期刊文献+
共找到178篇文章
< 1 2 9 >
每页显示 20 50 100
Mini review:Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries 被引量:2
1
作者 Lingjiang Kou Yong Wang +5 位作者 Jiajia Song Taotao Ai Wenhu Li Mohammad Yeganeh Ghotbi Panya Wattanapaphawong Koji Kajiyoshi 《Chinese Chemical Letters》 2025年第1期214-224,共11页
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability... As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage. 展开更多
关键词 Aqueous zinc ion battery High-voltage cathode materials Stability enhancement Failure mechanisms Electrolyte optimization
原文传递
Production and fluoride treatment of Mg-Ca-Zn-Co alloy foam for tissue engineering applications 被引量:4
2
作者 Ilven MUTLU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第1期114-124,共11页
Highly porous Mg-Ca-Zn-Co alloy scaffolds for tissue engineering applications were produced by powder metallurgy based space holder-water leaching method.Mg-Ca-Zn-Co alloy foam can be used as a scaffold material in ti... Highly porous Mg-Ca-Zn-Co alloy scaffolds for tissue engineering applications were produced by powder metallurgy based space holder-water leaching method.Mg-Ca-Zn-Co alloy foam can be used as a scaffold material in tissue engineering.Carbamide was used as a space holder material.Fluoride conversion coating was synthesized on the alloy by immersion treatment in hydrofluoric acid(HF).Increasing Zn content of the alloy increased the elastic modulus.Ca addition prevented the oxidation of the specimens during sintering.Electrochemical corrosion behaviour of the specimens was examined in simulated body fluid.Corrosion rate decreased with Zn addition from1.0%up to3.0%(mass fraction)and then increased.Mass loss of the specimens initially decreased with Zn addition up to about3%and then increased.Fluoride conversion coating increased the corrosion resistance of the specimens. 展开更多
关键词 Mg-Ca-Zn-Co alloy SCAFFOLD fluoride treatment metal foam CORROSION
在线阅读 下载PDF
Influence of B source materials on the synthesis of TiB_2-Al_2O_3 nanocomposite powders by mechanical alloying 被引量:3
3
作者 Majid Abdellahi Javad Heidari Rahman Sabouhi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第12期1214-1220,共7页
An Al2O3-TiB2 nanocomposite was successfully synthesized by ball milling of Al, TiO2 and two B source materials of B2O3 (system (1)) and H3BO3 (system (2)). Phase identification of the milled samples was exami... An Al2O3-TiB2 nanocomposite was successfully synthesized by ball milling of Al, TiO2 and two B source materials of B2O3 (system (1)) and H3BO3 (system (2)). Phase identification of the milled samples was examined by Xray diffraction. The morphology and microstructure of the milled powders were monitored by scanning electron microscopy and transmission electron microscopy. It was found that the formation of this composite was completed after 15 and 30 h of milling time in systems (1) and (2), respectively. More milling energy was required for the formation of this composite in system (2) due to the lubricant properties of HaBO3 and also its decomposition to HBO2 and B2O3 during milling. On the basis of X-ray diffraction patterns and thermodynamic calculations, this composite was formed by highly exothermic mechanically induced self-sustaining reactions (MSR) in both systems. The MSR mode took place around 9 h and 25 h of milling in systems (1) and (2), respectively. At the end of milling (15 h for system (1) and 30 h for system (2)) the grain size of about 35-50 nm was obtained in both systems. 展开更多
关键词 NANOCOMPOSITES POWDERS ALUMINA titanium diboride mechanical alloying
在线阅读 下载PDF
Characterization of Cu–Ti powder metallurgical materials 被引量:3
4
作者 Erdem Karakulak 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第1期83-90,共8页
