Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study el...Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study elucidates the fundamental mechanisms of ultrafast laser shock imprinting(LSI)in two-dimensional tellurium(Te),establishing a direct relationship between strain field orientation,mold topology,and anisotropic structural evolution.This is the first demonstration of ultrafast LSI on chiral chain Te unveiling orientation-sensitive dislocation networks.By applying controlled strain fields parallel or transverse to Te’s helical chains,we uncover two distinct deformation regimes.Strain aligned parallel to the chain’s direction induces gliding and rotation governed by weak interchain interactions,preserving covalent intrachain bonds and vibrational modes.In contrast,transverse strain drives shear-mediated multimodal deformations—tensile stretching,compression,and bending—resulting in significant lattice distortions and electronic property modulation.We discovered the critical role of mold topology on deformation:sharp-edged gratings generate localized shear forces surpassing those from homogeneous strain fields via smooth CD molds,triggering dislocation tangle formation,lattice reorientation,and inhomogeneous plastic deformation.Asymmetrical strain configurations enable localized structural transformations while retaining single-crystal integrity in adjacent regions—a balance essential for functional device integration.These insights position LSI as a precision tool for nanoscale strain engineering,capable of sculpting 2D material morphologies without compromising crystallinity.By bridging ultrafast mechanics with chiral chain material science,this work advances the design of strain-tunable devices for next-generation electronics and optoelectronics,while establishing a universal framework for manipulating anisotropic 2D systems under extreme strain rates.This work discovered crystallographic orientation-dependent deformation mechanisms in 2D Te,linking parallel strain to chain gliding and transverse strain to shear-driven multimodal distortion.It demonstrates mold geometry as a critical lever for strain localization and dislocation dynamics,with sharp-edged gratings enabling unprecedented control over lattice reorientation.Crucially,the identification of strain field conditions that reconcile severe plastic deformation with single-crystal retention offers a pathway to functional nanostructure fabrication,redefining LSI’s potential in ultrafast strain engineering of chiral chain materials.展开更多
This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene...This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene’s distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties.The material exhibits superior electrical and thermal conductivity,surpassing many other 2D materials.Borophene’s unique atomic spin arrangements further diversify its potential application for magnetism.Surface and interface engineering,through doping,functionalization,and synthesis of hybridized and nanocomposite borophene-based systems,is crucial for tailoring borophene’s properties to specific applications.This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods,to enhance surface reactivity by increasing active sites through doping and surface modifications.These approaches optimize diffusion pathways improving accessibility for catalytic reactions,and tailor the electronic density to tune the optical and electronic behavior.Key applications explored include energy systems(batteries,supercapacitors,and hydrogen storage),catalysis for hydrogen and oxygen evolution reactions,sensors,and optoelectronics for advanced photonic devices.The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties,employ chemical modifications to enhance stability and leverage borophene’s conductivity and reactivity for advanced photonics.Finally,the review addresses challenges and proposes solutions such as encapsulation,functionalization,and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers,enabling sustainable,commercial-scale applications.展开更多
With the rapid advancement of computing and information technology at the turn of the 21st century,the power of data collection and processing has multiplied tremendously.Based on this a game-changing advancement,scie...With the rapid advancement of computing and information technology at the turn of the 21st century,the power of data collection and processing has multiplied tremendously.Based on this a game-changing advancement,science is at the advent of the “fourth paradigm”of massive data plus artificial intelligence,in which the efficiency of scientific research is continuously improved,research time is shortened,and research cost is reduced[1].展开更多
