期刊文献+
共找到2,443篇文章
< 1 2 123 >
每页显示 20 50 100
Impact of pitch fraction oxidation on the structure and sodium storage properties of derived carbon materials 被引量:1
1
作者 QI Su-xia YANG Tao +6 位作者 SONG Yan ZHAO Ning LIU Jun-qing TIAN Xiao-dong WU Jin-ru LI Hui LIU Zhan-jun 《新型炭材料(中英文)》 北大核心 2025年第2期421-439,共19页
Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac... Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g). 展开更多
关键词 Pitch fractions Air oxidation Derived carbon materials Na^(+)storage
在线阅读 下载PDF
A low redox potential and long life organic anode material for sodium-ion batteries 被引量:1
2
作者 Zhi Li Yang Wei +7 位作者 Kang Zhou Xin Huang Xing Zhou Jie Xu Taoyi Kong Junwei Lucas Bao Xiaoli Dong Yonggang Wang 《Journal of Energy Chemistry》 2025年第1期557-564,共8页
Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials ... Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs. 展开更多
关键词 Organic anode material Low redox potential Composite anode Sodium-ion batteries
在线阅读 下载PDF
Improving the fracture strain of graphite materials by in-situ porosity introduction by two-step sintering
3
作者 GU Shi-jia CHEN Han-lin +3 位作者 WANG Jun-zhuo LU Xiao-fang WANG Lian-jun JIANG Wan 《新型炭材料(中英文)》 北大核心 2025年第3期703-716,共14页
High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth... High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials. 展开更多
关键词 High-performance graphite Phase transition control Two-step sintering process Fracture strain IN-SITU
在线阅读 下载PDF
Design and Dynamic Experiment of Al-Cu Graded Materials Impactor with Strain Rate of 10^(4)–10^(5)/s
4
作者 Hu Jianian Zhou Zizheng +4 位作者 Li Yidi Chen Xiang Yang Gang Liu Jintao Zhang Jian 《稀有金属材料与工程》 北大核心 2025年第3期581-586,共6页
Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and th... Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and their acoustic properties were characterized to match the design path.The parallelism of the Al-Cu GM was confirmed using a three-dimensional surface profilometry machine.A one-stage light-gas gun was used to launch the Al-Cu GM,impacting an Al-LiF target at a velocity of 400 m/s.The results of the experimental strain rate demonstrate that the Al-Cu GMs can realize the precise control of the strain rate within the range of 10^(4)‒10^(5)/s in the high-speed impact experiments. 展开更多
关键词 high strain rate Al-Cu graded materials IMPACTOR acoustic impedance gas gun experiment
原文传递
Macrocyclic host molecules:Rising as a promising supramolecular material
5
作者 Xinguo Mao Shuo Zhang +2 位作者 Qiang Shi Hua Cheng Leyong Wang 《Chinese Chemical Letters》 2025年第6期1-3,共3页
The ring has been a romantic fascination throughout the ages,embodying not only beauty and order but also harboring numerous undisclosed properties awaiting discovery.In the realm of supramolecular chemistry,macrocycl... The ring has been a romantic fascination throughout the ages,embodying not only beauty and order but also harboring numerous undisclosed properties awaiting discovery.In the realm of supramolecular chemistry,macrocycles,with a cyclic structure and a central cavity like a doughnut,captivate the attention of scientists[1].In 1967,Pedersen's groundbreaking revelation that alkali metal ions could"fall into"the cavities of a cyclic ether named crown ether,even in organic solvents,unveiled a novel universe of macrocycle chemistry.Since then,numerous macrocyclic structures in nature have been discovered,isolated,and scrutinized.Drawing inspiration from nature,chemists endeavor to explore the vast potential of macrocyclic compounds by designing and synthesizing artificial macrocycles with diverse structural features and recognition properties. 展开更多
关键词 supramolecular chemistrymacrocycleswith organic solventsunveiled crown ether macrocyclic host molecules structural features cyclic ether supramolecular chemistry alkali metal ions
原文传递
Recent progress on photothermal nanomaterials:Design,mechanism,and applications
6
作者 Xiao Yu Shilin Fan +3 位作者 Bin Zhu Soliman I.El-Hout Jian Zhang Chunlin Chen 《Green Energy & Environment》 2025年第7期1377-1436,共60页
