The fossil shells on the sedimentary rocks were collected from The Historical Park,Ban Sap Noi Geopark,Phetchabun Province,Thailand.However,the fossils remained in this area were investigated on the characteristic spe...The fossil shells on the sedimentary rocks were collected from The Historical Park,Ban Sap Noi Geopark,Phetchabun Province,Thailand.However,the fossils remained in this area were investigated on the characteristic species only in geological studies with taxonomy for fossil age predicting.To fill up the gap of these studies,the material characterization techniques were used to study the chemical composition and structure of fossil shells I,II and III.The results clearly showed that the morphologies of all fossil shells were Brachiopod fossils with different species.The functional group and elemental composition of all fossil shells showed that the high content of calcium carbonate was a major composition.In addition,the high content of quartz indicated the silica precipitation phenomenon in all fossil shells.The element composition of cross-sectional morphology and energy dispersive spectroscope (EDS mapping) were used to confirm the presence of Si element in each zone of fossil shells.The crystal structures of all fossil shells were investigated and indicated that the calcium carbonate compound was a calcite phase and silicon dioxide compound was a quartz phase.Moreover,the crystal structure of quartz phase was used to calculate the crystallinity index.The crystallinity index values in all fossil shells indicated a well-crystallized quartz.The age of fossil shells was estimated and found to be brachiopod fossil in carboniferous period with the age of about 359.2 to 299.0 million years.展开更多
This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,5...This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,50℃,60℃)and two air velocities(1.5 and 2.5 m·s^(-1))using an indirect solar dryer with auxiliary temperature control.Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient(r),root-mean-square error(RMSE),and Akaike information criterion(AIC).A complementary heattransfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance,and an energy balance quantified the relative contributions of solar and auxiliary heat.The logarithmic model consistently achieved the lowest RMSE/AIC with r>0.99 across all conditions.Higher temperature and air velocity significantly reduced drying time during the decreasing-rate period,with no constantrate stage observed.On average,solar input supplied the large majority of the thermal demand,while the auxiliary heater compensated short irradiance drops to maintain setpoints.These findings provide a reproducible dataset and a modelling benchmark for M.vulgare leaves,and they support energy-aware design of hybrid solar dryers formedicinal plants in sun-rich regions.展开更多
ZnO nanostructure materials doped with different La contents were synthesized by sonochemical method. The products were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM),transmission elect...ZnO nanostructure materials doped with different La contents were synthesized by sonochemical method. The products were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM),transmission electron microscopy(TEM), Raman spectroscopy, and Fourier transform infrared spectroscopy(FTIR). In this research, XRD patterns of pure ZnO and La-doped ZnO are specified as hexagonal wurtzite ZnO structure with no detection of La2O3 phase. SEM and TEM characterization revealed the flower shape of pure ZnO built-up from petals of hexagonal prisms with hexagonal pyramid tips. Upon doping with La, the flower-shaped ZnO is broken into individual 1D prism-like nanorods. Photocatalytic activities of the as-synthesized products were determined by measuring the degradation of methylene blue(MB) under ultraviolet–visible(UV) light irradiation.Among them, the 2.0 mol% La-doped ZnO shows better photocatalytic properties than any other products.展开更多
The curd of Romanesco broccoli was carbonized at 900°C under argon atmosphere in a gold furnace chamber. The carbonization afforded a carbon material with a fine logarithmic spiral on the surface, resembling t...The curd of Romanesco broccoli was carbonized at 900°C under argon atmosphere in a gold furnace chamber. The carbonization afforded a carbon material with a fine logarithmic spiral on the surface, resembling the Fibonacci parastichy structure of the Romanesco broccoli flower bud. The carbonized “flower bud” structure was observed under scanning electron microscopy. Infrared absorption spectra and X-ray photoelectron spectroscopy measurements confirmed the chemical structure and component of the carbon material.展开更多
Natural rubber(NR)foams are widely used.However,further studies are required for preparing eco-friendly NR foam and determining the optimum physical properties appropriate for application.This study aims to create an ...Natural rubber(NR)foams are widely used.However,further studies are required for preparing eco-friendly NR foam and determining the optimum physical properties appropriate for application.This study aims to create an NR foam from rubber reinforced with sugarcane bagasse ash(SCBA)and sodium alginate.The results showed that the SCBA was primarily composed of silica or silicon dioxide(87.52%by weight)and carbon(11.41%by weight).This study investigated the influence of the amount of sodium alginate(0-5 phr)used in the NR foam formation.The addition of SCBA on the NR foam affected the density,swelling behavior,and crosslink density of the foam.The results identified an optimal loading level that improved the density and morphology of the foam.The hardness and modulus of the NR foam increased with increasing amounts of SCBA,suggesting insufficient reinforcement.The NR exhibited the highest compressive stress at the SCBA concentration of 5 phr.This study facilitates the development of NR as green material and other support materials.展开更多