This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'g...This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'geometric linearity on their photocatalytic properties.Herein,the Mg O film,obtained by plasma electrolysis of AZ31 Mg alloys,was modified by growing an LDH film,which was further functionalized using cyclic sodium hexametaphosphate(CP)and linear sodium tripolyphosphate(LP).CP acted as an enhancer for flake spacing within the LDH structure,while LP changed flake dispersion and orientation.Consequently,CP@LDH demonstrated exceptional efficiency in heterogeneous photocatalysis,effectively degrading organic dyes like Methylene blue(MB),Congo red(CR),and Methyl orange(MO).The unique cyclic structure of CP likely enhances surface reactions and improves the catalyst's interaction with dye molecules.Furthermore,the condensed phosphate structure contributes to a higher surface area and reactivity in CP@LDH,leading to its superior photocatalytic performance compared to LP@LDH.Specifically,LP@LDH demonstrated notable degradation efficiencies of 93.02%,92.89%,and 88.81%for MB,MO,and CR respectively,over a 40 min duration.The highest degradation efficiencies were observed in the case of the CP@LDH sample,reporting 99.99%for MB,98.88%for CR,and 99.70%for MO.This underscores the potential of CP@LDH as a highly effective photocatalyst for organic dye degradation,offering promising prospects for environmental remediation and water detoxification applications.展开更多
The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical ...The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response.In the present study,a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation(PEO)as a nucleation and growth site for Co-MOF.The concentrations of the organic linker 2-Methylimidazole(2,MIm)and cobalt nitrate as a source of Co^(2+) ions were varied to control the growth of the obtained Co-MOF.Lower concentrations of the 2,MIm ligand favored the formation of leaf-like MOF structures through an anisotropic,two-dimensional growth,while higher concentrations led to rapid,isotropic nucleation and the creation of polyhedral Co-MOF structures.The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability,with the lowest corrosion current density(3.11×10^(-9) A/cm^(2))and the highest top layer resistance(2.34×10^(6)Ωcm^(2)),and demonstrated outstanding photocatalytic efficiency,achieving a remarkable 99.98%degradation of methylene blue,an organic pollutant,in model wastewater.To assess the active adsorption sites of the Co-MOF,density functional theory(DFT)was utilized.This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate,which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications.展开更多
In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermark...In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermarking technology.First,the important attribute values are selected from the materials genome engineering database;then,use the method of remainder to group the selected attribute values and extract eigenvalues;then,the eigenvalues sequence is obtained by the majority election method;finally,XOR the sequence with the actual copyright information to obtain the watermarking information and store it in the third-party authentication center.When a copyright dispute requires copyright authentication for the database to be detected.First,the zero-watermarking construction algorithm is used to obtain an eigenvalues sequence;then,this sequence is XORed with the watermarking information stored in the third-party authentication center to obtain copyright information to-be-detected.Finally,the ownership is determined by calculating the similarity between copyright information to-be-detected and copyright information that has practical significance.The experimental result shows that the zero-watermarking method proposed in this paper can effectively resist various common attacks,and can well achieve the copyright protection of material genome engineering database.展开更多
This paper studies the antimicrobial activity of selected engineering materials surfaces at room and chill temperatures. The antimicrobial effects of selected materials surfaces were evaluated by dropping the test pie...This paper studies the antimicrobial activity of selected engineering materials surfaces at room and chill temperatures. The antimicrobial effects of selected materials surfaces were evaluated by dropping the test pieces into prepared cultures of Bacillus spp, Escherichia coli, and Staphylococcus aereus isolated from fruits, animal feaces and natural environment respectively. Bacteria count obtained after 0, 30, 60, 90, 120, 180, 240 and 300 minutes at room temperature and chill condition was taken and compared with their initial count. The amount of live bacteria drops by several orders of magnitude, to zero, on metallic copper and brass within 30 to 300 minutes in both room and chill conditions. In contrast, no reduction is seen in the number of colonies of live bacteria on plastics, ceramic and stainless steel in both room and chill conditions. These results suggest that the selection of metallic copper and brass for touch surfaces in hospitals, surfaces exposed to fruit processing and household utensils can materially assist in reducing bacterial contamination, which should lead to a reduction in the transmission of infectious organisms.展开更多