Powder metallurgical Cu-Ti alloys with different titanium additions produced by hot pressing were characterized by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, and hardness, wear and b... Powder metallurgical Cu-Ti alloys with different titanium additions produced by hot pressing were characterized by optical microscopy, scanning electron microscopy, X-ray diffraction analysis, and hardness, wear and bending tests. The addition of titanium to copper caused the formation of different intermetallic layers around titanium particles. The titanium content of the intermetallics decreased from the center of the particle to the copper matrix. The hardness, wear resistance, and bending strength of the materials increased with increasing Ti content, whereas strain in the bending test decreased. Worn surface analyses showed that different wear mechanisms were active during the wear test of specimens with different chemical compositions. Changes in the properties of the materials with titanium addition were explained by the high hardness of different Cu-Ti intermetallic phases. 展开更多
关键词 copper titanium alloys powder metallurgy SINTERING mechanical properties WEAR
在线阅读 下载PDF
Influence of welding parameters on material flow,mechanical property and intermetallic characterization of friction stir welded AA6063 to HCP copper dissimilar butt joint without offset 被引量:3
5
作者 T.K.BHATTACHARYA H.DAS T.K.PAL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2833-2846,共14页
Joining of dissimilar aluminium-copper is an emerging area of interest for both research and industry due to its complex nature.Friction stir welding was attempted to evaluate the joint strength without offset at the ... Joining of dissimilar aluminium-copper is an emerging area of interest for both research and industry due to its complex nature.Friction stir welding was attempted to evaluate the joint strength without offset at the butt line between AA6063 to HCP copper sheet under different combination of rotational speed of 800 and 1000 r/min and travel speed of 20 and 40 mm/min.Material flow was studied in detail for different combinations of parameters with optical microscopy and elemental mapping by energy dispersive X-ray spectroscopy(EDS).The results were correlated with the microstructural characteristics and formation of intermetallics at the bond interface using microhardness test and X-ray diffraction(XRD) technique.Material flow clearly suggests that energy input at 800 r/min and 20 mm/min is sufficient to plasticize both the materials with formation of higher amount of thermodynamically stable and hard intermetallic phases Al4Cu9 and Al Cu4(slower cooling rate of 88 K/s) than that at 800 r/min and 40 mm/min(faster cooling rate of 154 K/s),attributed maximum joint strength(~78.6% of aluminium base metal). 展开更多
关键词 friction stir welding(FSW) AA6063 alloy HCP copper material flow
在线阅读 下载PDF
Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion 被引量:4
6
作者 Mei Ding Gen Chen +2 位作者 Weichuan Xu Chuankun Jia Hongmei Luo 《Nano Materials Science》 CAS 2020年第3期264-280,共17页
Traditional synthetic methodologies are confronted with great challenges to fabricate complex nanomaterials with delicate design,high efficiency and excellent sustainability.During the past decade,bio-inspired synthes... Traditional synthetic methodologies are confronted with great challenges to fabricate complex nanomaterials with delicate design,high efficiency and excellent sustainability.During the past decade,bio-inspired synthesis has been extensively applied as an effective and efficient strategy for the fabrication of nanomaterials and nanostructures.Mimicking electrode materials at nanoscale in the aspect of either structure or functionality has been receiving surging interest because of their incomparable advantages and outperforming properties.In this review,we summarize the recent progresses on bio-inspired synthesis of nanomaterials and smart structures in the field of energy storage and conversion.Firstly,an overall introduction of bio-inspired synthetic strategies will be presented,with focus on the biotemplates and bio-resources.Following that,a library of complex mimicking structures featured by high-order,hierarchical porosity,or bionic function are introduced,with discussion on their chemical and physical properties associated with the structure.The enhanced electrochemical properties such as energy density,cycling stability,etc.in different electrochemical systems will be also discussed.At last,we will expand the perspectives regarding the advantages and limitations of bioinspired strategy and possible solutions in the future. 展开更多