Plasma electrolytic oxidation(PEO)processing of light metals has been established for decades and is in increasing industrial use,even as an alternative surface treatment to produce multifunctional coatings with envir...Plasma electrolytic oxidation(PEO)processing of light metals has been established for decades and is in increasing industrial use,even as an alternative surface treatment to produce multifunctional coatings with environmental-friendly processing concept.One of the benefits of PEO processing claimed already a couple of years ago was the ability to treat dissimilar metal joints,which can obviously improve the surface homogeneity and stability at the interface of the dissimilar components,especially impeding the galvanic corrosion due to the different electrochemical properties of each component.However,the progress and breakthrough develop slowly especially for the macro scales due to the much larger gap between each component.This literature review firstly demonstrates the still low number of studies reporting successful PEO treatment of material combination such as Mg/Al,Mg/Ti,Al/Ti and scarcely light metal combinations with steel.The main issues and challenges to performing PEO processing on the macroscale dissimilar weldments were stated.On the other hand,dissimilar metal joints also widely exist in micrometer scale in alloys and metal matrix composites(MMCs).Moreover,there is a huge knowledge base on PEO treatment of such multiphase substrates.PEO processing of such complicated mixed microstructures is reviewed as well to reveal the basic problems.To some certain degree,these PEO-related studies on alloys and MMCs can be good examples to have an insight into the coating formation mechanism on macro-scaled dissimilar metal joints.Conclusions are drawn from the micro-to macroscale.Finally,critical access to the problems is given and possible solutions and reaming limitations are discussed.展开更多
This study investigates the effectiveness of salicylate(SAL)as an electrolyte additive on the discharge behavior of high-purity(HP)Mg anode in an aqueous half-cell system,using an integrated approach of mathematical m...This study investigates the effectiveness of salicylate(SAL)as an electrolyte additive on the discharge behavior of high-purity(HP)Mg anode in an aqueous half-cell system,using an integrated approach of mathematical modeling and experimental analysis.A finite elementbased model is developed to elucidate the key mechanisms by which SAL influences the voltage profile and pH.Systematic electrochemical measurements,especially intermittent discharge tests combined with electrochemical impedance spectroscopy(EIS),demonstrate that SAL can enhance initial voltage stability of HP Mg anode.Moreover,the model incorporates the SAL-Mg complexation factor to describe the role of SAL in modifying the deposit film on HP Mg surface.The agreement between model predictions and experimental observations suggests that SAL facilitates the formation of compact Mg(OH)_(2) deposits and sustains a favorable pH environment within the half-cell compartment.This integrated approach provides new insights into understanding and optimizing additive effects for Mg-air batteries.展开更多
The Black–Scholes equation is one of the most important partial differential equations governing the value of financial derivatives in financial markets.The Black–Scholes model for pricing stock options has been app...The Black–Scholes equation is one of the most important partial differential equations governing the value of financial derivatives in financial markets.The Black–Scholes model for pricing stock options has been applied to various payoff structures,and options trading is based on Black and Scholes’principle of dynamic hedging to estimate and assess option prices over time.However,the Black–Scholes model requires severe constraints,assumptions,and conditions to be applied to real-life financial and economic problems.Several methods and approaches have been developed to approach these conditions,such as fractional Black–Scholes models based on fractional derivatives.These fractional models are expected since the Black–Scholes equation is derived using Ito’s lemma from stochastic calculus,where fractional derivatives play a leading role.Hence,a fractional stochastic model that includes the basic Black–Scholes model as a special case is expected.However,these fractional financial models require computational tools and advanced analytical methods to solve the associated fractional Black–Scholes equations.Nevertheless,it is believed that the fractal nature of economic processes permits to model economical and financial markets problems more accurately compared to the conventional model.The relationship between fractional calculus and fractals is well-known in the literature.This study introduces a generalized Black–Scholes equation in fractal dimensions and discusses its role in financial marketing.In our analysis,we consider power-laws properties for volatility,interest rated,and dividend payout,which emerge in several empirical regularities in quantitative finance and economics.We apply our model to study the problem of pricing barrier option and we estimate the values of fractal dimensions in both time and in space.Our model can be used to obtain the prices of many pay-off models.We observe that fractal dimensions considerably affect the solutions of the Black–Scholes equation and that,for fractal dimensions much smaller than unity,the call option increases significantly.We prove that fractal dimensions are a powerful tool to obtain new results.Further details are analyzed and discussed.展开更多