Metal-organic frameworks(MOFs)can serve as prevailing anodes for lithium-ion batteries,due to their multiple redox-active sites and prominent structural compatibility.However,the poor electronic conductivity and infer...Metal-organic frameworks(MOFs)can serve as prevailing anodes for lithium-ion batteries,due to their multiple redox-active sites and prominent structural compatibility.However,the poor electronic conductivity and inferior cyclability hinder their further implementation.Herein,a synthetic methodology for trimetallic Fe-Co-Ni MOFs with nanoframe superstructures architecture(Fe-Co-Ni NFSs)via structural evolution is proposed for versatile anode materials for lithium storage.Ascribed to optimal compositional and structural optimization,the Fe-Co-Ni NFSs achieve exceptional electrochemical performance with superior specific capacity(1030 mAh g^(−1) at 0.1 A g^(−1)),outstanding rate capacity(414 mAh g^(−1) at 2 A g^(−1)),and prolonged cyclability(489 mAh g^(−1) upon 1000 cycles at 1 A g^(−1)).Both experimental and theoretical investigations reveal that the multi-component metal centers could boost electronic conductivity,confer multiple active sites,and energetically favor Li adsorption capability.Additionally,the nanoframe superstructures of Fe-Co-Ni NFSs could facilitate stress-buffering effect on volumetric expansion and prevent electrode pulverization,further improving the lithium storage capability.This work envisions a meticulous protocol for high-performance MOF anode materials for lithium-ion batteries.展开更多
Herein,cure characteristics,morphology,and mechanical properties of natural rubber filled with activated carbon-based materials were investigated.Carbon-based materials were prepared from bagasse,coffee grounds and pi...Herein,cure characteristics,morphology,and mechanical properties of natural rubber filled with activated carbon-based materials were investigated.Carbon-based materials were prepared from bagasse,coffee grounds and pineapple crowns by the pyrolysis method at temperatures in the range of 300℃.As-synthesized carbon materials were characterized by optical microscopy(OM),scanning electron microscopy(SEM),and Fourier-transform infrared spectroscopy(FTIR)to analyze size distribution,morphology,and functional groups,respectively.OM and SEM analysis revealed that particles,flakes,and a small quantity of fiber-like carbon were obtained using bagasse and pineapple crown as raw materials,while honeycomb-like carbon materials can be derived from coffee grounds.To investigate the mechanical properties,natural rubber was filled with carbon black and as-synthesized carbon materials by the internal mixing and compression molding process.Transmission electron microscopy(TEM)was utilized to characterize the dispersion of carbon materials in the rubber matrix.The results of tensile testing showed that the natural rubber mixed with as-synthesized carbon materials from pineapple crowns exhibited 54%and 74%improvement in the ultimate tensile strength and Young’s modulus,respectively,compared with natural rubber without filled carbon materials.The enhancement in mechanical properties by activated carbon materials derived from pineapple crowns can be attributed to the flake-and fiber-like structures and good dispersion of carbon materials in the rubber matrix.In addition,it is higher than that of rubber mixed with carbon black.The results demonstrated that as-synthesized carbon materials from pineapple crowns have the potential materials to substitute carbon black in the rubber compound industry.展开更多
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability...As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.展开更多
In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadin...In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1).展开更多
Porous spherical MnCo_(2)S_(4) was synthesized by a simple solvothermal method.Thanks to the well-designedbimetallic composition and the unique porous spherical structure,the MnCo_(2)S_(4) electrode exhibited an excep...Porous spherical MnCo_(2)S_(4) was synthesized by a simple solvothermal method.Thanks to the well-designedbimetallic composition and the unique porous spherical structure,the MnCo_(2)S_(4) electrode exhibited an exceptionalspecific capacitance of 190.8 mAh·g^(-1)at 1 A·g^(-1),greatly higher than the corresponding monometallic sulfides MnS(31.7 mAh·g^(-1))and Co_(3)S_(4)(86.7 mAh·g^(-1)).Impressively,the as-assembled MnCo_(2)S_(4)||porous carbon(PC)hybridsupercapacitor(HSC),showed an outstanding energy density of 76.88 Wh·kg^(-1)at a power density of 374.5 W·kg^(-1),remarkable cyclic performance with a capacity retention of 86.8% after 10000 charge-discharge cycles at 5 A·g^(-1),and excellent Coulombic efficiency of 99.7%.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
As a new electrochemical technology,capacitive deionization(CDI)has been increasingly applied in environmental water treatment and seawater desalination.In this study,functional groups modified porous hollow carbon(HC...As a new electrochemical technology,capacitive deionization(CDI)has been increasingly applied in environmental water treatment and seawater desalination.In this study,functional groups modified porous hollow carbon(HC)were synthesized as CDI electrode material for removing Na^(+)and Cl^(−)in salty water.Results showed that the average diameter of HC was approximately 180 nm,and the infrared spectrum showed that its surface was successfully modified with sulfonic and amino groups,respectively.The sulfonic acid functionalized HC(HC-S)showed better electrochemical and desalting performance than the amino-functionalized HC(HC–N),with a maximum Faradic capacity of 287.4 F/g and an adsorptive capacity of 112.97 mg/g for NaCl.Additionally,92.63%capacity retention after 100 adsorption/desorption cycles demonstrates the excellent stability of HC-S.The main findings prove that HC-S is viable as an electrodematerial for desalination by high-performance CDI applications.展开更多
