Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a...Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a solution to the increasing severity of extreme climate-change.Inspired by autologous temperature-regulation and multidimensional-sensing origins of nature-skin composed of nature collagen fibers,this study engineered a nanoscale wearable natural fibers-derived thermochromic material(TMEH-skin)for robust all-season self-adapting thermal management by tactically integrating traditional immersion and spraying methods with layer-by-layer stacking-strategy.Because of the on-demand multi-functional layer-structure design,TMEH-skin achieves spontaneous~38.16%visible lightmodulation and~95.1%infrared-emission,demonstrating outstanding double-self-switching thermal management origins by simple color-changing without additional energy-input.Moreover,TMEH-skin has gratifying tensile strength of 13.18 MPa,water vapor permeability,electrical-conductivity,and hydrophobicity,further broadening the application potential and scenarios as wearable materials.In applications for military-missions or reconnaissance behind enemy-lines,TMEH-skin robustly integrates the multi-functionalities of wearing-comfort,physiological signal-response capability for accurate transmission of Morse-code,and thermal management performances under special circumstances,indicating its tremendous potential for smart military-applications.Simulation results show that TMEH-skin has prominent energy-saving efficiency in cities with different climate zones.This study provides a new reference to the booming innovation of natural-derived wearable materials for all-seasonal self-adapting thermal management.展开更多
Rapid population growth in recent decades has intensified both the global energy crisis and the challenges posed by climate change,including global warming.Currently,the increased frequency of extreme weather events a...Rapid population growth in recent decades has intensified both the global energy crisis and the challenges posed by climate change,including global warming.Currently,the increased frequency of extreme weather events and large fluctuations in ambient temperature disrupt thermal comfort and negatively impact health,driving a growing dependence on cooling and heating energy sources.Consequently,efficient thermal management has become a central focus of energy research.Traditional thermal management systems consume substantial energy,further contributing to greenhouse gas emissions.In contrast,emergent radiant thermal management technologies that rely on renewable energy have been proposed as sustainable alternatives.However,achieving year-round thermal management without additional energy input remains a formidable challenge.Recently,dynamic radiative thermal management technologies have emerged as the most promising solution,offering the potential for energy-efficient adaptation across seasonal variations.This review systematically presents recent advancements in dynamic radiative thermal management,covering fundamental principles,switching mechanisms,primary materials,and application areas.Additionally,the key challenges hindering the broader adoption of dynamic radiative thermal management technologies are discussed.By highlighting their transformative potential,this review provides insights into the design and industrial scalability of these innovations,with the ultimate aim of promoting renewable energy integration in thermal management applications.展开更多
Compared with traditional rain gauges and weather radars,hydrogel flexible electronic sensor capable of responding directly to rainfall events with promptness and authenticity,shows great prospects in real-time rainfa...Compared with traditional rain gauges and weather radars,hydrogel flexible electronic sensor capable of responding directly to rainfall events with promptness and authenticity,shows great prospects in real-time rainfall monitoring.Aluminum coordination hydrogel(Al-HG),one of the most qualified sensors suitable for rainfall monitoring,however,is currently impeded from widespread application by its weak mechanical properties due to the low binding strength between Al^(3+)and functional ligands.Herein,inspired by the antifreeze proteins(AFPs)that protect those Patagonian toothfishes by strongly binding to ice crystals at freezing temperatures,a low temperature-induced strategy is introduced to promote more and stronger ligand carboxyls firm combination with Al^(3+),thus forming a high-coordinated structure to deal with this challenge.Expectedly,the whole mechanical performance of the product Al-HG_(F1/F2) obtained by the low temperature-induced strategy is improved.For example,the tensile fracture toughness and the maximum compressive stress of Al-HG_(F1/F2) are 1.66 MJ·m^(-3) and 12.01 MPa,approximately twice those of the sample Al-HGF3/F0 obtained by traditional soaking method(0.86 MJ·m^(-3) and 7.38 MPa,respectively).Coupled with its good biocompatibility,ionic conductivity,and sensing ability,Al-HG_(F1/F2) demonstrates promising application for real-time rainfall monitoring in discrepant rainfall intensities,different zones,and even under extreme environments.This work aims to offer a stride toward mechanically robust aluminum coordination hydrogel sensors for real-time rainfall monitoring as well as provide insights into flood prevention and disaster mitigation.展开更多