关键词 properties. structure. SYNTHESIS
在线阅读 下载PDF
Resistance Spot Weldability of Dissimilar Materials: BH180-AISI304L Steels and BH180-IF7123 Steels 被引量:1
7
作者 Fatih Hayat 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第11期1047-1058,共12页
In this study, resistance spot weldability of 180 grade bake hardening steel (BH180), 7123 grade interstitial free steel (IF7123) and 304 grade austenitic stainless steel (AISI304L) with each other was investiga... In this study, resistance spot weldability of 180 grade bake hardening steel (BH180), 7123 grade interstitial free steel (IF7123) and 304 grade austenitic stainless steel (AISI304L) with each other was investigated. In the joining process, electrode pressure and weld current were kept constant and six different weld time were chosen. Microstructure, microhardness, tensile-shear properties and fracture types of resistance spot welded joints were examined. In order to characterize the metallurgical structure of the welded joint, the microstructural profile was developed, and the relationship between mechanical properties and microstructure was determined. The change of weld time, nugget diameter, the HAZ (heat affected zone) width and the electrode immersion depth were also investigated. Welded joints were examined by SEM (scanning electron microscopy) images of fracture surface. As a result of the experiment, it was determined that with increasing weld time, tensile shear load bearing capacity (TLBC) increased with weld time up to 25 cycle and two types of tearing occurred. It was also determined that while the failure occurred from IF side at the BHIS0+IF7123 joint, it occurred from the BH180 side at the BHIS0+AISI304L joint. 展开更多
关键词 Resistance spot welding Bake hardening steel Interstitial free steel Stainless steel
原文传递
Experimental and computational investigations on the SO_(2) poisoning of(La_(0.8)Sr_(0.2))_(0.95)MnO_(3) cathode materials 被引量:2
8
作者 Rui Wang Lucas R.Parent +1 位作者 Srikanth Gopalan Yu Zhong 《Advanced Powder Materials》 2023年第1期25-34,共10页
To study the formation of detrimental phases under the sulfur gas impurity to the long-term degradation in the cathode material,the classic cathode material,(La_(0.8)Sr_(0.2))_(0.95)MnO_(3)(LSM),was prepared,sintered,... To study the formation of detrimental phases under the sulfur gas impurity to the long-term degradation in the cathode material,the classic cathode material,(La_(0.8)Sr_(0.2))_(0.95)MnO_(3)(LSM),was prepared,sintered,and annealed at 800,900,and 1000℃ in the sulfur-containing atmospheres,respectively.Through X-ray diffraction,scanning electron microscope,and transmission electron microscopy techniques,as well as the computer coupling of phase diagrams and thermochemistry methodology,the secondary phases,especially the detrimental ones,under different conditions were predicted and experimentally verified correspondingly.Furthermore,sulfur poisoning results indicate that the accelerated tests might have degradation mechanisms different from actual operation conditions.More importantly,comprehensive comparisons among various impurity-containing conditions were also made to recommend better operation parameters. 展开更多
关键词 LSM cathode CALPHAD Sulfur poisoning Long-term degradation Accelerated test
在线阅读 下载PDF
Synthesis and characterization of ZnO-Al_2O_3 oxides as energetic electro-catalytic material for glucose fuel cell
9
作者 Sujit Kumar Guchhait Subir Paul 《燃料化学学报》 EI CAS CSCD 北大核心 2015年第8期1004-1010,共7页