In this review research,the full bio-medical potential and application of the severe acute respiratory syndrome(SARS)-CoV-2 viruses are discussed in detail with the aim of discovering innovative treatment strategies i...In this review research,the full bio-medical potential and application of the severe acute respiratory syndrome(SARS)-CoV-2 viruses are discussed in detail with the aim of discovering innovative treatment strategies in virology and medicine.The SARS-CoV-2 which caused an international health crisis also unraveled an opportunity to gain from its pathogenic effects to treat the affected people.The study aims at testing whether the newly discovered SARS-CoV-2 can be used for therapeutic and clinical purposes.With in-depth analytics,this investigation issue endeavors to unearth new ways of fighting infectious diseases and to improve existing medical interventions.Beside scientific and practical significance the role of this work is vital.By learning the biologic and molecular mysteries of SARS-CoV-2,the researchers can create precise medicines and vaccines not only against COVID-19 but also the other infectious diseases as well.Furthermore,this recommendation may open the door to the future development of gene therapy and vaccine technology.In this sense,it combines multiple approaches,such as viral studies,immunology,and molecular biology.Laboratory experiments,computer program modeling and clinical trials are applied to detection of the SARS-COV-2 in therapeutic implementation.The principal conclusion and analysis of this research put forth the fact that SARS-CoV-2 can be utilized in anti-viral treatment,cancer therapy,and vaccine programs.The study results confirm the inherent adaptability of viruses like SARS-CoV-2 and emphasis on the development of specific therapeutic measures.It is valuable because of its potential to add to virology and medication,showing new ways for virus-based treatment.In addition,the impact of these results on treatments would be revolutionary,with potential to invent superior and flexible interventions against infectious disease.In short,the therapeutic use of SARS-CoV-2 can be regarded as a bold innovation with tremendous consequences for general health,and ultimately for medical science.展开更多
This study reviews light-responsive polymers in various applications,including drug delivery,information storage,sensor,self-healing material,antibacterial or anti-fouling,and environmental applications.Light-responsi...This study reviews light-responsive polymers in various applications,including drug delivery,information storage,sensor,self-healing material,antibacterial or anti-fouling,and environmental applications.Light-responsive polymers are a new material type being developed for various medical,electronics,engineering,and environmental applications.The working principle of light-responsive materials is based on metalligand interactions or non-covalent interactions between polymer functional groups,metal ions,and other filler functional groups.Light irradiation causes physical and mechanical changes in drug delivery and antibacterial systems,which results in the materials releasing more drugs or antibacterial substances.When materials in information storage devices and sensors are exposed to light,they can change color or glow.This has been applied for data storage to reveal QR codes under UV light.Additionally,this review discusses the thermodynamic aspects and computer modeling of light-responsive materials to emphasize the importance and development of these materials.Finally,light-responsive polymer development for various applications is presented.展开更多
Terahertz(THz)radiation possesses unique properties that make it a promising light source for applications in various fields,particularly spectroscopy and imaging.Ongoing research and development in THz technology has...Terahertz(THz)radiation possesses unique properties that make it a promising light source for applications in various fields,particularly spectroscopy and imaging.Ongoing research and development in THz technology has focused on developing or improving THz sources,detectors,and applications.At the PBP-CMU Electron Linac Laboratory(PCELL)of the Plasma and Beam Physics Research Facility in Chiang Mai University,high-intensity THz radiation has been generated in the form of coherent transition radiation(TR)and investigated since 2006 for electron beams with energies ranging from 8 to 12 MeV.In this study,we investigate and optimize the coherent TR arising from short electron bunches with energies ranging from 8 to 22 MeV using an upgraded linear-accelerator system with a higher radio-frequency(RF)power system.This radiation is then transported from the accelerator hall to the experimental room,in which the spectrometers are located.Electron-beam simulations are conducted to achieve short bunch lengths and small transverse beam sizes at the TR station.Radiation properties,including the radiation spectrum,angular distribution,and radiation polarization,are thoroughly investigated.The electron-bunch length is evaluated using the measuring system.The radiation-transport line is designed to achieve optimal frequency response and high transmission efficiency.A radiation-transmission efficiency of approximately 80-90%can be achieved with this designed system,along with a pulse energy ranging from 0.17 to 0.25μJ.The expected radiation spectral range covers up to 2 THz with a peak power of 0.5-1.25 MW.This coherent,broadband,and intense THz radiation will serve as a light source for THz spectroscopy and THz time-domain spectroscopy applications at the PCELL in the near future.展开更多
Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 b...Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations.展开更多
Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavio...Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavior at such low strain rates, a high-resolution strain measurement using the helicoid spring specimen technique was employed in a fine-grained Al-5356 alloy at temperatures ranging from 0.47Tm to 0.74Tm (Tm: melting point). To clarify transient creep mechanism at such low strain rates, transmission electron microscopy (TEM) was used in microstructure observation of crept specimens. The abnormal transient creep, high temperature strengthening at T〉Tp (Tp: the phase transformation temperature, 0.58Tm) or intermediate temperature softening at 0.4Tm〈T£Tp and double-normal type (creep curves including double work-hardening stages) at T=Tp, were firstly observed. The substructure observation in a crept specimen at T=0.58Tm and e=1×10-4 shows pile-up dislocations including many small jogs with equal interval, and dislocations emitted from grain boundaries. The b-Al3Mg2 phase dissolves under the condition of testing temperatures higher than 523 K, which causes solid-solution quantity of Mg atoms to increase. Therefore, the “abnormal transient creep” may be related to the difference of solid solution strengthening caused by phase change during the creep tests.展开更多