Photothermal energy conversion represents a cornerstone process in the renewable energy technologies domain,enabling the capture of solar irradiance and its subsequent transformation into thermal energy.This mechanism... Photothermal energy conversion represents a cornerstone process in the renewable energy technologies domain,enabling the capture of solar irradiance and its subsequent transformation into thermal energy.This mechanism is paramount across many applications,facilitating the exploitation of solar energy for different purposes.The photothermal conversion efficiency and applications are fundamentally contingent upon the characteristics and performance of the materials employed.Consequently,deploying high-caliber materials is essential for optimizing energy capture and utilization.Within this context,photothermal nanomaterials have emerged as pivotal components in various applications,ranging from catalysis and sterilization to medical therapy,desalination,and electric power generation via the photothermal conversion effect.This review endeavors to encapsulate the current research landscape,delineating both the developmental trajectories and application horizons of photothermal conversion materials.It aims to furnish a detailed exposition of the mechanisms underlying photothermal conversion across various materials,shedding light on the principles guiding the design of photothermal nanomaterials.Furthermore,addressing the prevailing challenges and outlooks within the field elucidates potential avenues for future research and identifying priority areas.This review aspires to enrich the understanding of photothermal materials within the framework of energy conversion,offering novel insights and fostering a more profound comprehension of their role and potential in harnessing solar energy. 展开更多
关键词 Photothermal materials Solar energy Photothermal conversion Renewable energy technologies
在线阅读 下载PDF
Effect of binders on electrochemical properties of AgO cathode material for aqueous AgO−Al batteries
7
作者 Xue-hua HE Sheng-gui WANG +9 位作者 Yuan-kui WANG Wan-li XU Jue-min SONG Zheng LI Hai-tao ZHANG Guang-zhou YANG Xin-yi WANG Qian ZHANG Hong-xu LI Kun YU 《Transactions of Nonferrous Metals Society of China》 2025年第5期1648-1661,共14页
To improve the slow kinetics and poor mechanical strength of aqueous silver peroxide−aluminum(AgO−Al)battery cathode materials,the effects of different binders including polytetrafluoroethylene(PTFE)and polyvinylpyrro... To improve the slow kinetics and poor mechanical strength of aqueous silver peroxide−aluminum(AgO−Al)battery cathode materials,the effects of different binders including polytetrafluoroethylene(PTFE)and polyvinylpyrrolidone(PVP)on the AgO cathode material were investigated.The samples were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),cyclic voltammetry(CV),electrochemical impedance spectrum(EIS),and galvanostatic discharge.In contrast to the pure AgO and AgO−PTFE electrodes,the results demonstrated that the PVP effectively bound the electrode materials together.The prepared AgO−PVP as the cathode material of AgO−Al batteries could improve the battery capacity,exhibiting a high specific capacity(389.95 mA·h/g at 500 mA/cm^(2)),a high operating voltage(1.75 V at 500 mA/cm^(2)),a maximum energy density(665.65 W·h/kg),and a maximum power density(5236 W/kg).Furthermore,the electrochemical mechanism of the AgO−PVP cathode material was examined,revealing that the electrode exhibited rapid ion diffusion and effective interfacial ion/electron transport. 展开更多
关键词 AGO cathode material high specific capacity BINDER aqueous AgO−Al batteries
在线阅读 下载PDF
Novel materials and techniques for photocatalytic water splitting developed by Professor Kazunari Domen
8
作者 Yaqiang Wu Jianuo Li +2 位作者 Wei-Kean Chong Zhenhua Pan Qian Wang 《Chinese Journal of Catalysis》 2025年第1期1-50,共50页
Professor Kazunari Domen at the Shinshu University and the University of Tokyo has pioneered materials and techniques for solar-driven water splitting using photocatalysts,a promising technology for contributing to th... Professor Kazunari Domen at the Shinshu University and the University of Tokyo has pioneered materials and techniques for solar-driven water splitting using photocatalysts,a promising technology for contributing to the construction of a sustainable and carbon-neutral society.In this paper,we summarize his groundbreaking contributions to photocatalytic water splitting and,more broadly,photocatalytic research.We highlight various novel functional photocatalytic materials,including