One of the thrust areas of research is to find an alternative fuel to meet the increasing demand for energy.Glucose is a good source of alternative fuel for clean energy and is easily available in abundance from both ... One of the thrust areas of research is to find an alternative fuel to meet the increasing demand for energy.Glucose is a good source of alternative fuel for clean energy and is easily available in abundance from both naturally occurring plants and industrial processes.Electrochemical oxidation of glucose in fuel cell requires high electro-catalytic surface of the electrode to produce the clean electrical energy w ith minimum energy losses in the cell.Pt and Pt based alloys exhibit high electro-catalytic properties but they are expensive.For energy synthesis at economically cheap price,non Pt based inexpensive high electro catalytic material is required.Electro synthesized Zn O-Al2O3composite is found to exhibit high electro-catalytic properties for glucose oxidation.The Cyclic Voltammetry and Chronoamperometry curves reflect that the material is very much comparable to Pt as far as the maximum current and the steady state current delivered from the glucose oxidation are concerned.XRD image confirms the mixed oxide composite.SEM images morphology show increased 3D surface areas at higher magnification.This attributed high current delivered from electrochemical oxidation of glucose on this electrode surface. 展开更多
关键词 GLUCOSE energy materials ELECTRO-CATALYST cyclic VOLTAMMETRY CHRONOAMPEROMETRY polarization
在线阅读 下载PDF
Development of Iron Based Brake Friction Material by Hot Powder Preform Forging Technique used for Medium to Heavy Duty Applications
10
作者 Mohammad Asif K. Chandra P.S. Misra 《Journal of Minerals and Materials Characterization and Engineering》 2011年第3期231-244,共14页
A promising friction material, Iron -based friction material, was prepared by powder metallurgy (PM) processing utilizing hot powder preform forging (near net-shape).The preparation of the product and its characteriza... A promising friction material, Iron -based friction material, was prepared by powder metallurgy (PM) processing utilizing hot powder preform forging (near net-shape).The preparation of the product and its characterization are presented in this paper. These products are useful in heavy duty Military Aircraft applications such as AN-32. In order to eliminate costly environmental control systems to protect products during their high temperature processing (as is conventionally practiced employing hydrogen gas), the present investigation relies on carbon (mixed in the brake pad formulation) as reducing agent and high temperature oxidation resistant glassy coating (separately developed) applied over the product’s surface after cold compacting. After conducting an initial characterization such as hardness, density and Pin-on Disc tests, the samples were tested in sub-scale dynamometer under Rejected Take Off conditions. It was observed that the obtained density in the present investigation is higher than the reported density obtained by sintering route, and wear is on the lower side of the range as per the Aeronautical Standards. Optical metallography was used to investigate the microstructure of friction, interface and backing layer. It was observed that the distribution of ingredients in matrix was homogeneous. The results also indicate that the coefficient of friction is more stable, and wear is lower with respect to temperature rise. . 展开更多
关键词 FORGING POWDER METALLURGY Friction material BRAKE PAD
暂未订购
Editorial on Emerging Trends in Polymeric Materials Research and Applications
11
作者 Muhammad Imran Rashid 《Non-Metallic Material Science》 2023年第1期1-3,共3页
Polymeric materials especially nanocomposites(Graphene,MXene based)are widely used in food,electronics,biomedical,batteries,energy storage,fuel cells,wastewater treatment,and automotive[1].Nanocomposites are stronger,... Polymeric materials especially nanocomposites(Graphene,MXene based)are widely used in food,electronics,biomedical,batteries,energy storage,fuel cells,wastewater treatment,and automotive[1].Nanocomposites are stronger,lighter,and stiffer and can improve properties such as mechanical strength,electrical conductivity,thermal stability,flame retardancy,surface appearance,optical clarity and chemical resistance.Current research is focus­ing on nanocomposites applications[1-3],CO_(2)cap­turing polymers[4],making polymers degradable[5-7]especially developing bio-composites[8]and green composites[9,10]which are degradable。 展开更多
关键词 COMPOSITES MXene CONDUCTIVITY
在线阅读 下载PDF