To guarantee the efficient and high-value reutilization of waste concrete from construction waste,the waste concrete was mechanically ground,and three degrees of fineness recycled concrete powder(RCP)were obtained by ...To guarantee the efficient and high-value reutilization of waste concrete from construction waste,the waste concrete was mechanically ground,and three degrees of fineness recycled concrete powder(RCP)were obtained by different grinding time.By analyzing the particle characteristics of RCP with different fineness,the filling-densification effect of cement-RCP cementitious material system was quantitatively investigated based on Andreasen,Fuller,and Aim-Goff models.In addition,the macroscopic mechanical properties of cement paste mixed with RCP were studied,and the influencing mechanisms of RCP on the microstructure of cement paste was revealed.Macroscopic research results show that the particle fineness of RCP after grinding is smaller than that of cement.When the RCP replaces 0%to 20%cement,the packing density based on the Aim-Goff model increases with the increase of RCP content,whereas the macro-mechanical properties first improve and then degrade with the increase of RCP content.Microscopic results show that at 5%RCP content,beneficial hydration products such as C-S-H and beneficial pore increase in cement-RCP paste;while at>15%content,beneficial products decrease and harmful substances such as Ca(OH)_(2)and harmful pore increases.These research findings suggest that the incorporation of RCP can make the cementitious system denser,and the appropriate RCP content can improve the macro-and microscopic properties of cement-based materials.展开更多
Mimicking the hierarchical structure of the skin is one of the most important strategies in skin tissue engineering.Monolayer wound dressings are usually not able to provide several functions at the same time and cann...Mimicking the hierarchical structure of the skin is one of the most important strategies in skin tissue engineering.Monolayer wound dressings are usually not able to provide several functions at the same time and cannot meet all clinical needs.In order to maximize therapeutic efficiency,herein,we fabricated a Tri-layer wound dressing,where the middle layer was fabricated via 3D-printing and composed of alginate,tragacanth and zinc oxide nanoparticles(ZnO NPs).Both upper and bottom layers were constructed using electrospinning technique;the upper layer was made of hydrophobic polycaprolactone to mimic epidermis,while the bottom layer consisted of Soluplus■ and insulin-like growth factor-1(IGF-1)to promote cell behavior.Swelling,water vapor permeability and tensile properties of the dressings were evaluated and the Tri-layer dressing exhibited impressive antibacterial activity and cell stimulation following by the release of ZnO NPs and IGF-1.Additionally,the Tri-layer dressing led to faster healing of full-thicknesswound in ratmodel compared to monolayer and Bilayer dressings.Overall,the evidence confirmed that the Trilayer wound dressing is extremely effective for full-thickness wound healing.展开更多
Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we pro...Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.展开更多
The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered signi...The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered significant interest among researchers.However,this method encounters challenges related to selectivity and permeability.Therefore,modifying and reinforcing the polymer membranes to improve gas separation performance seems essential.Among the various methods for polymer membrane modification,modification with magnesium-based fillers to prepare a mixed matrix membrane(MMM)is considered an efficient method.Owing to magnesium metal's low weight,low density,high strength,and good selectivity,magnesium-based materials(Mg-based materials)have more porosity,higher available surface area,more adsorption sites,lighter weight,and more gas absorption tendency than other fillers,which makes them an attractive choice for the preparation of gas separation MMMs.This research deals with the introduction of Mg-based materials,various methods of synthesis of Mg-based materials,different methods of introducing Mg-based materials into the membrane matrix,and their effect on the performance of MMMs in CO_(2)gas separation applications.Therefore,this review can provide researchers with light horizons in using the high potential of Mg-based materials as efficient fillers in MMMs to achieve excellent permeability and selectivity and generally improve their performance in CO_(2)gas separation applications.展开更多