oxides,(oxy)nitrides,and oxysulfides,along with innovative techniques such as cocatalyst engineering and Z-scheme system construction developed by the Domen Group.His team has also pioneered readily accessible and cost-effective photo(electro)chemical device fabrication methods,such as the particle-transfer method and thin-film-transfer method.Furthermore,their research has made significant contributions to understanding the(photo)catalytic mechanisms using advanced characterization techniques.Together with his research team,Professor Domen has set many milestones in the field of photocatalytic overall water splitting,notably demonstrating the first scalable and stable 100 m^(2)solar H_(2)production system using only water and sunlight.His work has revealed the potential for practical solar H2 production from water and sunlight,and highlighted the application of fundamental principles,combined with chemical and materials science tools,to design effective photocatalytic systems.Through this review,we focus on his research and the foundational design principles that can inspire the development of efficient photocatalytic systems for water splitting and solar fuel production.By building on his contributions,we anticipate a significant impact on addressing major global energy challenges. 展开更多
关键词 PHOTOCATALYSIS Water splitting Solar H_(2)production Solar energy conversion Artificial photosynthesis
在线阅读 下载PDF
Plant Cell Wall-Like Soft Materials:Micro-and Nanoengineering,Properties,and Applications
9
作者 Roya Koshani Mica L.Pitcher +3 位作者 Jingyi Yu Christine L.Mahajan Seong H.Kim Amir Sheikhi 《Nano-Micro Letters》 2025年第5期37-77,共41页
Plant cell wall(CW)-like soft materials,referred to as artificial CWs,are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition,structure,and mec... Plant cell wall(CW)-like soft materials,referred to as artificial CWs,are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition,structure,and mechanics of plant CWs.CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure–property relationships of native plant CWs or to fabricate functional materials.Here,research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides,including cellulose,pectin,and hemicellulose,as well as organic polymers like lignin.Micro-and nanofabrication of plant CW-like composites,characterization techniques,and in silico studies are reviewed,with a brief overview of current and potential applications.Micro-/nanofabrication approaches include bacterial growth and impregnation,layer-by-layer assembly,film casting,3-dimensional templating microcapsules,and particle coating.Various characterization techniques are necessary for the comprehensive mechanical,chemical,morphological,and structural analyses of plant CWs and CW-like materials.CW-like materials demonstrate versatility in real-life applications,including biomass conversion,pulp and paper,food science,construction,catalysis,and reaction engineering.This review seeks to facilitate the rational design and thorough characterization of plant CW-mimetic materials,with the goal of advancing the development of innovative soft materials and elucidating the complex structure–property relationships inherent in native CWs. 展开更多
关键词 Synthetic plants Biomimicry Acellular wall Composites Living materials Soft matter
在线阅读 下载PDF
Strategies for superhard tool coating materials:focus on preparation methods and properties
10
作者 Xing-xing Wang Yuan-hang Wang +11 位作者 Zi-cheng Ling Zhi-peng Yuan Jian-jun Shi Jian Qin Hua-wei Sun Kun-ming Pan Zai-ming Geng Huai-li Ma Zi-jia Yang Sheng Liu Yan-ming Wu Yan Peng 《Journal of Iron and Steel Research International》 2025年第8期2232-2266,共35页
In recent years,superhard coatings have emerged as a focal point in metal material research due to their innovative design strategies and exceptional mechanical properties.They are widely utilized in industries such a... In recent years,superhard coatings have emerged as a focal point in metal material research due to their innovative design strategies and exceptional mechanical properties.They are widely utilized in industries such as shielding,oil extraction,and coal mining.However,in practical applications,tools often suffer from wear,fractures,plastic deformation,and other types of failure,directly impacting machining efficiency,costs,and