Hydrophobic PEO coatings were fabricated in an electrolyte containing potassium stearate.The wetting behaviour of coated samples was studied using dynamic and static contact angle.Also,the corrosion behaviour of the s...Hydrophobic PEO coatings were fabricated in an electrolyte containing potassium stearate.The wetting behaviour of coated samples was studied using dynamic and static contact angle.Also,the corrosion behaviour of the samples was evaluated by polarization method.The dynamic contact angle and hysteresis of the contact angle for PEO coating were evaluated by Wilhelmy plate method.There was an increase in the contact angle of the nanocomposite and traditional PEO coatings when potassium stearate was added to the electrolyte up to 130°.The more hydrophobic coatings,showed more corrosion resistance in 3.5 wt.%NaCl solution.The synergistic effect of potassium stearate and nanoparticles increased the hydrophobicity because of assembling of fatty acid on ceramic powder.展开更多
Alumina nanoparticles were added to a Cu-Zn alloy to investigate their effect on the microstructural,tribological,and corrosion properties of the prepared alloys. Alloying was performed using a mixture of copper and z...Alumina nanoparticles were added to a Cu-Zn alloy to investigate their effect on the microstructural,tribological,and corrosion properties of the prepared alloys. Alloying was performed using a mixture of copper and zinc powders with 0vol% and 5vol% of α-Al nanopowder in a satellite ball mill. The results showed that the Cu-Zn solid solution formed after 18 h of mechanical alloying. The mechanically alloyed powder was compacted followed by sintering of the obtained green compacts at 750°C for 30 min. Alumina nanoparticles were uniformly distributed in the matrix of the Cu-Zn alloy. The tribological properties were evaluated by pin-on-disk wear tests,which revealed that,upon the addition of alumina nanoparticles,the coefficient of friction and the wear rate were reduced to 20% and 40%,respectively. The corrosion properties of the samples exposed to a 3.5wt% Na Cl solution were studied using the immersion and potentiodynamic polarization methods,which revealed that the addition of alumina nanoparticles reduced the corrosion current of the nanocomposite by 90%.展开更多
The aim of the present work was to study the effect of austenite grain size (AGS) on the martensite formation in a high-manganese twinning-induced plasticity (TWIP) steel. The results of a quantitative microstruct...The aim of the present work was to study the effect of austenite grain size (AGS) on the martensite formation in a high-manganese twinning-induced plasticity (TWIP) steel. The results of a quantitative microstructural characterization of the steel by the whole X-ray pattern fitting Rietveld software, materials analysis using diffraction (MAUD), indicated that the volume fraction of αbcc-martensite increases with increasing AGS. However, the value of the stacking fault probability (Psf) does not show a large variation for samples with different values of AGS under water-quenching conditions.展开更多
Magnesium(Mg)and its alloys present great potential to be extensively applied in different applications.However,the relatively poor resistance to corrosion and wear significantly restricts their applications in practi...Magnesium(Mg)and its alloys present great potential to be extensively applied in different applications.However,the relatively poor resistance to corrosion and wear significantly restricts their applications in practice.As one of strategies of surface treatment,micro-arc oxidation(MAO)process attracts a lot of attention,since it does not use neither expensive equipment,nor complicated manipulation.This review systematically discusses MAO mechanism and some typical models,which still need to be further developed to provide a better understanding and guide for future researchers.Subsequently,main influencing factors of MAO process are analyzed in detail.Further,some popular applications of MAO coatings are respectively reviewed,including biomedical application,decoration,thermal control,corrosion and wear resistance,and industrial applications in practice.The existing issues and future perspectives are finally discussed to further accelerate extensive applications of Mg alloys.展开更多
Graphitic carbon nitride(g-C3N4)was synthesized by heating melamine and was then treated with sodium hydroxide solution under a hydrothermal condition to obtain g-C3N4 with a large specific surface area(HSSA).HSSA sho...Graphitic carbon nitride(g-C3N4)was synthesized by heating melamine and was then treated with sodium hydroxide solution under a hydrothermal condition to obtain g-C3N4 with a large specific surface area(HSSA).HSSA shows higher photocatalytic activity for decomposition of acetaldehyde than that of original g-C3N4.HSSA was modified with RuO2 as a co-catalyst by the impregnation method.HSSA loaded with 0.05 wt%RuO2 shows the highest photocatalytic activity for acetaldehyde decomposition under visible light(k=455 nm).展开更多
Various manganese oxides(MnOx) prepared via citric acid solution combustion synthesis were applied for catalytic oxidation of benzene. The results showed the ratios of citric acid/manganese nitrate in synthesizing pro...Various manganese oxides(MnOx) prepared via citric acid solution combustion synthesis were applied for catalytic oxidation of benzene. The results showed the ratios of citric acid/manganese nitrate in synthesizing process positively affected the physicochemical properties of MnOx, e.g., BET(Brunauer-Emmett-Teller) surface area, porous structure, reducibility and so on, which were in close relationship with their catalytic performance. Of all the catalysts, the sample prepared at a citric acid/manganese nitrate ratio of 2:1(C2M1) displayed the best catalytic activity with T(90)(the temperature when 90% of benzene was catalytically oxidized) of 212 ℃. Further investigation showed that C2M1 was Mn2O3 with abundant nano-pores, the largest surface area and the proper ratio of surface Mn^4+/Mn^3+, resulting in preferable low-temperature reducibility and abundant surface active adsorbed oxygen species. The analysis results of the in-situ Fourier transform infrared spectroscopy(in-situ FTIR) revealed that the benzene was successively oxidized to phenolate, o-benzoquinone, small molecules(such as maleates, acetates, and vinyl), and finally transformed to CO2 and H2O.展开更多