Although manganese-based oxide is regarded as a promising cathode material for zincion hybrid supercapacitors(ZHSCs),its practical application is hindered by slow zinc ion diffusion and the instability of MnO_(2).To o...Although manganese-based oxide is regarded as a promising cathode material for zincion hybrid supercapacitors(ZHSCs),its practical application is hindered by slow zinc ion diffusion and the instability of MnO_(2).To overcome this obstacle,a δ-MnO_(2)/MXene heterostructure was created using a simple one-step process under gentle condition.The ZHSC was assembled using this heterostructure as the cathode,activated carbon(AC)as the anode and 2 mol·L−1 ZnSO_(4) as the electrolyte.The resultingδ-MnO_(2)/MXene//ZnSO4//AC ZHSC shows a maximum specific capacitance of 97.4 F·g^(−1) and an energy density of 32.27 Wh·kg^(−1) at the best cathode-to-anode mass ratio.Ex situ characterizations reveal the reversible energy storage mechanism combing Zn^(2+)insertion/extraction in the cathode,ion adsorption and desorption on the anode surface,and partial reversible formation and dissolution of Zn_(4)SO_(4)(OH)_(6)·5H_(2)O(ZHS)components on both electrodes.Adding of Mn^(2+)to the electrolyte reduced Mn dissolution,improving the ZHSC’s specific capacitance and energy density to 140.4 F·g^(−1) and 49.36 Wh·kg^(−1),respectively,while also enhancing its rate performance and cyclability.The improved electrochemical reaction kinetics was verified through various tests.The results suggest that the δ-MnO_(2)/MXene heterostructure has great potential as a high-performance cathode material for ZHSCs.展开更多
The effect of using 2%and 10%sodium hydroxide solution as surface treatment of rape straw on its water vapor adsorption properties is analyzed in the relative humidity(RH)range of 0%to 98%.Scanning electron microscopy...The effect of using 2%and 10%sodium hydroxide solution as surface treatment of rape straw on its water vapor adsorption properties is analyzed in the relative humidity(RH)range of 0%to 98%.Scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and Fourier-transform infrared spectroscopy(FTIR)are used to investigate the morphological,chemical and structural changes of the treated straw surface.The mineral particles formed on the surface after the treatment are analyzed using X-ray diffraction(XRD).The application of sodium hydroxide solution results in the disruption of the straw surface.As the concentration of sodium hydroxide increases,the disruption of the straw surface increases,and the ability of the straw to adsorb water vapor also increases over the entire RH range.In addition to the surface disruption and chemical changes caused by the alkaline treatment,the differences in the equilibrium moisture content of treated and untreated rape straw can also be attributed to the formation of minerals on the straw surface,namely calcite for the 2%sodium hydroxide solution,and gaylussite and thermonatrite for the 10%solution.展开更多
基金financial support from NSF ExpandQISE program.The synthesis of tellurene was supported by NSF under grant no.CMMI-2046936supports from Purdue Research Foundation.
文摘Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study elucidates the fundamental mechanisms of ultrafast laser shock imprinting(LSI)in two-dimensional tellurium(Te),establishing a direct relationship between strain field orientation,mold topology,and anisotropic structural evolution.This is the first demonstration of ultrafast LSI on chiral chain Te unveiling orientation-sensitive dislocation networks.By applying controlled strain fields parallel or transverse to Te’s helical chains,we uncover two distinct deformation regimes.Strain aligned parallel to the chain’s direction induces gliding and rotation governed by weak interchain interactions,preserving covalent intrachain bonds and vibrational modes.In contrast,transverse strain drives shear-mediated multimodal deformations—tensile stretching,compression,and bending—resulting in significant lattice distortions and electronic property modulation.We discovered the critical role of mold topology on deformation:sharp-edged gratings generate localized shear forces surpassing those from homogeneous strain fields via smooth CD molds,triggering dislocation tangle formation,lattice reorientation,and inhomogeneous plastic deformation.Asymmetrical strain configurations enable localized structural transformations while retaining single-crystal integrity in adjacent regions—a balance essential for functional device integration.These insights position LSI as a precision tool for nanoscale strain engineering,capable of sculpting 2D material morphologies without compromising crystallinity.By bridging ultrafast mechanics with chiral chain material science,this work advances the design of strain-tunable devices for next-generation electronics and optoelectronics,while establishing a universal framework for manipulating anisotropic 2D systems under extreme strain rates.This work discovered crystallographic orientation-dependent deformation mechanisms in 2D Te,linking parallel strain to chain gliding and transverse strain to shear-driven multimodal distortion.It demonstrates mold geometry as a critical lever for strain localization and dislocation dynamics,with sharp-edged gratings enabling unprecedented control over lattice reorientation.Crucially,the identification of strain field conditions that reconcile severe plastic deformation with single-crystal retention offers a pathway to functional nanostructure fabrication,redefining LSI’s potential in ultrafast strain engineering of chiral chain materials.