product quality.To mitigate these challenges,the selection of appropriate tool materials and preparation methods is critical to ensure sustained production efficiency.Therefore,it is essential to identify and develop coating materials with superior performance.Recent advancements in superhard coatings are reviewed comprehensively;preparation methods are discussed for superhard tools;diamond coatings,diamond-like carbon coatings,cubic boron nitride coatings and graphite carbon nitride coatings are examined specifically.It analyzes their microstructures,phase transformation processes,mechanical properties,and formation mechanisms,while also evaluating properties such as wear resistance,corrosion resistance,and high hardness.The applicability of existing theoretical models is verified and new frameworks for future superhard coating designs are proposed.Moreover,the current research limitations in tool coatings are identified and directions for future research and development are proposed. 展开更多
关键词 Preparation technology Superhard coating MICROSTRUCTURE Mechanical property Application
原文传递
Rational Design of Heterostructured Nanomaterials for Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics in Alkaline Media 被引量:3
11
作者 Hai-Bin Ma Xiao-Yan Zhou +2 位作者 Jia-Yi Li Hong-Fei Cheng Ji-Wei Ma 《电化学(中英文)》 CAS 北大核心 2024年第1期12-35,共24页
Owing to the merits of high energy density,as well as clean and sustainable properties,hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels.Electrocatalytic hydrogen evolution reac... Owing to the merits of high energy density,as well as clean and sustainable properties,hydrogen has been deemed to be a prominent alternative energy to traditional fossil fuels.Electrocatalytic hydrogen evolution reaction(HER)has been considered to be mostly promising for achieving green hydrogen production,and has been widely studied in acidic and alkaline solutions.In particular,HER in alkaline media has high potential to achieve large-scale hydrogen production because of the increased durability of electrode materials.However,for the currently most prominent catalyst Pt,its HER kinetics in an alkaline solution is generally 2e3 orders lower than that occurring in an acidic solution because of the low Hþconcentration in alkaline electrolytes.Fortunately,construction of heterostructured electrocatalysts has proved to be an efficient strategy for boosting alkaline HER kinetics because of their various structural merits.The synergistic effect is a unique characteristic of heterostructures,which means that one functional active site serves as a promoter for water dissociation and another one takes a charge of moderate hydrogen adsorption,thus synergistically improving HER performance.In addition,each building block of the heterostructures is tunable,providing moreflexibility and chances to construct optimal catalysts.Furthermore,due to the presence of Fermi energy difference between the two components at the interface,the electronic structure of each component could possibly be rationally modulated,thus much enhanced HER performance in alkaline electrolyte can be ach-ieved.With a deeper understanding of on nanoscience and rapid development of nanotechnology,more sophisticated alternative designing strategies have been explored for constructing high-performance heterostructured electro-catalysts.This review presents an outline of the latest development of heterostructured catalysts toward alkaline HER and the rational design principles for constructing interfacial heterostructures to accelerate alkaline HER kinetics.The basic reaction pathways of HER in alkaline media arefirst described,and then emerging efficient strategies to promote alkaline HER kinetics,including synergistic effect,strain effect,electronic interaction,phase engineering,and ar-chitecture engineering.Finally,current existing challenges and research opportunities that deserve further investi-gation are proposed for the consideration of novel heterostructures towards practical applications. 展开更多
关键词 Interfacial heterostructure Hydrogen production Water dissociation Hydrogen adsorption Synergistic effect
在线阅读 下载PDF
Electronic properties of 2D materials and their junctions 被引量:1
12