基金supported by the Science Achievement Scholarship of Thailand (SAST)the support of Office of Atom for Peace,Thailand and Thailand Institute of Nuclear Technology (a public organization) for providing facilities for some experiment in this work。
文摘The fossil shells on the sedimentary rocks were collected from The Historical Park,Ban Sap Noi Geopark,Phetchabun Province,Thailand.However,the fossils remained in this area were investigated on the characteristic species only in geological studies with taxonomy for fossil age predicting.To fill up the gap of these studies,the material characterization techniques were used to study the chemical composition and structure of fossil shells I,II and III.The results clearly showed that the morphologies of all fossil shells were Brachiopod fossils with different species.The functional group and elemental composition of all fossil shells showed that the high content of calcium carbonate was a major composition.In addition,the high content of quartz indicated the silica precipitation phenomenon in all fossil shells.The element composition of cross-sectional morphology and energy dispersive spectroscope (EDS mapping) were used to confirm the presence of Si element in each zone of fossil shells.The crystal structures of all fossil shells were investigated and indicated that the calcium carbonate compound was a calcite phase and silicon dioxide compound was a quartz phase.Moreover,the crystal structure of quartz phase was used to calculate the crystallinity index.The crystallinity index values in all fossil shells indicated a well-crystallized quartz.The age of fossil shells was estimated and found to be brachiopod fossil in carboniferous period with the age of about 359.2 to 299.0 million years.
文摘This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,50℃,60℃)and two air velocities(1.5 and 2.5 m·s^(-1))using an indirect solar dryer with auxiliary temperature control.Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient(r),root-mean-square error(RMSE),and Akaike information criterion(AIC).A complementary heattransfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance,and an energy balance quantified the relative contributions of solar and auxiliary heat.The logarithmic model consistently achieved the lowest RMSE/AIC with r>0.99 across all conditions.Higher temperature and air velocity significantly reduced drying time during the decreasing-rate period,with no constantrate stage observed.On average,solar input supplied the large majority of the thermal demand,while the auxiliary heater compensated short irradiance drops to maintain setpoints.These findings provide a reproducible dataset and a modelling benchmark for M.vulgare leaves,and they support energy-aware design of hybrid solar dryers formedicinal plants in sun-rich regions.
基金financially supported by the National Research University Project for Chiang Mai University (CMU) from the Thailand’s Office of the Higher Education Commission, Thailand
文摘ZnO nanostructure materials doped with different La contents were synthesized by sonochemical method. The products were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM),transmission electron microscopy(TEM), Raman spectroscopy, and Fourier transform infrared spectroscopy(FTIR). In this research, XRD patterns of pure ZnO and La-doped ZnO are specified as hexagonal wurtzite ZnO structure with no detection of La2O3 phase. SEM and TEM characterization revealed the flower shape of pure ZnO built-up from petals of hexagonal prisms with hexagonal pyramid tips. Upon doping with La, the flower-shaped ZnO is broken into individual 1D prism-like nanorods. Photocatalytic activities of the as-synthesized products were determined by measuring the degradation of methylene blue(MB) under ultraviolet–visible(UV) light irradiation.Among them, the 2.0 mol% La-doped ZnO shows better photocatalytic properties than any other products.
文摘The curd of Romanesco broccoli was carbonized at 900°C under argon atmosphere in a gold furnace chamber. The carbonization afforded a carbon material with a fine logarithmic spiral on the surface, resembling the Fibonacci parastichy structure of the Romanesco broccoli flower bud. The carbonized “flower bud” structure was observed under scanning electron microscopy. Infrared absorption spectra and X-ray photoelectron spectroscopy measurements confirmed the chemical structure and component of the carbon material.
基金supported by the Thailand Science Research and Innovation,National Science Research and Innovation Fund and the Fundamental Fund(FF 2023).
文摘Natural rubber(NR)foams are widely used.However,further studies are required for preparing eco-friendly NR foam and determining the optimum physical properties appropriate for application.This study aims to create an NR foam from rubber reinforced with sugarcane bagasse ash(SCBA)and sodium alginate.The results showed that the SCBA was primarily composed of silica or silicon dioxide(87.52%by weight)and carbon(11.41%by weight).This study investigated the influence of the amount of sodium alginate(0-5 phr)used in the NR foam formation.The addition of SCBA on the NR foam affected the density,swelling behavior,and crosslink density of the foam.The results identified an optimal loading level that improved the density and morphology of the foam.The hardness and modulus of the NR foam increased with increasing amounts of SCBA,suggesting insufficient reinforcement.The NR exhibited the highest compressive stress at the SCBA concentration of 5 phr.This study facilitates the development of NR as green material and other support materials.
基金the China Scholarship Council(No.201708510113)for fellowship and funding.