Effect of reduced graphene oxide produced by plant extract on anti-corrosion behaviour of epoxy coating
12
作者 FOROUZESH Shervin JAFARI Hassan SADEGHZADEH Ahmad 《Journal of Central South University》 2025年第3期820-836,共17页
Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, a... Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, and Raman spectroscopy were used to examine the microstructure and chemical composition of the nanosheets and epoxy coatings. EIS experiment was used to explore the corrosion behaviour of the coatings. The O/C ratio for GO and rGO-SLE was found to be 2.5 and 4.5, indicating a decrease in the carbon content after the reduction of GO, confirming the adsorption of SLE onto the GO nanosheets. The successful reduction of GO in the presence of SLE particles was confirmed by disappearing the C=O peak and a significant decrease in the C-O-C bond intensity. The epoxy/rGO- SLE coatings exhibited the highest double-layer thickness and excellent corrosion resistance compared to neat epoxy and epoxy/GO coatings, emphasizing the significant role of rGO in enhancing the protective performance of epoxy coatings. The highest values for total charge transfer and film resistances and the inhibition efficiency were observed to be 6529 Ω·cm^(2) and 90%, respectively, for the epoxy/rGO-SLE coated steel plate. It was also found that the epoxy/0.15 wt.% rGO-SLE coating demonstrates the best corrosion resistance performance. 展开更多
关键词 graphene oxide coating EPOXY corrosion NANOSHEET Stachys lavandulifolia
在线阅读 下载PDF
Investigation of TWIP/TRIP Effects in the CrCoNiFe System Using a High-Throughput CALPHAD Approach
13
作者 Jize Zhang T.P.C.Klaver +2 位作者 Songge Yang Brajendra Mishra Yu Zhong 《Computers, Materials & Continua》 2025年第9期4299-4311,共13页
Designing high-performance high-entropy alloys(HEAs)with transformation-induced plasticity(TRIP)or twinning-induced plasticity(TWIP)effects requires precise control over stacking fault energy(SFE)and phase stability.H... Designing high-performance high-entropy alloys(HEAs)with transformation-induced plasticity(TRIP)or twinning-induced plasticity(TWIP)effects requires precise control over stacking fault energy(SFE)and phase stability.However,the vast complexity of multicomponent systems poses a major challenge for identifying promising candidates through conventional experimental or computational methods.A high-throughput CALPHAD framework is developed to identify compositions with potential TWIP/TRIP behaviors in the Cr-Co-Ni and Cr-Co-Ni-Fe systems through systematic screening of stacking fault energy(SFE),FCC phase stability,and FCC-to-HCP transition temperatures(T0).The approach combines TC-Python automation with parallel Gibbs energy calculations across hundreds of thousands of compositions,enabling efficient extraction of metastable FCC-dominant alloys.The high-throughput results find 214 compositions with desired properties from 160,000 candidates.Detailed analysis of the Gibbs energy distributions,phase fraction trends,and temperature-dependent SFE evolution reveals critical insights into the thermodynamic landscape governing plasticity mechanisms in HEAs.The results show that only a narrow region of the compositional space satisfies all screening criteria,emphasizing the necessity of an integrated approach.The screened compositions and trends provide a foundation for targeted experimental validation.Furthermore,this work demonstrates a scalable,composition-resolved strategy for predicting deformation mechanisms in multicomponent alloys and offers a blueprint for integrating thermodynamic screening with mechanistic understanding in HEA design. 展开更多
关键词 High entropy alloys CALPHAD high-throughput computation TWIP/TRIP
在线阅读 下载PDF
Optimizing the development plan for oil production and CO_(2) storage in target oil reservoir
14
作者 Xiliang Liu Hao Chen +4 位作者 Yang Li Weiming Cheng Yangwen Zhu Hongbo Zeng Haiying Liao 《Energy Geoscience》 2025年第2期342-351,共10页