Bioimplant grade hot-rolled magnesium with equiaxed microstructure and basal texture was examined for fracture toughness(FT)anisotropy using fatigue pre-cracked single-edge notch bending specimens with the notch,an||,...Bioimplant grade hot-rolled magnesium with equiaxed microstructure and basal texture was examined for fracture toughness(FT)anisotropy using fatigue pre-cracked single-edge notch bending specimens with the notch,an||,⊥and 45°to rolling direction(RD).Due to adequate crack-tip plasticity,the size-independent elastic-plastic fracture toughness(JIC)were determined.Anisotropic JIC was ob-served due to different twin lamellae formation w.r.t.notch owing to the initial basal texture with{10¯10}and{11¯20}poles mostlyand⊥to RD.The out-of-plane tensile stresses activated the{10¯12}||10¯11||extension twins(ET)as usual with matrix-ET∑15b coincident site lattice boundary(CSLB)interfaces.While the in-plane tensile stress⊥to the crack-tip activated{10¯11}||10¯12||contraction twins(CT)that transform into{10¯11}-{10¯12}double twins(DT)with matrix-DT∑23b and∑15a CSLBs.For an||RD,large DT lamellae fraction formed at∼30°and few ETs at∼30°and∼90°to the notch with crack growth mainly via the∑23b/∑15a CSLB interfaces during FT.While,significant DT and ET lamellae developed at∼0°and∼60°with cracking via the matrix-DT∑23b/∑15a and matrix-ET||15b CSLBs for an⊥RD.The DT and ET lamellae activated at∼15°,and the crack propagated through∑15b for an∼45°to RD.The JIC and the crack-tip plastic zone decreases,while the elastic component of the J-integral(Jel)and the ET formation increases from an||,⊥,to∼45°to RD.The strain incompatibility of matrices was higher with the geometrically hard ETs than DTs.Thus,brittle interlamellar cracking occurred through the∑15b interfaces.In contrast,almost similar and higher crack-tip plasticity occurred in matrix and DT domains during crack propagation via||23b/||15a CSLBs.Crack growth through∑23b/||15a led to high JIC,both∑15b and||23b/||15a led to moderate JIC,and∑15b least JIC for an||,⊥and 45°to RD,respectively.展开更多
This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueo...This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications.展开更多
Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in sit...Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in situ composite followed by short annealing at 175 ℃ and ageing at 125℃ resulted in an ultra-high yield strength of about 800 MPa with 9%total elongation. The strengthening contributions form solid solution strengthening, grain refinement, dislocation strengthening, precipitation hardening and dispersion strengthening were evaluated using standard equations. It was estimated that the maximum contribution was from grain refinement due to cryorolling followed by precipitation and dispersion strengthening.展开更多
Stimuli-responsive polymers have undoubtedly been of great interest in the past decades due to a variety of their potential applications in biomedical territory. However, their non-degradability limits their in vivo a...Stimuli-responsive polymers have undoubtedly been of great interest in the past decades due to a variety of their potential applications in biomedical territory. However, their non-degradability limits their in vivo applications. Herein, we report a novel pH and temperature dual-stimuli responsive-poly(β-amino ester). The pH/temperature sensitivities are interrelated and can be easily tuned by changing PEG-diacrylate chain length and the percentage of biamines in the feed ratio. These dual-responsive polymers are very useful in drug delivery. Reaction of methyl ether poly(ethylene glycol) (MPEG) and poly(β-amino ester) resulted in an amphiphilic MPEG-PBAE block copolymer which could form nanoparticles by self- assembly. A hydrophobic drug (DOX) was loaded in the self-assembled nanoparticles at low temperature without using organic solvents. The loaded drug was released very slowly and steadily at 37 ℃ under physiological conditions (pH 7.4), but rapidly released from the micelles in weakly acidic environments (pH 6.4 and 5.0) for intracellular drug release. Thus, these poly(fl-amino ester) polymers constitute ideal drug carriers since their thermal sensitivity allows the drug loadings without using organic solvent and their pH sensitivity permits fast intracellular drug release.展开更多
Thin walls of a copper-base alloy with the nominal composition CuNi17Al3Fe1.5Cr were successfully prepared by laser direct deposition additive manufacturing. The microstructure, as revealed by optical and scanning ele...Thin walls of a copper-base alloy with the nominal composition CuNi17Al3Fe1.5Cr were successfully prepared by laser direct deposition additive manufacturing. The microstructure, as revealed by optical and scanning electron microscopy, indicated that the deposited material was fully dense and with a dendritic microstructure. The dendrites are parallel to the build-up direction, which is also the heat con-duction direction during deposition. X-ray diffraction analysis results show that the deposited material is composed of a single phase and a copper-based solid solution. Some precipitate particles of metal silicides were observed in the interdendritic region by scanning electron mi-croscopy. The ultimate tensile strength along the laser scanning direction reaches 735 MPa. The hardness is about Hv0.1 300.展开更多
The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanic...The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si-Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the hold- ing duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33 ;, respectively).展开更多
