al.,2014),and while this number appears quite low,the effect that an SCI has on the patient’s quality of life is drastic,due to the current difficulties to comprehensively treat this illness.The cost of patient care can also be quite costly,amounting to an estimated$1.69 billion in healthcare costs in the USA alone(Mahabaleshwarkar and Khanna,2014).
基金supported by the IITP(Institute of Information & Communications Technology Planning & Evaluation)-ITRC(Information Technology Research Center) grant funded by the Korea government(Ministry of Science and ICT) (IITP-2025-RS-2024-00437191, and RS-2025-02303505)partly supported by the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education. (No. 2022R1A6C101A774)the Deanship of Research and Graduate Studies at King Khalid University, Saudi Arabia, through Large Research Project under grant number RGP-2/527/46
文摘The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials.
基金the support from Base for Interdisciplinary Innovative Talent Training,Shanghai Jiao Tong UniversityYouth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine。
文摘Neural injuries can cause considerable functional impairments,and both central and peripheral nervous systems have limited regenerative capacity.The existing conventional pharmacological treatments in clinical practice show poor targeting,rapid drug clearance from the circulatory system,and low therapeutic efficiency.Therefore,in this review,we have first described the mechanisms underlying nerve regeneration,characterized the biomaterials used for drug delivery to facilitate nerve regeneration,and highlighted the functionalization strategies used for such drug-delivery systems.These systems mainly use natural and synthetic polymers,inorganic materials,and hybrid systems with advanced drug-delivery abilities,including nanoparticles,hydrogels,and scaffoldbased systems.Then,we focused on comparing the types of drug-delivery systems for neural regeneration as well as the mechanisms and challenges associated with targeted delivery of drugs to facilitate neural regeneration.Finally,we have summarized the clinical application research and limitations of targeted delivery of these drugs.These biomaterials and drug-delivery systems can provide mechanical support,sustained release of bioactive molecules,and enhanced intercellular contact,ultimately reducing cell apoptosis and enhancing functional recovery.Nevertheless,immune reactions,degradation regulation,and clinical translations remain major unresolved challenges.Future studies should focus on optimizing biomaterial properties,refining delivery precision,and overcoming translational barriers to advance these technologies toward clinical applications.
基金supported by National Natural Science Foundation of China(Grant Nos.32201499,32222057,and 22478142)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515012519,2023A0505050114,and 2024B1515040004)+1 种基金National Key Research and Development Project(Grant No 2023YFE0109600)State Key Laboratory of Advanced Papermaking and Paper-based Materials(2024C02).
文摘The rapid development of portable electronics,wearable technologies,and healthcare monitoring systems necessitates the innovation of flexible energy storage systems.Considering environmental pollution and the depletion of fossil resources,the utilization of renewable resources to engineer advanced flexible materials has become especially crucial.Cellulose,the most abundant natural polymer,has emerged as a promising precursor for advanced functional materials due to its unique structure and properties.Typically,the easy processability,tunable chemical structure,self-assembly behavior,mechanical strength,and reinforcing capability enable its utilization as binder,substrate,hybrid electrode,separator,and electrolyte reservoir for flexible energy storage devices.This review comprehensively summarizes the design,fabrication,and mechanical and electrochemical performances of cellulose-based materials.The structure and unique properties of cellulose are first briefly introduced.Then,the construction of cellulose-based materials in the forms of 1D fibers/filaments,2D films/membranes,3D hydrogels and aerogels is discussed,and the merits of cellulose in these materials are emphasized.After that,the various advanced applications in supercapacitors,lithium-ion batteries,lithium-sulfur batteries,sodium-ion batteries,metal-air batteries,and Zn-ion batteries are presented in detail.Finally,an outlook of the potential challenges and future perspectives in advanced cellulose-based materials for flexible energy storage systems is discussed.