基金the Engineering and Physical Sciences Research Council(EPSRC)for funding the researchUK India Education Research Initiative(UKIERI)for funding support.
文摘This review provides an insightful and comprehensive exploration of the emerging 2D material borophene,both pristine and modified,emphasizing its unique attributes and potential for sustainable applications.Borophene’s distinctive properties include its anisotropic crystal structures that contribute to its exceptional mechanical and electronic properties.The material exhibits superior electrical and thermal conductivity,surpassing many other 2D materials.Borophene’s unique atomic spin arrangements further diversify its potential application for magnetism.Surface and interface engineering,through doping,functionalization,and synthesis of hybridized and nanocomposite borophene-based systems,is crucial for tailoring borophene’s properties to specific applications.This review aims to address this knowledge gap through a comprehensive and critical analysis of different synthetic and functionalisation methods,to enhance surface reactivity by increasing active sites through doping and surface modifications.These approaches optimize diffusion pathways improving accessibility for catalytic reactions,and tailor the electronic density to tune the optical and electronic behavior.Key applications explored include energy systems(batteries,supercapacitors,and hydrogen storage),catalysis for hydrogen and oxygen evolution reactions,sensors,and optoelectronics for advanced photonic devices.The key to all these applications relies on strategies to introduce heteroatoms for tuning electronic and catalytic properties,employ chemical modifications to enhance stability and leverage borophene’s conductivity and reactivity for advanced photonics.Finally,the review addresses challenges and proposes solutions such as encapsulation,functionalization,and integration with composites to mitigate oxidation sensitivity and overcome scalability barriers,enabling sustainable,commercial-scale applications.
文摘With the rapid advancement of computing and information technology at the turn of the 21st century,the power of data collection and processing has multiplied tremendously.Based on this a game-changing advancement,science is at the advent of the “fourth paradigm”of massive data plus artificial intelligence,in which the efficiency of scientific research is continuously improved,research time is shortened,and research cost is reduced[1].
基金the National Research Foundation of Korea(NRF)funded by the Korean Government(MSIT)(No.2022R1A2C1006743)。
文摘This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'geometric linearity on their photocatalytic properties.Herein,the Mg O film,obtained by plasma electrolysis of AZ31 Mg alloys,was modified by growing an LDH film,which was further functionalized using cyclic sodium hexametaphosphate(CP)and linear sodium tripolyphosphate(LP).CP acted as an enhancer for flake spacing within the LDH structure,while LP changed flake dispersion and orientation.Consequently,CP@LDH demonstrated exceptional efficiency in heterogeneous photocatalysis,effectively degrading organic dyes like Methylene blue(MB),Congo red(CR),and Methyl orange(MO).The unique cyclic structure of CP likely enhances surface reactions and improves the catalyst's interaction with dye molecules.Furthermore,the condensed phosphate structure contributes to a higher surface area and reactivity in CP@LDH,leading to its superior photocatalytic performance compared to LP@LDH.Specifically,LP@LDH demonstrated notable degradation efficiencies of 93.02%,92.89%,and 88.81%for MB,MO,and CR respectively,over a 40 min duration.The highest degradation efficiencies were observed in the case of the CP@LDH sample,reporting 99.99%for MB,98.88%for CR,and 99.70%for MO.This underscores the potential of CP@LDH as a highly effective photocatalyst for organic dye degradation,offering promising prospects for environmental remediation and water detoxification applications.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response.In the present study,a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation(PEO)as a nucleation and growth site for Co-MOF.The concentrations of the organic linker 2-Methylimidazole(2,MIm)and cobalt nitrate as a source of Co^(2+) ions were varied to control the growth of the obtained Co-MOF.Lower concentrations of the 2,MIm ligand favored the formation of leaf-like MOF structures through an anisotropic,two-dimensional growth,while higher concentrations led to rapid,isotropic nucleation and the creation of polyhedral Co-MOF structures.The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability,with the lowest corrosion current density(3.11×10^(-9) A/cm^(2))and the highest top layer resistance(2.34×10^(6)Ωcm^(2)),and demonstrated outstanding photocatalytic efficiency,achieving a remarkable 99.98%degradation of methylene blue,an organic pollutant,in model wastewater.To assess the active adsorption sites of the Co-MOF,density functional theory(DFT)was utilized.This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate,which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications.