Aluminium alloy AA2219 was reinforced with TiB2 particles introduced in-situ by the saltmetal reaction technique. The microstructural examinations of the composites clearly reveal the formation of TiB2 particles with ...Aluminium alloy AA2219 was reinforced with TiB2 particles introduced in-situ by the saltmetal reaction technique. The microstructural examinations of the composites clearly reveal the formation of TiB2 particles with a hexagonal morphology. The addition of TiB2 particles results in increased mechanical properties, such as 0.2%YS, UTS and hardness. The improvement in mechanical properties is correlated to the microstructure.展开更多
The fatigue damage behavior of the nanocrystalline Au films on polyimide substrates was investigated.It was found that the very high-cycle fatigue damage resistance of the Au film was significantly enhanced by at leas...The fatigue damage behavior of the nanocrystalline Au films on polyimide substrates was investigated.It was found that the very high-cycle fatigue damage resistance of the Au film was significantly enhanced by at least a factor of~2 in supported loading through adding an ultrathin Ti interlayer at the Au film/polyimide interface.Such a better fatigue damage resistance is mainly ascribed to the effective suppression of voiding at the Au film/polyimide interface through modulation of the Au/Ti interface,and thus the propensity of the cyclic strain localization and grain boundary cracking is reduced.The finding may provide a potential strategy for the design of flexible devices with ultra-long fatigue life.展开更多
The effect of Al addition (2 and 5 at. pct) on sintering kinetics of Ti power were investigated. Al reduces the sintering rates, sinter density, increases activation energy of sintering and accelerates the grain gro...The effect of Al addition (2 and 5 at. pct) on sintering kinetics of Ti power were investigated. Al reduces the sintering rates, sinter density, increases activation energy of sintering and accelerates the grain growth. Sintering was controlled by mixed mode, i.e. transient liquid phase sintering, formation of intermetallics, and Ti grain boundary diffusion in TiAl2 and other intermetallics.展开更多
Two novel V-shaped symmetric chromophores: E-2,8-bis(4-vinyl-4-carbazol-9-yl)diben- zothiophene (abbreviated as SK-G1) and E-2,8-bis(4-vinyl-4-triphenylamino) dibenzothiophene (abbreviated as ST-G1) have been...Two novel V-shaped symmetric chromophores: E-2,8-bis(4-vinyl-4-carbazol-9-yl)diben- zothiophene (abbreviated as SK-G1) and E-2,8-bis(4-vinyl-4-triphenylamino) dibenzothiophene (abbreviated as ST-G1) have been synthesized and characterized. Their two photon absorption properties were measured by the open-aperture femtosecond Z-scan technique and the nanosecond nonlinear optical transmission (NLT), respectively, when pumped by Ti: sapphire laser at 750 nm and 800 nm.展开更多
In this study,alumina/A380 composite coatings were fabricated by cold spray.The influence of alumina particulates,morphology(spherical and irregular)and content on the deposition behavior of the coatings(including sur...In this study,alumina/A380 composite coatings were fabricated by cold spray.The influence of alumina particulates,morphology(spherical and irregular)and content on the deposition behavior of the coatings(including surface roughness,surface residual stress,cross-sectional microstructure and microhardness)was investigated.Results revealed that the spherical alumina mainly shows micro-tamping effect during deposition,which result in remarkable low surface roughness and porosity of the coatings.In addition,very low deposition efficiency and good interfacial bonding between the coating and the substrate were achieved.For irregular alumina particles,the embedding of ceramic particulates in the coating was dominant during deposition process,resulting in high retention in the final deposit.However,it showed limited influence on porosity,surface roughness and interfacial bonding of the deposit.The coatings containing irregular alumina particulates exhibited much higher microhardness than those containing spherical alumina due to the higher load-bearing capacity of deposited alumina.展开更多
Based on 31 fabric property parameters tested by FAST test system and other test instruments, the principal factors of fabric style are obtained through the principal factor analysis method and computer program. Accor...Based on 31 fabric property parameters tested by FAST test system and other test instruments, the principal factors of fabric style are obtained through the principal factor analysis method and computer program. According to the correlation between each parameter and principal factor, the selected positive or negative coefficient, the objective evaluation model of fabric style has been established based on the percentage of variance. And wool fabrics have been taken for example to show how to use the objective evaluation model for fabric design.展开更多