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT),South Korea(RS-2024-00421181)financially supported in part by National R&D Program(2021M3H4A3A02086430)through NRF(National Research Foundation of Korea)funded by Ministry of Science and ICT+2 种基金the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.GTL25021-210)The Inter-University Semiconductor Research Center,Institute of Engineering Research,and Soft Foundry Institute at Seoul National University provided research facilities for this workhe grant by the National Research Foundation of Korea(NSF)supported by the Korea government(MIST)(RS-2025-16903034)。
文摘As silicon-based transistors face fundamental scaling limits,the search for breakthrough alternatives has led to innovations in 3D architectures,heterogeneous integration,and sub-3 nm semiconductor body thicknesses.However,the true effectiveness of these advancements lies in the seamless integration of alternative semiconductors tailored for next-generation transistors.In this review,we highlight key advances that enhance both scalability and switching performance by leveraging emerging semiconductor materials.Among the most promising candidates are 2D van der Waals semiconductors,Mott insulators,and amorphous oxide semiconductors,which offer not only unique electrical properties but also low-power operation and high carrier mobility.Additionally,we explore the synergistic interactions between these novel semiconductors and advanced gate dielectrics,including high-K materials,ferroelectrics,and atomically thin hexagonal boron nitride layers.Beyond introducing these novel material configurations,we address critical challenges such as leakage current and long-term device reliability,which become increasingly crucial as transistors scale down to atomic dimensions.Through concrete examples showcasing the potential of these materials in transistors,we provide key insights into overcoming fundamental obstacles—such as device reliability,scaling down limitations,and extended applications in artificial intelligence—ultimately paving the way for the development of future transistor technologies.
基金supported by the National Natural Science Foundation of China(22101043)the Fundamental Research Funds for the Central Universities(N2205013,N232410019,N2405013)+3 种基金Natural Science Foundation of Liaoning Province(2023-MSBA-068)the Opening Fund of State Key Laboratory of Heavy Oil Processing(SKLHOP202203006)the Key Laboratory of Functional Molecular Solids,Ministry of Education(FMS2023005)Northeastern University。
文摘The convergence of materials science and biotechnology has catalyzed the development of innovative platforms,including nanotechnology,smart sensors,and supramolecular materials,significantly advancing the progress in the field of life sciences[1−7].Among them,supramolecular materials have garnered increasing attention in life sciences owing to their distinctive self-assembly capabilities and intelligent responsiveness[8−12].
基金financially supported by the National Science Fund for Distinguished Young Scholars,China(No.52025041)the National Natural Science Foundation of China(Nos.52450003,U2341267,and 52174294)+1 种基金the National Postdoctoral Program for Innovative Talents,China(No.BX20240437)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-23-037 and FRF-TP-20-02C2)。
文摘The rapid advancements in computer vision(CV)technology have transformed the traditional approaches to material microstructure analysis.This review outlines the history of CV and explores the applications of deep-learning(DL)-driven CV in four key areas of materials science:microstructure-based performance prediction,microstructure information generation,microstructure defect detection,and crystal structure-based property prediction.The CV has significantly reduced the cost of traditional experimental methods used in material performance prediction.Moreover,recent progress made in generating microstructure images and detecting microstructural defects using CV has led to increased efficiency and reliability in material performance assessments.The DL-driven CV models can accelerate the design of new materials with optimized performance by integrating predictions based on both crystal and microstructural data,thereby allowing for the discovery and innovation of next-generation materials.Finally,the review provides insights into the rapid interdisciplinary developments in the field of materials science and future prospects.
文摘Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries.
基金supported by the National Natural Science Foundation of China(No.52103093,52103205)the Taishan Scholar Project of Shandong Province(No.tsqn202312187)+2 种基金the Natural Science Foundation of Shandong Province(ZR2024QE220)the Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)the Jiangxi Provincial Natural Science Foundation(20232BAB214031,20242BAB25237).