作者 Taposhree Dutta Neha Yadav +8 位作者 Yongling Wu Gary J.Cheng Xiu Liang Seeram Ramakrishna Aoussaj Sbai Rajeev Gupta Aniruddha Mondal Zheng Hongyu Ashish Yadav 《Nano Materials Science》 EI CAS CSCD 2024年第1期1-23,共23页
With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2... With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future. 展开更多
关键词 2D materials Electrical properties p-n junctions Mixed hereto junctions Homo junctions Electrical transport
在线阅读 下载PDF
Advanced strategies for marine antifouling based on nanomaterial-enhanced functional PDMS coatings 被引量:1
13
作者 Xiaohui Shi Hao Wei +4 位作者 Wenjun Zhou Paul E.D.Soto Rodriguez Cunguo Lin Lei Wang Zhijia Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第4期375-395,共21页
Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,huma... Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,human beings have dedicated their efforts on developing AF coatings with long cycle and high performance,leading to a large number of non-target organisms?distortion,death and marine environmental pollution.Polydimethylsiloxane(PDMS),is considered as one of the representative environment-friendly AF materials thanks to its non-toxic,hydrophobic,low surface energy and AF properties.However,PDMS AF coatings are prone to mechanical damage,weak adhesion strength to substrate,and poor static AF effect,which seriously restrict their use in the ocean.The rapid development of various nanomaterials provides an opportunity to enhance and improve the mechanical properties and antifouling properties of PDMS coating by embedding nanomaterials.Based on our research background and the problems faced in our laboratory,this article presents an overview of the current progress in the fields of PDMS composite coatings enhanced by different nanomaterials,with the discussion focused on the advantages and main bottlenecks currently encountered in this field.Finally,we propose an outlook,hoping to provide fundamental guidance for the development of marine AF field. 展开更多
关键词 NANOMATERIALS ANTIFOULING PDMS composites ENVIRONMENT-FRIENDLY Marine biofouling
在线阅读 下载PDF
Transparent electromagnetic interference shielding materials using MXene 被引量:2
14
作者 Yanli Deng Yaqing Chen +8 位作者 Wei Liu Lili Wu Zhou Wang Dan Xiao Decheng Meng Xingguo Jiang Jiurong Liu Zhihui Zeng Na Wu 《Carbon Energy》 CSCD 2024年第11期322-345,共24页
With the rapid advancement of terahertz technologies,electromagnetic interference(EMI)shielding materials are needed to ensure secure electromagnetic environments.Enormous efforts have been devoted to achieving highly... With the rapid advancement of terahertz technologies,electromagnetic interference(EMI)shielding materials are needed to ensure secure electromagnetic environments.Enormous efforts have been devoted to achieving highly efficient EMI shielding films by enhancing flexibility,lightweight,mechanical robustness,and high shielding efficiency.However,the consideration of the optical properties of these shielding materials is still in its infancy.By incorporating transparency,visual information from protected systems can be preserved for monitoring interior working conditions,and the optical imperceptibility allows nonoffensive and easy cover of shielding materials for both device and biology.There are many materials that can be applied to transparent EMI shields.In particular,two-dimensional transition metal carbide/nitrides(MXenes),possessing the advantages of superior conductivity,optical properties,favorable flexibility,and facile processibility,have become a great candidate.This work reviews the recent research on developing highly efficient and optically transparent EMI shields in a comprehensive way.Materials from MXenes,indium tin oxide,metal,carbon,and conductive polymers are covered,with a focus on the employment of MXene-based composites in transparent EMI shielding.The prospects and challenges for the future development of MXene-based transparent EMI shields are discussed.This work aims to promote the development of high-performance,optically transparent EMI shields for broader applications by leveraging MXenes. 展开更多
关键词 electromagnetic waves transition metal carbides/nitrides transparent electromagnetic shielding materials
在线阅读 下载PDF
Recent advances in machine learning-assisted fatigue life prediction of additive manufactured metallic materials:A review 被引量:4
15