The present study deals with the investigation of dry sliding wear behavior of aluminium alloy based composites, reinforced with silicon carbide particles and solid lubricants such as graphite/antimony tri sulphide (S...The present study deals with the investigation of dry sliding wear behavior of aluminium alloy based composites, reinforced with silicon carbide particles and solid lubricants such as graphite/antimony tri sulphide (Sb2S3). The first one of the composites (binary) consists of Al. with 20% Silicon Carbide particles (SiCp) only. The other composite has SiCp and solid lubricants: Graphite + Sb2S3 (hybrid composite) at solid state. Both composites are fabricated through P/M route using “Hot powder perform forging technology”. The density and hardness are measured by usual methods. The pin-on-disc dry wear tests to measure the tribological properties are conducted for one hour at different parameters namely load: 30, 50 and 80N and speed: 5, 7 and 9m/s. The tested samples are examined using scanning electron microscope (SEM) for the characterization of microstructure and tribolayer on worn surface of composites. The results reveal that wear rate of hybrid composite is lower than that of binary composite. The wear rate decreased with the increasing load and increased with increasing speed. The results of the proposed composites are compared with iron based metal matrix composites (FM01N, FM02) at corresponding values of test parameters. These iron based metal matrix composites are also fabricated by P/M route using ‘Hot powder perform forging technology’. The comparative study reveals that the proposed composites have lower friction coefficient, less temperature rise and low noise level;however they have little higher wear rate. It is concluded that the hybrid composite has acceptable level of tribological characteristics with blacky and smooth worn surface.展开更多
Aging behavior of Mg-3.6Y-0.5Zr and Mg-2.TNd-0.5Zr alloys was investigated by microhardness measurement and transmission electron microscopy.In the case of Mg-Y-Zr alloy,the presence ofβ″phase,a major strength- ener...Aging behavior of Mg-3.6Y-0.5Zr and Mg-2.TNd-0.5Zr alloys was investigated by microhardness measurement and transmission electron microscopy.In the case of Mg-Y-Zr alloy,the presence ofβ″phase,a major strength- ener,having base centered orthorhombic structure with its lattice constants of a-(β″)=0.64 nm,b-(β″)=2.22 nm, and c-(β″)=0.52 nm was identified.In the case of Mg-Nd-Zr alloy aged at 250℃,the presence ofβ″andβ′phases was identified.The crystal structure ofβ″phase was found to be DO-(19) and its orientation relationships with Mg matrix were [0001]-(β″)//[0001]-(Mg) and [01(?)0]-(β″)//[01(?)0]-(Mg).Theβ′phase had face centered cubic structure and its orientation relationships with Mg matrix were [011]-(β′)//[0001]-(Mg) and [(?)1(?)]β′//[(?)110])-(Mg). The Mg-2.TNd-0.5Zr alloy showed higher hardness compared with Mg-3.6Y-0.5Zr alloy.展开更多
Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue...Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.展开更多
In 2010, the fracking discussion in Germany caused a number of changes in German law, which came into force in 2016.Especially the production of gas had to be regulated.With the legislation amendment, the Subsidence-A...In 2010, the fracking discussion in Germany caused a number of changes in German law, which came into force in 2016.Especially the production of gas had to be regulated.With the legislation amendment, the Subsidence-Area Mining Regulation has been revised, too.The changes expand the compensation of mining damages, especially to the extraction with drilling from the surface and underground storage.Although the Subsidence-Area Mining Regulation has been revised, the area of main influence(subsidence of 10 cm)remains to determine a relevant boundary for mining damages.The determination and prediction of this boundary above caverns are presented in this paper.In addition, further elements of ground movements and their relevance to mine damages are analyzed.The usage of the area of main influence to fix a relevant boundary for mining damages does not correspond to the relevant elements of ground movements.A limit for differences in subsidence(tilt) or horizontal changes in length should be preferred to describe the relevance of mining damages on buildings.Furthermore, this paper outlines the meaning of using the area of main influence to fix a relevant boundary for mining damages.展开更多
In this paper, study objects are raw and dilative tussah silk. By means of measuring and analyzing the fiber's diameter, linear density, diameter coefficient, thickness and fullness, this paper focuses on the infl...In this paper, study objects are raw and dilative tussah silk. By means of measuring and analyzing the fiber's diameter, linear density, diameter coefficient, thickness and fullness, this paper focuses on the influence of dilative technology on tussah silk's fiber and fabric. The results include the following three aspects: the diameter coefficient of dilative tussah silk fiber is increased by 10.35%, dilative tussah heather silk is thicker and fabric fullness is improved by 9%.展开更多
基金the Institute of Biomass&Functional Materials of Shaanxi University of Science and Technology for funding this research workfinancially supported by the National Natural Science Foundation of China(2207081675,22278257,22308209)+1 种基金the Key R&D Program of Shaanxi Province(2024SF-YBXM-586)the Project of Innovation Capability Support Program in Shaanxi Province(2024ZC-KJXX-005)。