文摘The urgent demand for renewable energy solutions,propelled by the global energy crisis and environmental concerns,has spurred the creation of innovative materials for solar thermal storage.Photothermal phase change materials(PTPCMs)represent a novel type of composite phase change material(PCM)aimed at improving thermal storage efficiency by incorporating photothermal materials into traditional PCMs and encapsulating them within porous structures.Various porous encapsulation materials have been studied,including porous carbon,expanded graphite,and ceramics,but issues like brittleness hinder their practical use.To overcome these limitations,flexible PTPCMs using organic porous polymers—like foams,hydrogels,and porous wood—have emerged,offering high porosity and lightweight characteristics.This review examines recent advancements in the preparation of PTPCMs based on porous polymer supports through techniques like impregnation and in situ polymerization,assessing the impact of different porous polymer materials on PCM performance and clarifying the mechanisms of photothermal conversion and heat storage.Subsequently,the most recent advancements in the applications of porous polymer-based PTPCMs are systematically summarized,and future research challenges and possible solutions are discussed.This review aims to foster awareness about the potential of PTPCMs in promoting environmentally friendly energy practices and catalyzing further research in this promising field.
基金financially supported by the National Key Research and Development Program of China (No. 2021YFB4000604)the National Natural Science Foundation of China (No. 52271220)+2 种基金the 111 Project (No. B12015)the Fundamental Research Funds for the Central UniversitiesHaihe Laboratory of Sustainable Chemical Transformations, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Science Research and Technology Development Project of Guilin (No. 20210102-4)
文摘Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.
基金funded by theNationalNatural Science Foundation of China(52061020)Major Science and Technology Projects in Yunnan Province(202302AG050009)Yunnan Fundamental Research Projects(202301AV070003).
文摘Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high costs.With the development of physics,statistics,computer science,and other fields,machine learning offers opportunities for systematically discovering new materials.Especially through machine learning-based inverse design,machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties.This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse design.Then,three main inverse design methods—exploration-based,model-based,and optimization-based—are analyzed in the context of different application scenarios.Finally,the applications of inverse design methods in alloys,optical materials,and acoustic materials are elaborated on,and the prospects for materials inverse design are discussed.The authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods.
基金supported by the National University of Singapore Presidential Young Professorship Start-Up Grant.
文摘1|Introduction Metamaterials are artificially engineered systems in which the geometry and arrangement of designed unit cells give rise to effective properties that are not available in natural materials.Intelligent metamaterials extend this concept by integrating stimulus-responsive materials with programmable architectures,thereby creating functional matter that blurs the conventional boundary between materials and structures and enables dynamic,adaptive,and reconfigurable functionalities.These systems can respond to diverse stimuli such as thermal,electrical,optical,magnetic,and mechanical inputs,and convert them into tunable shape change,adaptive mechanical/optical responses,and other reconfigurable functionalities[1–5].Through this synergy,they acquire lifelike and emergent behaviors,making them attractive platforms for next-generation applications in soft robotics,bioengineering,information encryption,and mechanical computation.
文摘The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly emerged in the field of optoelectronic applications due to their unique size-,composition-,surface-,and process-dependent optoelectronic properties.More importantly,their ultra-high specific surface area allows for the application of various surface chemical engineering techniques to regulate and optimize their optoelectronic performance.Furthermore,three-dimensionally confined QDs can achieve nearly perfect photoluminescence quantum yields and extended hot carrier cooling times.Particularly,their ability to be colloidally synthesized and processed using industrially friendly solvents is driving transformative changes in the fields of electronics,photonics,and optoelectronics.
基金supported by the National Natural Science Foundation of China(Grant No.22402030)the Fujian Province Young and Middle-Aged Teacher Education Research Project(JZ240012)+1 种基金I.S.A.acknowledges funding support from Research Ireland under the SFI-IRC Pathway Program(Grant no:22/PATH-S/10725)the SFI Industry RD&I Fellowship Program(Grant no:21/IRDIF/9876).