文摘Plasma electrolytic oxidation(PEO)processing of light metals has been established for decades and is in increasing industrial use,even as an alternative surface treatment to produce multifunctional coatings with environmental-friendly processing concept.One of the benefits of PEO processing claimed already a couple of years ago was the ability to treat dissimilar metal joints,which can obviously improve the surface homogeneity and stability at the interface of the dissimilar components,especially impeding the galvanic corrosion due to the different electrochemical properties of each component.However,the progress and breakthrough develop slowly especially for the macro scales due to the much larger gap between each component.This literature review firstly demonstrates the still low number of studies reporting successful PEO treatment of material combination such as Mg/Al,Mg/Ti,Al/Ti and scarcely light metal combinations with steel.The main issues and challenges to performing PEO processing on the macroscale dissimilar weldments were stated.On the other hand,dissimilar metal joints also widely exist in micrometer scale in alloys and metal matrix composites(MMCs).Moreover,there is a huge knowledge base on PEO treatment of such multiphase substrates.PEO processing of such complicated mixed microstructures is reviewed as well to reveal the basic problems.To some certain degree,these PEO-related studies on alloys and MMCs can be good examples to have an insight into the coating formation mechanism on macro-scaled dissimilar metal joints.Conclusions are drawn from the micro-to macroscale.Finally,critical access to the problems is given and possible solutions and reaming limitations are discussed.
基金the China Scholarship Council for the award of fellowship and funding No.201908510177 and No.202106050030supported by dtec.bw–Digitalization and Technology Research Center of the Bundeswehr which Dr.Deng gratefully acknowledges project DMF+1 种基金the AMABML project founded by the Zentrum für Hochleistungs-materialien(ZHM)DEZAIN project for financial support via grant from GIF,the German-Israeli Foundation for Scientific Research and Development.
文摘This study investigates the effectiveness of salicylate(SAL)as an electrolyte additive on the discharge behavior of high-purity(HP)Mg anode in an aqueous half-cell system,using an integrated approach of mathematical modeling and experimental analysis.A finite elementbased model is developed to elucidate the key mechanisms by which SAL influences the voltage profile and pH.Systematic electrochemical measurements,especially intermittent discharge tests combined with electrochemical impedance spectroscopy(EIS),demonstrate that SAL can enhance initial voltage stability of HP Mg anode.Moreover,the model incorporates the SAL-Mg complexation factor to describe the role of SAL in modifying the deposit film on HP Mg surface.The agreement between model predictions and experimental observations suggests that SAL facilitates the formation of compact Mg(OH)_(2) deposits and sustains a favorable pH environment within the half-cell compartment.This integrated approach provides new insights into understanding and optimizing additive effects for Mg-air batteries.
基金Rami Ahmad El-Nabulsi has received funding from the Czech National Agency of Agricultural 533 Research,project QK22020134“Innovative fisheries management of a large reservoir”.
文摘The Black–Scholes equation is one of the most important partial differential equations governing the value of financial derivatives in financial markets.The Black–Scholes model for pricing stock options has been applied to various payoff structures,and options trading is based on Black and Scholes’principle of dynamic hedging to estimate and assess option prices over time.However,the Black–Scholes model requires severe constraints,assumptions,and conditions to be applied to real-life financial and economic problems.Several methods and approaches have been developed to approach these conditions,such as fractional Black–Scholes models based on fractional derivatives.These fractional models are expected since the Black–Scholes equation is derived using Ito’s lemma from stochastic calculus,where fractional derivatives play a leading role.Hence,a fractional stochastic model that includes the basic Black–Scholes model as a special case is expected.However,these fractional financial models require computational tools and advanced analytical methods to solve the associated fractional Black–Scholes equations.Nevertheless,it is believed that the fractal nature of economic processes permits to model economical and financial markets problems more accurately compared to the conventional model.The relationship between fractional calculus and fractals is well-known in the literature.This study introduces a generalized Black–Scholes equation in fractal dimensions and discusses its role in financial marketing.In our analysis,we consider power-laws properties for volatility,interest rated,and dividend payout,which emerge in several empirical regularities in quantitative finance and economics.We apply our model to study the problem of pricing barrier option and we estimate the values of fractal dimensions in both time and in space.Our model can be used to obtain the prices of many pay-off models.We observe that fractal dimensions considerably affect the solutions of the Black–Scholes equation and that,for fractal dimensions much smaller than unity,the call option increases significantly.We prove that fractal dimensions are a powerful tool to obtain new results.Further details are analyzed and discussed.