文摘Global warming and energy crisis are two major challenges in the new-century.Wearable materials that enable all-seasonal self-adapting thermal comfort without additional energy-input attract significant attention as a solution to the increasing severity of extreme climate-change.Inspired by autologous temperature-regulation and multidimensional-sensing origins of nature-skin composed of nature collagen fibers,this study engineered a nanoscale wearable natural fibers-derived thermochromic material(TMEH-skin)for robust all-season self-adapting thermal management by tactically integrating traditional immersion and spraying methods with layer-by-layer stacking-strategy.Because of the on-demand multi-functional layer-structure design,TMEH-skin achieves spontaneous~38.16%visible lightmodulation and~95.1%infrared-emission,demonstrating outstanding double-self-switching thermal management origins by simple color-changing without additional energy-input.Moreover,TMEH-skin has gratifying tensile strength of 13.18 MPa,water vapor permeability,electrical-conductivity,and hydrophobicity,further broadening the application potential and scenarios as wearable materials.In applications for military-missions or reconnaissance behind enemy-lines,TMEH-skin robustly integrates the multi-functionalities of wearing-comfort,physiological signal-response capability for accurate transmission of Morse-code,and thermal management performances under special circumstances,indicating its tremendous potential for smart military-applications.Simulation results show that TMEH-skin has prominent energy-saving efficiency in cities with different climate zones.This study provides a new reference to the booming innovation of natural-derived wearable materials for all-seasonal self-adapting thermal management.
基金the Institute of Biomass & Functional Materials of Shaanxi University of Science and Technology for funding this research workfinancially supported by the National Natural Science Foundation of China (2207081675, 22278257, 22308209)+1 种基金the Key R&D Program of Shaanxi Province (2024SF-YBXM-586)the Project of Innovation Capability Support Program in Shaanxi Province (2024ZC-KJXX-005)
文摘Rapid population growth in recent decades has intensified both the global energy crisis and the challenges posed by climate change,including global warming.Currently,the increased frequency of extreme weather events and large fluctuations in ambient temperature disrupt thermal comfort and negatively impact health,driving a growing dependence on cooling and heating energy sources.Consequently,efficient thermal management has become a central focus of energy research.Traditional thermal management systems consume substantial energy,further contributing to greenhouse gas emissions.In contrast,emergent radiant thermal management technologies that rely on renewable energy have been proposed as sustainable alternatives.However,achieving year-round thermal management without additional energy input remains a formidable challenge.Recently,dynamic radiative thermal management technologies have emerged as the most promising solution,offering the potential for energy-efficient adaptation across seasonal variations.This review systematically presents recent advancements in dynamic radiative thermal management,covering fundamental principles,switching mechanisms,primary materials,and application areas.Additionally,the key challenges hindering the broader adoption of dynamic radiative thermal management technologies are discussed.By highlighting their transformative potential,this review provides insights into the design and industrial scalability of these innovations,with the ultimate aim of promoting renewable energy integration in thermal management applications.
基金supported by the National Natural Science Foundation of China(22308210)the Young Talent Fund of the Association for Science and Technology in Shaanxi of China(20240412)+1 种基金the RIKEN-MOST Project between the Ministry of Science and Technology of the People’s Republic of China(MOST)and RIKEN,the China Scholarship Council(202108610127)the Natural Science Foundation of Shaanxi University of Science&Technology(2019BT-44).
文摘Compared with traditional rain gauges and weather radars,hydrogel flexible electronic sensor capable of responding directly to rainfall events with promptness and authenticity,shows great prospects in real-time rainfall monitoring.Aluminum coordination hydrogel(Al-HG),one of the most qualified sensors suitable for rainfall monitoring,however,is currently impeded from widespread application by its weak mechanical properties due to the low binding strength between Al^(3+)and functional ligands.Herein,inspired by the antifreeze proteins(AFPs)that protect those Patagonian toothfishes by strongly binding to ice crystals at freezing temperatures,a low temperature-induced strategy is introduced to promote more and stronger ligand carboxyls firm combination with Al^(3+),thus forming a high-coordinated structure to deal with this challenge.Expectedly,the whole mechanical performance of the product Al-HG_(F1/F2) obtained by the low temperature-induced strategy is improved.For example,the tensile fracture toughness and the maximum compressive stress of Al-HG_(F1/F2) are 1.66 MJ·m^(-3) and 12.01 MPa,approximately twice those of the sample Al-HGF3/F0 obtained by traditional soaking method(0.86 MJ·m^(-3) and 7.38 MPa,respectively).Coupled with its good biocompatibility,ionic conductivity,and sensing ability,Al-HG_(F1/F2) demonstrates promising application for real-time rainfall monitoring in discrepant rainfall intensities,different zones,and even under extreme environments.This work aims to offer a stride toward mechanically robust aluminum coordination hydrogel sensors for real-time rainfall monitoring as well as provide insights into flood prevention and disaster mitigation.