作者 H.Wang S.L.Gao +14 位作者 B.T.Wang Y.T.Ma Z.J.Guo K.Zhang Y.Yang X.Z.Yue J.Hou H.J.Huang G.P.Xu S.J.Li A.H.Feng C.Y.Teng A.J.Huang L.-C.Zhang D.L.Chen 《Journal of Materials Science & Technology》 CSCD 2024年第31期111-136,共26页
Additive manufacturing features rapid production of complicated shapes and has been widely employed in biomedical,aeronautical and aerospace applications.However,additive manufactured parts generally exhibit deteriora... Additive manufacturing features rapid production of complicated shapes and has been widely employed in biomedical,aeronautical and aerospace applications.However,additive manufactured parts generally exhibit deteriorated fatigue resistance due to the presence of random defects and anisotropy,and the prediction of fatigue properties remains challenging.In this paper,recent advances in fatigue life prediction of additive manufactured metallic alloys via machine learning models are reviewed.Based on artificial neural network,support vector machine,random forest,etc.,a number of models on various systems were proposed to reveal the relationships between fatigue life/strength and defect/microstructure/parameters.Despite the success,the predictability of the models is limited by the amount and quality of data.Moreover,the supervision of physical models is pivotal,and machine learning models can be well enhanced with appropriate physical knowledge.Lastly,future challenges and directions for the fatigue property prediction of additive manufactured parts are discussed. 展开更多
关键词 FATIGUE Additive manufacturing Metallic alloys Machine learning
原文传递
The Anti-Penetration Performance and Mechanism of Metal Materials:A Review
16
作者 Jialin Chen Shutao Li +5 位作者 Shang Ma Yeqing Chen Yin Liu Quanwei Tian Xiting Zhong Jiaxing Song 《Engineering》 SCIE EI CAS CSCD 2024年第9期131-157,共27页
This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-ma... This article reviews the anti-penetration principles and strengthening mechanisms of metal materials,ranging from macroscopic failure modes to microscopic structural characteristics,and further summarizes the micro-macro correlation in the anti-penetration process.Finally,it outlines the constitutive models and numerical simulation studies utilized in the field of impact and penetration.From the macro perspective,nine frequent penetration failure modes of metal materials are summarized,with a focus on the analysis of the cratering,compression shear,penetration,and plugging stages of the penetration process.The reasons for the formation of adiabatic shear bands(ASBs)in metal materials with different crystal structures are elaborated,and the formation mechanism of the equiaxed grains in the ASB is explored.Both the strength and the toughness of metal materials are related to the materials’crystal structures and microstructures.The toughness is mainly influenced by the deformation mechanism,while the strength is explained by the strengthening mechanism.Therefore,the mechanical properties of metal materials depend on their microstructures,which are subject to the manufacturing process and material composition.Regarding numerical simulation,the advantages and disadvantages of different constitutive models and simulation methods are summarized based on the application characteristics of metal materials in high-speed penetration practice.In summary,this article provides a systematic overview of the macroscopic and microscopic characteristics of metal materials,along with their mechanisms and correlation during the anti-penetration and impact-resistance processes,thereby making an important contribution to the scientific understanding of anti-penetration performance and its optimization in metal materials. 展开更多
关键词 Metal materials Failure model Adiabatic shear band Strengthening mechanisms Numerical simulation
在线阅读 下载PDF
Corrigendum to “High-temperature fatigue strength of grain boundaries with different misorientations in nickel-based superalloy bicrystals” [Journal of Materials Science & Technology, 154 (2023) 94–106]
17
作者 D.F.Shi Z.J.Zhang +4 位作者 Y.H.Yang Y.Z.Zhou R.Liu P.Zhang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第10期264-264,共1页
The authors regret to inform that the whole“Acknowledgements”section is missing due to the composing process of the editing.The“Acknowledgements”information that should be added is as follows.