文摘In this review research,the full bio-medical potential and application of the severe acute respiratory syndrome(SARS)-CoV-2 viruses are discussed in detail with the aim of discovering innovative treatment strategies in virology and medicine.The SARS-CoV-2 which caused an international health crisis also unraveled an opportunity to gain from its pathogenic effects to treat the affected people.The study aims at testing whether the newly discovered SARS-CoV-2 can be used for therapeutic and clinical purposes.With in-depth analytics,this investigation issue endeavors to unearth new ways of fighting infectious diseases and to improve existing medical interventions.Beside scientific and practical significance the role of this work is vital.By learning the biologic and molecular mysteries of SARS-CoV-2,the researchers can create precise medicines and vaccines not only against COVID-19 but also the other infectious diseases as well.Furthermore,this recommendation may open the door to the future development of gene therapy and vaccine technology.In this sense,it combines multiple approaches,such as viral studies,immunology,and molecular biology.Laboratory experiments,computer program modeling and clinical trials are applied to detection of the SARS-COV-2 in therapeutic implementation.The principal conclusion and analysis of this research put forth the fact that SARS-CoV-2 can be utilized in anti-viral treatment,cancer therapy,and vaccine programs.The study results confirm the inherent adaptability of viruses like SARS-CoV-2 and emphasis on the development of specific therapeutic measures.It is valuable because of its potential to add to virology and medication,showing new ways for virus-based treatment.In addition,the impact of these results on treatments would be revolutionary,with potential to invent superior and flexible interventions against infectious disease.In short,the therapeutic use of SARS-CoV-2 can be regarded as a bold innovation with tremendous consequences for general health,and ultimately for medical science.
基金the Franco-Thai Cooperation Programme in Higher Education and Research(Franco-Thai Mobility Programme/PHC SIAM)Year 2024-2025。
文摘This study reviews light-responsive polymers in various applications,including drug delivery,information storage,sensor,self-healing material,antibacterial or anti-fouling,and environmental applications.Light-responsive polymers are a new material type being developed for various medical,electronics,engineering,and environmental applications.The working principle of light-responsive materials is based on metalligand interactions or non-covalent interactions between polymer functional groups,metal ions,and other filler functional groups.Light irradiation causes physical and mechanical changes in drug delivery and antibacterial systems,which results in the materials releasing more drugs or antibacterial substances.When materials in information storage devices and sensors are exposed to light,they can change color or glow.This has been applied for data storage to reveal QR codes under UV light.Additionally,this review discusses the thermodynamic aspects and computer modeling of light-responsive materials to emphasize the importance and development of these materials.Finally,light-responsive polymer development for various applications is presented.
基金supported by the National Research Council of Thailand(No.NRCT-5-RSA63004-16)Chiang Mai University.S.Pakluea acknowledges scholarship support from the Science Achievement Scholarship of Thailand(SAST).
文摘Terahertz(THz)radiation possesses unique properties that make it a promising light source for applications in various fields,particularly spectroscopy and imaging.Ongoing research and development in THz technology has focused on developing or improving THz sources,detectors,and applications.At the PBP-CMU Electron Linac Laboratory(PCELL)of the Plasma and Beam Physics Research Facility in Chiang Mai University,high-intensity THz radiation has been generated in the form of coherent transition radiation(TR)and investigated since 2006 for electron beams with energies ranging from 8 to 12 MeV.In this study,we investigate and optimize the coherent TR arising from short electron bunches with energies ranging from 8 to 22 MeV using an upgraded linear-accelerator system with a higher radio-frequency(RF)power system.This radiation is then transported from the accelerator hall to the experimental room,in which the spectrometers are located.Electron-beam simulations are conducted to achieve short bunch lengths and small transverse beam sizes at the TR station.Radiation properties,including the radiation spectrum,angular distribution,and radiation polarization,are thoroughly investigated.The electron-bunch length is evaluated using the measuring system.The radiation-transport line is designed to achieve optimal frequency response and high transmission efficiency.A radiation-transmission efficiency of approximately 80-90%can be achieved with this designed system,along with a pulse energy ranging from 0.17 to 0.25μJ.The expected radiation spectral range covers up to 2 THz with a peak power of 0.5-1.25 MW.This coherent,broadband,and intense THz radiation will serve as a light source for THz spectroscopy and THz time-domain spectroscopy applications at the PCELL in the near future.
基金Project(12JCYBJC32100)supported by the Tianjin Research Program of Application Foundation and Advanced Technology,ChinaProject([2013]693)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations.
基金Project(12JCYBJC32100)supported by Tianjin Research Program of Application Foundation and Advanced Technologyin part by Grants-in-Aid from the Japan Society for the Promotion of Science(JSPS)
文摘Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavior at such low strain rates, a high-resolution strain measurement using the helicoid spring specimen technique was employed in a fine-grained Al-5356 alloy at temperatures ranging from 0.47Tm to 0.74Tm (Tm: melting point). To clarify transient creep mechanism at such low strain rates, transmission electron microscopy (TEM) was used in microstructure observation of crept specimens. The abnormal transient creep, high temperature strengthening at T〉Tp (Tp: the phase transformation temperature, 0.58Tm) or intermediate temperature softening at 0.4Tm〈T£Tp and double-normal type (creep curves including double work-hardening stages) at T=Tp, were firstly observed. The substructure observation in a crept specimen at T=0.58Tm and e=1×10-4 shows pile-up dislocations including many small jogs with equal interval, and dislocations emitted from grain boundaries. The b-Al3Mg2 phase dissolves under the condition of testing temperatures higher than 523 K, which causes solid-solution quantity of Mg atoms to increase. Therefore, the “abnormal transient creep” may be related to the difference of solid solution strengthening caused by phase change during the creep tests.