基金financial support provided by the Science and Engineering Research Board (Ref. no.: ECR/2016/000125), Department of Science and Technology, Government of India
文摘Bioimplant grade hot-rolled magnesium with equiaxed microstructure and basal texture was examined for fracture toughness(FT)anisotropy using fatigue pre-cracked single-edge notch bending specimens with the notch,an||,⊥and 45°to rolling direction(RD).Due to adequate crack-tip plasticity,the size-independent elastic-plastic fracture toughness(JIC)were determined.Anisotropic JIC was ob-served due to different twin lamellae formation w.r.t.notch owing to the initial basal texture with{10¯10}and{11¯20}poles mostlyand⊥to RD.The out-of-plane tensile stresses activated the{10¯12}||10¯11||extension twins(ET)as usual with matrix-ET∑15b coincident site lattice boundary(CSLB)interfaces.While the in-plane tensile stress⊥to the crack-tip activated{10¯11}||10¯12||contraction twins(CT)that transform into{10¯11}-{10¯12}double twins(DT)with matrix-DT∑23b and∑15a CSLBs.For an||RD,large DT lamellae fraction formed at∼30°and few ETs at∼30°and∼90°to the notch with crack growth mainly via the∑23b/∑15a CSLB interfaces during FT.While,significant DT and ET lamellae developed at∼0°and∼60°with cracking via the matrix-DT∑23b/∑15a and matrix-ET||15b CSLBs for an⊥RD.The DT and ET lamellae activated at∼15°,and the crack propagated through∑15b for an∼45°to RD.The JIC and the crack-tip plastic zone decreases,while the elastic component of the J-integral(Jel)and the ET formation increases from an||,⊥,to∼45°to RD.The strain incompatibility of matrices was higher with the geometrically hard ETs than DTs.Thus,brittle interlamellar cracking occurred through the∑15b interfaces.In contrast,almost similar and higher crack-tip plasticity occurred in matrix and DT domains during crack propagation via||23b/||15a CSLBs.Crack growth through∑23b/||15a led to high JIC,both∑15b and||23b/||15a led to moderate JIC,and∑15b least JIC for an||,⊥and 45°to RD,respectively.
基金funded by the Minister of Education,Culture,Research,and Technology of Indonesia through a research scheme of“Penelitian Fundamental–Reguler(PFR)2023”under a contract number of 1115c/IT9.2.1/PT.01.03/2023.
文摘This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications.
基金the Department of Science & Technology (DST) for their financial support for carrying out this research through Fast Track Scheme (DST Sanction No: SR/FT/ET-005/2008)Technical Education Quality Improvement Programme (TEQIP)
文摘Ultra-high strength Al alloy system was developed by cryorolling and the contribution of various strengthening mechanisms to the overall yield strength of the system was evaluated. Cryorolling of Al-4%Cu-3%TiB2 in situ composite followed by short annealing at 175 ℃ and ageing at 125℃ resulted in an ultra-high yield strength of about 800 MPa with 9%total elongation. The strengthening contributions form solid solution strengthening, grain refinement, dislocation strengthening, precipitation hardening and dispersion strengthening were evaluated using standard equations. It was estimated that the maximum contribution was from grain refinement due to cryorolling followed by precipitation and dispersion strengthening.
基金financially supported by the National Natural Science Foundation of China(No.51402099)Education Foundation of Hubei Province(No.T201521)the Science Foundation from Hubei Polytechnic University(Nos.12xjz08R and 801-8596)
文摘Stimuli-responsive polymers have undoubtedly been of great interest in the past decades due to a variety of their potential applications in biomedical territory. However, their non-degradability limits their in vivo applications. Herein, we report a novel pH and temperature dual-stimuli responsive-poly(β-amino ester). The pH/temperature sensitivities are interrelated and can be easily tuned by changing PEG-diacrylate chain length and the percentage of biamines in the feed ratio. These dual-responsive polymers are very useful in drug delivery. Reaction of methyl ether poly(ethylene glycol) (MPEG) and poly(β-amino ester) resulted in an amphiphilic MPEG-PBAE block copolymer which could form nanoparticles by self- assembly. A hydrophobic drug (DOX) was loaded in the self-assembled nanoparticles at low temperature without using organic solvents. The loaded drug was released very slowly and steadily at 37 ℃ under physiological conditions (pH 7.4), but rapidly released from the micelles in weakly acidic environments (pH 6.4 and 5.0) for intracellular drug release. Thus, these poly(fl-amino ester) polymers constitute ideal drug carriers since their thermal sensitivity allows the drug loadings without using organic solvent and their pH sensitivity permits fast intracellular drug release.