基金This work is supported by Foundation of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research No.ICDDXN004Foundation of Beijing Advanced Innovation Center for Materials Genome Engineering.
文摘In order to effectively solve the problem of copyright protection of materials genome engineering data,this paper proposes a method for copyright protection of materials genome engineering data based on zero-watermarking technology.First,the important attribute values are selected from the materials genome engineering database;then,use the method of remainder to group the selected attribute values and extract eigenvalues;then,the eigenvalues sequence is obtained by the majority election method;finally,XOR the sequence with the actual copyright information to obtain the watermarking information and store it in the third-party authentication center.When a copyright dispute requires copyright authentication for the database to be detected.First,the zero-watermarking construction algorithm is used to obtain an eigenvalues sequence;then,this sequence is XORed with the watermarking information stored in the third-party authentication center to obtain copyright information to-be-detected.Finally,the ownership is determined by calculating the similarity between copyright information to-be-detected and copyright information that has practical significance.The experimental result shows that the zero-watermarking method proposed in this paper can effectively resist various common attacks,and can well achieve the copyright protection of material genome engineering database.
文摘This paper studies the antimicrobial activity of selected engineering materials surfaces at room and chill temperatures. The antimicrobial effects of selected materials surfaces were evaluated by dropping the test pieces into prepared cultures of Bacillus spp, Escherichia coli, and Staphylococcus aereus isolated from fruits, animal feaces and natural environment respectively. Bacteria count obtained after 0, 30, 60, 90, 120, 180, 240 and 300 minutes at room temperature and chill condition was taken and compared with their initial count. The amount of live bacteria drops by several orders of magnitude, to zero, on metallic copper and brass within 30 to 300 minutes in both room and chill conditions. In contrast, no reduction is seen in the number of colonies of live bacteria on plastics, ceramic and stainless steel in both room and chill conditions. These results suggest that the selection of metallic copper and brass for touch surfaces in hospitals, surfaces exposed to fruit processing and household utensils can materially assist in reducing bacterial contamination, which should lead to a reduction in the transmission of infectious organisms.
基金We gratefully acknowledge the financial support from the Guangzhou Science and Technology Project (No.201904010213).
文摘Metal-organic frameworks(MOFs)can serve as prevailing anodes for lithium-ion batteries,due to their multiple redox-active sites and prominent structural compatibility.However,the poor electronic conductivity and inferior cyclability hinder their further implementation.Herein,a synthetic methodology for trimetallic Fe-Co-Ni MOFs with nanoframe superstructures architecture(Fe-Co-Ni NFSs)via structural evolution is proposed for versatile anode materials for lithium storage.Ascribed to optimal compositional and structural optimization,the Fe-Co-Ni NFSs achieve exceptional electrochemical performance with superior specific capacity(1030 mAh g^(−1) at 0.1 A g^(−1)),outstanding rate capacity(414 mAh g^(−1) at 2 A g^(−1)),and prolonged cyclability(489 mAh g^(−1) upon 1000 cycles at 1 A g^(−1)).Both experimental and theoretical investigations reveal that the multi-component metal centers could boost electronic conductivity,confer multiple active sites,and energetically favor Li adsorption capability.Additionally,the nanoframe superstructures of Fe-Co-Ni NFSs could facilitate stress-buffering effect on volumetric expansion and prevent electrode pulverization,further improving the lithium storage capability.This work envisions a meticulous protocol for high-performance MOF anode materials for lithium-ion batteries.
基金funded by Faculty of Engineering,Burapha University,grant number 003/2567.