文摘Ultrafast Joule heating(JH)has emerged as a powerful and scalable platform for rapid thermal processing of advanced nanomaterials.By delivering transient,high-intensity electrical pulses,JH induces ultrafast heating and cooling rates on the order of milliseconds,facilitating nonequilibrium phase transitions,defect modulation,and tailored nanostructural evolution.This technique offers unprecedented control over material synthesis and has been successfully applied to a broad spectrum of functional property-driven materials,including graphene,single-atom catalysts,transition metal carbides,oxides,nitrides,phosphides,and chalcogenides,as well as complex multicomponent frameworks such as high-entropy alloys.This review systematically explores the principles governing JH,highlights recent advances in its application to diverse materials systems,and critically assesses current limitations related to process uniformity,scalability,and mechanistic understanding.Particular attention is given to its intrinsic advantages,including energy efficiency,fast rate,environmental sustainability,and compatibility with sustainable manufacturing.Finally,we propose guidance for expanding the utility of JH for new materials discovery,including integration with in-situ diagnostics,theoretical compatibility and data-driven optimization of synthesis to effectively correlate structure-property relationships.
文摘We are delighted to introduce this Special Issue of Acta Metallurgica Sinica(English Letters)dedicated to"Thermoelectric Materials and Devices."Thermoelectric materials and devices have emerged as a promising technology for sustainable energy solutions,enabling efficient conversion between heat and electricity.This special collection highlights the latest advancements in the field,showcasing cutting-edge research and fostering interdisciplinary collaboration among researchers worldwide.
基金supported by the National Natural Science Foundation of China(Grant No.52235006)the National Key Research and Development Program of China(Grant No.2022YFB4600500)+3 种基金the National Natural Science Foundation of China(Grant Nos.52025053 and 52105303)the Natural Science Foundation of Jilin Province(Grant No.20220101209JC)the Postdoctoral Fellow-ship Program of CPSF(Grant GZC20240587 and GZC20230944)the Graduate Innovation Fund of Jilin University(2024CX063).
文摘1.Introduction.The Ti6Al4V alloy is extensively utilized across various indus-trial sectors due to its favorable characteristics,such as lightweight design,high strength,and resistance to corrosion[1].In effort s to further reduce weight,functional elements like electric actuators can be substituted with intelligent materials like shape memory alloys(SMAs)[2,3].Among SMAs,NiTi alloy stands out for its sens-ing and actuation capabilities,significantly enhancing the safety and reliability of engineering structures[4,5].Integrating Ti6Al4V and NiTi alloys within a single component holds the potential to provide precise feedback on mechanical,thermal,or environmen-tal conditions[6,7].
文摘In the realm of biomedical materials,biomedical magnesium(Mg)alloy materials are progressively emerging as a highly salient research focal point,capitalizing on their distinctive advantages.Mg,as a unique metallic element,by virtue of its specific properties,has ushered in novel development opportunities for the biomedical domain[1-3].Firstly,Mg manifests outstanding biodegradability.
基金supported by the National Key R&D Program(Grant No.2022YFA1203-100)sponsorship by Shanghai Sailing Program(Grant No.24YF2713800)+2 种基金financial support from the Local College Capacity Building Project of Shanghai Municipal Science and Technology Commission(Grant No.20010500700)the Natural Science Foundation of Shanghai(Grant No.23ZR1424300)Shanghai Shuguang Program(Grant No.22SG56)。
文摘In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applications.We proposed the thermal-percolation electrical-resistive TIM incorporating binary fillers of both insulating and metallic nanowires with an orientation in the insulating polymer matrix.High thermal conductivity can be achieved through thermal percolation,while electrical non-conductivity is preserved by carefully controlling the electrical percolation threshold through metallic nanowire orientation.The electrical conductivity of the composite can be further regulated by adjusting the orientation and aspect ratio of the metallic fillers.A thermal conductivity of 10 W·m^(-1)·K^(-1)is achieved,with electrical non-conductive behavior preserved.This approach offers a pathway to realizing“thermal-percolation electrical-resistive”in hybrid TIMs,providing a strategic framework for designing high-performance TIMs.