Carbon dioxide enhanced oil recovery(CO_(2)-EOR)technology is used for oil production and CO_(2) storage in reservoirs.Methods are being constantly developed to optimize oil recovery and CO_(2) storage during the CO_(... Carbon dioxide enhanced oil recovery(CO_(2)-EOR)technology is used for oil production and CO_(2) storage in reservoirs.Methods are being constantly developed to optimize oil recovery and CO_(2) storage during the CO_(2) displacement process,especially for low-permeability reservoirs under varying geological conditions.In this study,long-core experiments and trans-scale numerical simulations are employed to examine the characteristics of oil production and CO_(2) storage.Optimal production parameters for the target reservoir are also proposed.The results indicate that maintaining the pressure at 1.04 to 1.10 times the minimum miscible pressure(MMP)and increasing the injection rate can enhance oil production in the early stage of reservoir development.In contrast,reducing the injection rate at the later stages prevents CO_(2) channeling,thus improving oil recovery and CO_(2) storage efficiency.A solution-doubling factor is introduced to modify the calculation method for CO_(2) storage,increasing its accuracy to approximately 90%.Before CO_(2) breakthrough,prioritizing oil production is recommended to maximize the economic benefits of this process.In the middle stage of CO_(2) displacement,decreasing the injection rate optimizes the coordination between oil displacement and CO_(2) storage.Further,in the late stage,reduced pressure and injection rates are required as the focus shifts to CO_(2) storage. 展开更多
关键词 CO_(2)displacement CO_(2)storage Carbon dioxide enhanced oil recovery(CO_(2)-EOR) Low-permeability oil reservoir Degree of miscibility
在线阅读 下载PDF
玻化微珠对秸秆灰/水泥复合材料导热性能的影响 被引量:2
15
作者 王春红 鲍鑫 +5 位作者 支中祥 KO Frank ZAKARIA Sarani 左恒峰 贾立霞 高晓平 《混凝土与水泥制品》 北大核心 2020年第7期72-76,共5页
通过响应面Box-Behnken实验设计,对玻化微珠增强秸秆灰/水泥复合材料的性能进行了优化研究。研究结果表明,所选模型具有显著性(P<0.05),模型优化得出的复合材料最优工艺参数为:掺入量为10%,粒径为600μm。在最优工艺下,玻化微珠增强... 通过响应面Box-Behnken实验设计,对玻化微珠增强秸秆灰/水泥复合材料的性能进行了优化研究。研究结果表明,所选模型具有显著性(P<0.05),模型优化得出的复合材料最优工艺参数为:掺入量为10%,粒径为600μm。在最优工艺下,玻化微珠增强秸秆灰/水泥基复合材料的导热系数为0.2919 W/(m·K),相比未优化处理的,导热系数降低了36%。 展开更多
关键词 秸秆灰 水泥基复合材料 玻化微珠 响应曲面模型
在线阅读 下载PDF
纯Al和AA2037铝合金腐蚀相关缺陷的正电子湮没研究
16
作者 吴奕初 符琴敏 +4 位作者 胡懿 姜静 薛旭东 李培海 翟同广 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2010年第6期621-626,共6页
应用慢正电子束多普勒展宽技术研究了纯Al和AA2037铝合金与腐蚀相关的缺陷.慢正电子束多普勒展宽测量是通过改变正电子的能量,测量正电子湮没的多普勒展宽谱,分析得到了不同正电子能量的S参数和S-E曲线,然后对S-E曲线进行了分析和处理... 应用慢正电子束多普勒展宽技术研究了纯Al和AA2037铝合金与腐蚀相关的缺陷.慢正电子束多普勒展宽测量是通过改变正电子的能量,测量正电子湮没的多普勒展宽谱,分析得到了不同正电子能量的S参数和S-E曲线,然后对S-E曲线进行了分析和处理以得到材料表面及近表面的缺陷真实分布.实验结果表明,纯Al与在1mol/LNaOH溶液中腐蚀引起了纳米尺度界面缺陷的产生,导致S参数明显上升;而水淬AA2037铝合金腐蚀后引起S参数明显下降,其原因可能是Cu在氧化层与基体界面富集.通过原子力显微镜(AFM)观察证实了纯Al样品表面经过腐蚀后有大量几百纳米大小的孔洞产生,而AA2037铝合金中只有少量的孔洞产生. 展开更多
关键词 正电子湮没 铝合金 腐蚀 缺陷
原文传递
Pozzolanic Activity of Burned Coal Gangue and Its Effects on Structure of Cement Mortar 被引量:14
17
作者 张长森 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第4期150-153,共4页
The pozzolanic activity of coal gangue burned at different burning temperatures was investigated. The burned coal gangue was mixed with portland cement in different proportions ( 20% - 60% ). The pozzolanic activity... The pozzolanic activity of coal gangue burned at different burning temperatures was investigated. The burned coal gangue was mixed with portland cement in different proportions ( 20% - 60% ). The pozzolanic activity of coal gangue burned and the hydration products were examined, the compressive strengths of the pastes of the mixtures were tested, and the mechanism of the reaction was discussed. The experimental results slum, that the coal gangue burned at 750 ℃ has the optimum pozzolanic activity, and the burned coal ganguc with SiO2 and Al2 O3 is in an active form. When the coal gangue burned at 750℃ is mixed into portland cement, the content of calcium hydroxide in paste is significantly reduced, while the contents of hydrated calcium silk.ate and hydrated calcium aluminate are increased accordingly, hence resulting in the improvement of the microstructure of mortar. The compressive strength of cement paste decreases with increasing the content of burncd coal gangue. The decease in strength is small in the range of 20% - 30% coal gangue substitution and significant in 30%- 60% substitution. 展开更多