关键词 SUPERALLOY fatigue GRAIN
原文传递
Proof of Aerobically Autoxidized Self-Charge Concept Based on Single Catechol-Enriched Carbon Cathode Material
18
作者 Junyan Wang Wanchun Guo +12 位作者 Kesong Tian Xinta Li Xinyu Wang Panhua Li Yu Zhang Bosen Zhang Biao Zhang Shuhu Liu Xueai Li Zhaopeng Xu Junjie Xu Haiyan Wang Yanglong Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期1-13,共13页
The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging des... The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices. 展开更多
关键词 Carbon material Oxygen functionality Air oxidation self-charge
在线阅读 下载PDF
An efficient CuZr-based metallic glasses electrode material for electrocatalytic degradation of azo dyes
19
作者 Zhiwang Deng Bowen Zhao +4 位作者 Songtao Li Zhengkun Li Shiming Zhang Kewei Zhang Zhengwang Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期537-546,共10页
Metallic glasses have received a lot of attention on wastewater treatment due to their unique atomic structure,and the use of metallic glasses as electrodes has produced unexpected electrocatalytic degradation effects... Metallic glasses have received a lot of attention on wastewater treatment due to their unique atomic structure,and the use of metallic glasses as electrodes has produced unexpected electrocatalytic degradation effects for many pollutants through combining with electrochemical technology.However,it still is a formidable challenge to find a metallic glass electrode material with both efficient and clean for the catalytic degradation of pollutants.In this work,the Cu_(55)Zr_(45)metallic glassy ribbons are used as an electrode to degrade azo dyes and show the excellent degradation effect,which can reach 95.6%within 40 min.In the degradation process,almost no additives are produced and Cu_(55)Zr_(45)metallic glassy ribbons have excellent effects under different pH conditions.Meanwhile,it exhibits good stability for degradation efficiency during the 8 cycle degradation tests of the amorphous alloy electrode.When the copper nanoparticles are exposed on the surface of the ribbons,the oxidized copper obtained synergistically produce activated radicals is the primary degradation mechanism,where the auxiliary degradation mechanisms include electron transfer and the promotion of active chlorine.This research develops a new type of electrode material for wastewater treatment,and the economy and high efficiency of Cu55Zr45metallic glass endow it the expandable functional applications. 展开更多
关键词 Metallic glasses Azo dyes ELECTROCATALYTIC DEGRADATION Oxidized copper
原文传递
Effect of Al_(2)O_(3)on the Mechanical Properties of(B_(4)C+Al_(2)O_(3))/Al Neutron Absorbing Materials
20
作者 J.X.Cai B.M.Shi +6 位作者 N.Li Y.Liu Z.G.Zhang Y.N.Zan Q.Z.Wang B.L.Xiao Z.Y.Ma 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第8期1411-1420,共10页
B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,i... B_(4)C/Al composites are widely utilized as neutron absorbing materials for the storage and transportation of spent nuclear fuel.In order to improve the high-temperature mechanical properties of B_(4)C/Al composites,in-situ nano-Al_(2)O_(3)was introduced utilizing oxide on Al powder surface.In this study,the Al_(2)O_(3)content was adjusted by utilizing spheroid Al powder with varying diameters,thereby investigating the impact of Al_(2)O_(3)content on the tensile properties of(B_(4)C+Al_(2)O_(3))/Al composites.It was found that the pinning effect of Al_(2)O_(3)on the grain boundaries could hinder the recovery of dislocations and lead to dislocation accumulation at high temperature.As the result,with the increase in Al_(2)O_(3)content and the decrease in grain size,the high-temperature strength of the composites increased significantly.The finest Al powder used in this investigation had a diameter of 1.4μm,whereas the resultant composite exhibited a maximum strength of 251 MPa at room temperature and 133 MPa at 350℃,surpassing that of traditional B_(4)C/Al composites. 展开更多
关键词 Al matrix composites Neutron absorbing materials (B_(4)C+Al_(2)O_(3))/Al composites High-temperature strength
原文传递
上一页 1 2 123 下一页 到第
使用帮助 返回顶部