基金supported by the Major State Basic Research and Development Program of China (No.2006CB605206-1)
文摘Thin walls of a copper-base alloy with the nominal composition CuNi17Al3Fe1.5Cr were successfully prepared by laser direct deposition additive manufacturing. The microstructure, as revealed by optical and scanning electron microscopy, indicated that the deposited material was fully dense and with a dendritic microstructure. The dendrites are parallel to the build-up direction, which is also the heat con-duction direction during deposition. X-ray diffraction analysis results show that the deposited material is composed of a single phase and a copper-based solid solution. Some precipitate particles of metal silicides were observed in the interdendritic region by scanning electron mi-croscopy. The ultimate tensile strength along the laser scanning direction reaches 735 MPa. The hardness is about Hv0.1 300.
基金Item Sponsored by National Natural Science Foundation of China (50334010)
文摘The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si-Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the hold- ing duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33 ;, respectively).
文摘Aluminium alloy AA2219 was reinforced with TiB2 particles introduced in-situ by the saltmetal reaction technique. The microstructural examinations of the composites clearly reveal the formation of TiB2 particles with a hexagonal morphology. The addition of TiB2 particles results in increased mechanical properties, such as 0.2%YS, UTS and hardness. The improvement in mechanical properties is correlated to the microstructure.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.52071319,51601198 and 51771207)Foundation for Outstanding Young Scholar sponsored by Institute of Metal Research(IMR),Natural Science Foundation of Liaoning Province of China(20180510025)Foundation for Outstanding Young Scholar sponsored by the Shenyang National Laboratory for Materials Science(L2019F23)。
文摘The fatigue damage behavior of the nanocrystalline Au films on polyimide substrates was investigated.It was found that the very high-cycle fatigue damage resistance of the Au film was significantly enhanced by at least a factor of~2 in supported loading through adding an ultrathin Ti interlayer at the Au film/polyimide interface.Such a better fatigue damage resistance is mainly ascribed to the effective suppression of voiding at the Au film/polyimide interface through modulation of the Au/Ti interface,and thus the propensity of the cyclic strain localization and grain boundary cracking is reduced.The finding may provide a potential strategy for the design of flexible devices with ultra-long fatigue life.
文摘The effect of Al addition (2 and 5 at. pct) on sintering kinetics of Ti power were investigated. Al reduces the sintering rates, sinter density, increases activation energy of sintering and accelerates the grain growth. Sintering was controlled by mixed mode, i.e. transient liquid phase sintering, formation of intermetallics, and Ti grain boundary diffusion in TiAl2 and other intermetallics.
基金the National Natural Science Foundation of China(No.50273024)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(FANEDD,No 200333)+1 种基金Natural Foundation of Jiangsu Province(No.BK2003031)the Foundation of Jiangsu Province Education Committee(No.03KJB 150115)for financial support.
文摘Two novel V-shaped symmetric chromophores: E-2,8-bis(4-vinyl-4-carbazol-9-yl)diben- zothiophene (abbreviated as SK-G1) and E-2,8-bis(4-vinyl-4-triphenylamino) dibenzothiophene (abbreviated as ST-G1) have been synthesized and characterized. Their two photon absorption properties were measured by the open-aperture femtosecond Z-scan technique and the nanosecond nonlinear optical transmission (NLT), respectively, when pumped by Ti: sapphire laser at 750 nm and 800 nm.
基金financially supported by the National Natural Science Foundation of China (Nos.51671205 and 51801217)
文摘In this study,alumina/A380 composite coatings were fabricated by cold spray.The influence of alumina particulates,morphology(spherical and irregular)and content on the deposition behavior of the coatings(including surface roughness,surface residual stress,cross-sectional microstructure and microhardness)was investigated.Results revealed that the spherical alumina mainly shows micro-tamping effect during deposition,which result in remarkable low surface roughness and porosity of the coatings.In addition,very low deposition efficiency and good interfacial bonding between the coating and the substrate were achieved.For irregular alumina particles,the embedding of ceramic particulates in the coating was dominant during deposition process,resulting in high retention in the final deposit.However,it showed limited influence on porosity,surface roughness and interfacial bonding of the deposit.The coatings containing irregular alumina particulates exhibited much higher microhardness than those containing spherical alumina due to the higher load-bearing capacity of deposited alumina.