关键词 coal gangue BURN pozzolanic activity cement mortar STRENGTH
在线阅读 下载PDF
Effect of Heat Treatment on Microstructure,Mechanical Properties and Fracture Behaviour of Ship and Dual Phase Steels 被引量:10
18
作者 Fatih Hayat Hüseyin Uzun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第8期65-72,共8页
Grade A (GA) and high strength steel DH36 ship steels possessing different chemical compositions were used, and strength properties of GA steel and DH36 steel were compared. Additionally, 4 types of dual phase (DP... Grade A (GA) and high strength steel DH36 ship steels possessing different chemical compositions were used, and strength properties of GA steel and DH36 steel were compared. Additionally, 4 types of dual phase (DP) steels with different martensite volume fractions (MVFs) were produced from GA steel by means of heat treatment and they were compared with other steels through conducting mierostructure, microhardness, tensile and impact tests. The fracture surfaces of specimens (DH36, GA and DP steels) exposed to tensile and Charpy impact tests were investigated by scanning electron microscope. Furthermore, it was found that the specimens quenched from 800 and 900℃ had better strength than DH36 steel. The tensile test results indicated that the tensile strength of DP steel water quenched from 900℃ was 3 times that of GA steel and twice that of DH36 steel. 展开更多
关键词 Grade A ship steel DH36 ship steel dual phase steel MARTENSITE mechanical property fracture
原文传递
Comparing Properties of Adhesive Bonding,Resistance Spot Welding,and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel 被引量:8
19
作者 Fatih Hayat 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第9期70-78,共9页
Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding ... Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) ioints of the zinc coated DP 600 steel were investigated. Additionally, the zinc coating was removed using HCL acid in order to investigate the effect of the coating. The microstructure, tensile shear strengths, and fracture properties of adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) joints of the coated and uncoated DP 600 steel were compared. In addition, a mechani cal-electrical-thermal coupled model in a finite element analysis environment was utilised. The thermal profile phe nomenon was calculated by simulating this process. The results of the tensile shear test indicated that the tensile load bearing capacity (TLBC) values of the coated specimens among the three welding methods were higher than those of the uncoated specimens. Additionally, the tensile strength of the AWB joints of the coated and uncoated specimens was higher than that of the AB and RSW joints. It was determined that the fracture behaviours and the deformation caused were different for the three welding methods. 展开更多
关键词 advanced high strength steel DP600 adhesive weld bonding microstructure deformation fracture
原文传递
High-cycle fatigue behavior of friction stir butt welded 6061 aluminium alloy 被引量:8
20
作者 Hrishikesh DAS Debayan CHAKRABORTY Tapan KUMAR PAL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期648-656,共9页
Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.... Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.85 mm. The calculated energy input based on the FSW parameters studied shows that the ultimate tensile strength (UTS) of the butt joint is obtained within a certain range of energy input of 297 kJ to 354 kJ out of total range of energy input studied from 196 kJ to 405 kJ. The fatigue behaviors of high-strength and low-strength joints performed at different stress ratios, i.e., 0.5, 0.3, 0.1, -0.3, -0.5, indicate that the fatigue behaviors of both the welds are sensitive to the microstructural features, such as stir zone (SZ), thermo mechanically affected zone (TMAZ) and heat affected zone (HAZ). The observed fatigue strengths were discussed in terms of the microstructure, crack path behavior and fracture surface. 展开更多
关键词 Al alloy friction stir welding (FSW) high cycle fatigue stress ratio (R-ratio) crack path
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部