文摘Hydrophobic PEO coatings were fabricated in an electrolyte containing potassium stearate.The wetting behaviour of coated samples was studied using dynamic and static contact angle.Also,the corrosion behaviour of the samples was evaluated by polarization method.The dynamic contact angle and hysteresis of the contact angle for PEO coating were evaluated by Wilhelmy plate method.There was an increase in the contact angle of the nanocomposite and traditional PEO coatings when potassium stearate was added to the electrolyte up to 130°.The more hydrophobic coatings,showed more corrosion resistance in 3.5 wt.%NaCl solution.The synergistic effect of potassium stearate and nanoparticles increased the hydrophobicity because of assembling of fatty acid on ceramic powder.
文摘Alumina nanoparticles were added to a Cu-Zn alloy to investigate their effect on the microstructural,tribological,and corrosion properties of the prepared alloys. Alloying was performed using a mixture of copper and zinc powders with 0vol% and 5vol% of α-Al nanopowder in a satellite ball mill. The results showed that the Cu-Zn solid solution formed after 18 h of mechanical alloying. The mechanically alloyed powder was compacted followed by sintering of the obtained green compacts at 750°C for 30 min. Alumina nanoparticles were uniformly distributed in the matrix of the Cu-Zn alloy. The tribological properties were evaluated by pin-on-disk wear tests,which revealed that,upon the addition of alumina nanoparticles,the coefficient of friction and the wear rate were reduced to 20% and 40%,respectively. The corrosion properties of the samples exposed to a 3.5wt% Na Cl solution were studied using the immersion and potentiodynamic polarization methods,which revealed that the addition of alumina nanoparticles reduced the corrosion current of the nanocomposite by 90%.
文摘The aim of the present work was to study the effect of austenite grain size (AGS) on the martensite formation in a high-manganese twinning-induced plasticity (TWIP) steel. The results of a quantitative microstructural characterization of the steel by the whole X-ray pattern fitting Rietveld software, materials analysis using diffraction (MAUD), indicated that the volume fraction of αbcc-martensite increases with increasing AGS. However, the value of the stacking fault probability (Psf) does not show a large variation for samples with different values of AGS under water-quenching conditions.
基金supported by the National Natural Science Foundation of China(No.52001036)the China Postdoctoral Science Foundation(No.2021M693708)+2 种基金the Chongqing Postdoctoral Scientific Research Foundation(No.cstc2020jcyjbsh X0015)the National Natural Science Foundation of China(51971040,52171101)the Natural Science Foundation of Chongqing(cstc2021jcyj-msxm X0613)。
文摘Magnesium(Mg)and its alloys present great potential to be extensively applied in different applications.However,the relatively poor resistance to corrosion and wear significantly restricts their applications in practice.As one of strategies of surface treatment,micro-arc oxidation(MAO)process attracts a lot of attention,since it does not use neither expensive equipment,nor complicated manipulation.This review systematically discusses MAO mechanism and some typical models,which still need to be further developed to provide a better understanding and guide for future researchers.Subsequently,main influencing factors of MAO process are analyzed in detail.Further,some popular applications of MAO coatings are respectively reviewed,including biomedical application,decoration,thermal control,corrosion and wear resistance,and industrial applications in practice.The existing issues and future perspectives are finally discussed to further accelerate extensive applications of Mg alloys.
基金financially supported by the Programs of Japan Science and Technology Agency:Promoting Individual Research to Nature the Seeds of Future Innovation and Organizing the Unique and Innovative Network,and Advanced Catalytic Transformation Program for Carbon Utilization
文摘Graphitic carbon nitride(g-C3N4)was synthesized by heating melamine and was then treated with sodium hydroxide solution under a hydrothermal condition to obtain g-C3N4 with a large specific surface area(HSSA).HSSA shows higher photocatalytic activity for decomposition of acetaldehyde than that of original g-C3N4.HSSA was modified with RuO2 as a co-catalyst by the impregnation method.HSSA loaded with 0.05 wt%RuO2 shows the highest photocatalytic activity for acetaldehyde decomposition under visible light(k=455 nm).
基金financially supported by the National Key Re-search and Development Plan (No. 2017YFC0211804)。
文摘Various manganese oxides(MnOx) prepared via citric acid solution combustion synthesis were applied for catalytic oxidation of benzene. The results showed the ratios of citric acid/manganese nitrate in synthesizing process positively affected the physicochemical properties of MnOx, e.g., BET(Brunauer-Emmett-Teller) surface area, porous structure, reducibility and so on, which were in close relationship with their catalytic performance. Of all the catalysts, the sample prepared at a citric acid/manganese nitrate ratio of 2:1(C2M1) displayed the best catalytic activity with T(90)(the temperature when 90% of benzene was catalytically oxidized) of 212 ℃. Further investigation showed that C2M1 was Mn2O3 with abundant nano-pores, the largest surface area and the proper ratio of surface Mn^4+/Mn^3+, resulting in preferable low-temperature reducibility and abundant surface active adsorbed oxygen species. The analysis results of the in-situ Fourier transform infrared spectroscopy(in-situ FTIR) revealed that the benzene was successively oxidized to phenolate, o-benzoquinone, small molecules(such as maleates, acetates, and vinyl), and finally transformed to CO2 and H2O.