文摘Based on 31 fabric property parameters tested by FAST test system and other test instruments, the principal factors of fabric style are obtained through the principal factor analysis method and computer program. According to the correlation between each parameter and principal factor, the selected positive or negative coefficient, the objective evaluation model of fabric style has been established based on the percentage of variance. And wool fabrics have been taken for example to show how to use the objective evaluation model for fabric design.
文摘The present study deals with the investigation of dry sliding wear behavior of aluminium alloy based composites, reinforced with silicon carbide particles and solid lubricants such as graphite/antimony tri sulphide (Sb2S3). The first one of the composites (binary) consists of Al. with 20% Silicon Carbide particles (SiCp) only. The other composite has SiCp and solid lubricants: Graphite + Sb2S3 (hybrid composite) at solid state. Both composites are fabricated through P/M route using “Hot powder perform forging technology”. The density and hardness are measured by usual methods. The pin-on-disc dry wear tests to measure the tribological properties are conducted for one hour at different parameters namely load: 30, 50 and 80N and speed: 5, 7 and 9m/s. The tested samples are examined using scanning electron microscope (SEM) for the characterization of microstructure and tribolayer on worn surface of composites. The results reveal that wear rate of hybrid composite is lower than that of binary composite. The wear rate decreased with the increasing load and increased with increasing speed. The results of the proposed composites are compared with iron based metal matrix composites (FM01N, FM02) at corresponding values of test parameters. These iron based metal matrix composites are also fabricated by P/M route using ‘Hot powder perform forging technology’. The comparative study reveals that the proposed composites have lower friction coefficient, less temperature rise and low noise level;however they have little higher wear rate. It is concluded that the hybrid composite has acceptable level of tribological characteristics with blacky and smooth worn surface.
文摘Aging behavior of Mg-3.6Y-0.5Zr and Mg-2.TNd-0.5Zr alloys was investigated by microhardness measurement and transmission electron microscopy.In the case of Mg-Y-Zr alloy,the presence ofβ″phase,a major strength- ener,having base centered orthorhombic structure with its lattice constants of a-(β″)=0.64 nm,b-(β″)=2.22 nm, and c-(β″)=0.52 nm was identified.In the case of Mg-Nd-Zr alloy aged at 250℃,the presence ofβ″andβ′phases was identified.The crystal structure ofβ″phase was found to be DO-(19) and its orientation relationships with Mg matrix were [0001]-(β″)//[0001]-(Mg) and [01(?)0]-(β″)//[01(?)0]-(Mg).Theβ′phase had face centered cubic structure and its orientation relationships with Mg matrix were [011]-(β′)//[0001]-(Mg) and [(?)1(?)]β′//[(?)110])-(Mg). The Mg-2.TNd-0.5Zr alloy showed higher hardness compared with Mg-3.6Y-0.5Zr alloy.
基金Funded by the National Natural Science Foundation of China (No. 50772045)the Society Development Foundation of Yunnan Province (No. 2007E036M)
文摘Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.
文摘In 2010, the fracking discussion in Germany caused a number of changes in German law, which came into force in 2016.Especially the production of gas had to be regulated.With the legislation amendment, the Subsidence-Area Mining Regulation has been revised, too.The changes expand the compensation of mining damages, especially to the extraction with drilling from the surface and underground storage.Although the Subsidence-Area Mining Regulation has been revised, the area of main influence(subsidence of 10 cm)remains to determine a relevant boundary for mining damages.The determination and prediction of this boundary above caverns are presented in this paper.In addition, further elements of ground movements and their relevance to mine damages are analyzed.The usage of the area of main influence to fix a relevant boundary for mining damages does not correspond to the relevant elements of ground movements.A limit for differences in subsidence(tilt) or horizontal changes in length should be preferred to describe the relevance of mining damages on buildings.Furthermore, this paper outlines the meaning of using the area of main influence to fix a relevant boundary for mining damages.
文摘In this paper, study objects are raw and dilative tussah silk. By means of measuring and analyzing the fiber's diameter, linear density, diameter coefficient, thickness and fullness, this paper focuses on the influence of dilative technology on tussah silk's fiber and fabric. The results include the following three aspects: the diameter coefficient of dilative tussah silk fiber is increased by 10.35%, dilative tussah heather silk is thicker and fabric fullness is improved by 9%.