Artificial sensory systems(ASS)are pivotal to next-generation extended reality technologies,now evolving into flexible platforms for comfortable wear and immersive user experiences,while ensuring high performance and ...Artificial sensory systems(ASS)are pivotal to next-generation extended reality technologies,now evolving into flexible platforms for comfortable wear and immersive user experiences,while ensuring high performance and operational reliability.To address these demands,metal-based nanoparticles(NPs),such as noble metal,oxide,and multi-elemental NPs,have been extensively incorporated into functional materials of sensory and synaptic devices due to their tunable optical,electrical,and chemical properties,enhancing sensory precision,stability,and environmental adaptability.However,traditional NP fabrication methods often involve complex processing,residual contaminants,and scalability issues,limiting their effectiveness in ASS applications.State-of-the-art laser ablation in liquids(LAL)presents a promising alternative,offering scalable production of surfactant-free NPs with customizable physicochemical properties,though their application in electronics remains underexplored.This review delves into the transformative potential of LAL-fabricated NPs in ASS,covering the fundamental mechanisms of LAL,the role of process parameters,the derivative strategies for size modulation,the diversity of metal-based NPs,their applications in sensory and synaptic devices,and the challenges and perspectives for meeting industrial standards.Bridging the gap between LAL and ASS is poised to revolutionize both industrial manufacturing and academic research by offering scalable solutions to overcome intrinsic tradeoffs between flexibility and performance,fostering innovations in human-centric,immersive electronics.展开更多
High- and medium-Mn (H/M-Mn) base lightweight steels are a class of ultrastrong structural materials with high ductility compared to their low-Mn counterparts with low strength and poor ductility.However, producing th...High- and medium-Mn (H/M-Mn) base lightweight steels are a class of ultrastrong structural materials with high ductility compared to their low-Mn counterparts with low strength and poor ductility.However, producing these H/M-Mn materials requires the advanced or high-tech manufacturing techniques, which can unavoidably provoke labor and cost concerns. Herein, we have developed a facilestrategy that circumvents the strength–ductility trade-off in low-Mn ferritic lightweight steels, by employing low-temperature tempering-induced partitioning (LTP). This LTP treatment affords a typical Fe-2.8Mn-5.7Al-0.3C (wt.%) steel with a heterogeneous size-distribution of metastable austenite embeddedin a ferrite matrix for partitioning more carbon into smaller austenite grains than into the larger austenite ones. This size-dependent partitioning results in slip plane spacing modification and lattice strain,which act through dislocation engineering. We ascribe the simultaneous improvement in strength andtotal elongation to both the size-dependent dislocation movement in austenite grains and the controlleddeformation-induced martensitic transformation. The low-carbon-partitioned large austenite grains increase the strength and ductility as a consequence of the combined martensitic transformation andhigh dislocation density-induced hardening and by interface strengthening. Additionally, high-carbonpartitioned small austenite grains enhance the strength and ductility by planar dislocation glide (inthe low strain regime) and by cross-slipping and delayed martensitic transformation (in the high strainregime). The concept of size-dependent dislocation engineering may provide different pathways for developing a wide range of heterogeneous-structured low-Mn lightweight steels, suggesting that LTP maybe desirable for broad industrial applications at an economic cost.展开更多
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Grant Nos.RS-2024-00403639 and RS2024-00411904)。
文摘Artificial sensory systems(ASS)are pivotal to next-generation extended reality technologies,now evolving into flexible platforms for comfortable wear and immersive user experiences,while ensuring high performance and operational reliability.To address these demands,metal-based nanoparticles(NPs),such as noble metal,oxide,and multi-elemental NPs,have been extensively incorporated into functional materials of sensory and synaptic devices due to their tunable optical,electrical,and chemical properties,enhancing sensory precision,stability,and environmental adaptability.However,traditional NP fabrication methods often involve complex processing,residual contaminants,and scalability issues,limiting their effectiveness in ASS applications.State-of-the-art laser ablation in liquids(LAL)presents a promising alternative,offering scalable production of surfactant-free NPs with customizable physicochemical properties,though their application in electronics remains underexplored.This review delves into the transformative potential of LAL-fabricated NPs in ASS,covering the fundamental mechanisms of LAL,the role of process parameters,the derivative strategies for size modulation,the diversity of metal-based NPs,their applications in sensory and synaptic devices,and the challenges and perspectives for meeting industrial standards.Bridging the gap between LAL and ASS is poised to revolutionize both industrial manufacturing and academic research by offering scalable solutions to overcome intrinsic tradeoffs between flexibility and performance,fostering innovations in human-centric,immersive electronics.
基金The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Patent application(Korean Patent application number 10-2020-0172118)has been filed based on the results of this study。
文摘High- and medium-Mn (H/M-Mn) base lightweight steels are a class of ultrastrong structural materials with high ductility compared to their low-Mn counterparts with low strength and poor ductility.However, producing these H/M-Mn materials requires the advanced or high-tech manufacturing techniques, which can unavoidably provoke labor and cost concerns. Herein, we have developed a facilestrategy that circumvents the strength–ductility trade-off in low-Mn ferritic lightweight steels, by employing low-temperature tempering-induced partitioning (LTP). This LTP treatment affords a typical Fe-2.8Mn-5.7Al-0.3C (wt.%) steel with a heterogeneous size-distribution of metastable austenite embeddedin a ferrite matrix for partitioning more carbon into smaller austenite grains than into the larger austenite ones. This size-dependent partitioning results in slip plane spacing modification and lattice strain,which act through dislocation engineering. We ascribe the simultaneous improvement in strength andtotal elongation to both the size-dependent dislocation movement in austenite grains and the controlleddeformation-induced martensitic transformation. The low-carbon-partitioned large austenite grains increase the strength and ductility as a consequence of the combined martensitic transformation andhigh dislocation density-induced hardening and by interface strengthening. Additionally, high-carbonpartitioned small austenite grains enhance the strength and ductility by planar dislocation glide (inthe low strain regime) and by cross-slipping and delayed martensitic transformation (in the high strainregime). The concept of size-dependent dislocation engineering may provide different pathways for developing a wide range of heterogeneous-structured low-Mn lightweight steels, suggesting that LTP maybe desirable for broad industrial applications at an economic cost.