文摘Herein,cure characteristics,morphology,and mechanical properties of natural rubber filled with activated carbon-based materials were investigated.Carbon-based materials were prepared from bagasse,coffee grounds and pineapple crowns by the pyrolysis method at temperatures in the range of 300℃.As-synthesized carbon materials were characterized by optical microscopy(OM),scanning electron microscopy(SEM),and Fourier-transform infrared spectroscopy(FTIR)to analyze size distribution,morphology,and functional groups,respectively.OM and SEM analysis revealed that particles,flakes,and a small quantity of fiber-like carbon were obtained using bagasse and pineapple crown as raw materials,while honeycomb-like carbon materials can be derived from coffee grounds.To investigate the mechanical properties,natural rubber was filled with carbon black and as-synthesized carbon materials by the internal mixing and compression molding process.Transmission electron microscopy(TEM)was utilized to characterize the dispersion of carbon materials in the rubber matrix.The results of tensile testing showed that the natural rubber mixed with as-synthesized carbon materials from pineapple crowns exhibited 54%and 74%improvement in the ultimate tensile strength and Young’s modulus,respectively,compared with natural rubber without filled carbon materials.The enhancement in mechanical properties by activated carbon materials derived from pineapple crowns can be attributed to the flake-and fiber-like structures and good dispersion of carbon materials in the rubber matrix.In addition,it is higher than that of rubber mixed with carbon black.The results demonstrated that as-synthesized carbon materials from pineapple crowns have the potential materials to substitute carbon black in the rubber compound industry.
基金supported by the Exchange Program of Highend Foreign Experts of Ministry of Science and Technology of People’s Republic of China(No.G2023041003L)the Natural Science Foundation of Shaanxi Provincial Department of Education(No.23JK0367)+1 种基金the Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology(Nos.SLGRCQD2208,SLGRCQD2306,SLGRCQD2133)Contaminated Soil Remediation and Resource Utilization Innovation Team at Shaanxi University of Technology。
文摘As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.
基金financially supported by the National Natural Science Foundation of China(52172245)the Key Scientific and Technological Innovation Project of Shandong(2023CXGC010302)the Qingdao Flexible Materials Precision Die-cutting Technology Innovation Center。
文摘In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1).
文摘Porous spherical MnCo_(2)S_(4) was synthesized by a simple solvothermal method.Thanks to the well-designedbimetallic composition and the unique porous spherical structure,the MnCo_(2)S_(4) electrode exhibited an exceptionalspecific capacitance of 190.8 mAh·g^(-1)at 1 A·g^(-1),greatly higher than the corresponding monometallic sulfides MnS(31.7 mAh·g^(-1))and Co_(3)S_(4)(86.7 mAh·g^(-1)).Impressively,the as-assembled MnCo_(2)S_(4)||porous carbon(PC)hybridsupercapacitor(HSC),showed an outstanding energy density of 76.88 Wh·kg^(-1)at a power density of 374.5 W·kg^(-1),remarkable cyclic performance with a capacity retention of 86.8% after 10000 charge-discharge cycles at 5 A·g^(-1),and excellent Coulombic efficiency of 99.7%.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金supported by the National Science Foundation of China(No.21606191)the Natural Science Foundation of Shandong Province(No.ZR2020ME024).
文摘As a new electrochemical technology,capacitive deionization(CDI)has been increasingly applied in environmental water treatment and seawater desalination.In this study,functional groups modified porous hollow carbon(HC)were synthesized as CDI electrode material for removing Na^(+)and Cl^(−)in salty water.Results showed that the average diameter of HC was approximately 180 nm,and the infrared spectrum showed that its surface was successfully modified with sulfonic and amino groups,respectively.The sulfonic acid functionalized HC(HC-S)showed better electrochemical and desalting performance than the amino-functionalized HC(HC–N),with a maximum Faradic capacity of 287.4 F/g and an adsorptive capacity of 112.97 mg/g for NaCl.Additionally,92.63%capacity retention after 100 adsorption/desorption cycles demonstrates the excellent stability of HC-S.The main findings prove that HC-S is viable as an electrodematerial for desalination by high-performance CDI applications.
基金Funded by the National Natural Science Foundation of China Project(Nos.52108219 and U21A20150)the Lanzhou University of Technology Hongliu Outstanding Young Talent Program,China(No.04-062407)。
文摘To guarantee the efficient and high-value reutilization of waste concrete from construction waste,the waste concrete was mechanically ground,and three degrees of fineness recycled concrete powder(RCP)were obtained by different grinding time.By analyzing the particle characteristics of RCP with different fineness,the filling-densification effect of cement-RCP cementitious material system was quantitatively investigated based on Andreasen,Fuller,and Aim-Goff models.In addition,the macroscopic mechanical properties of cement paste mixed with RCP were studied,and the influencing mechanisms of RCP on the microstructure of cement paste was revealed.Macroscopic research results show that the particle fineness of RCP after grinding is smaller than that of cement.When the RCP replaces 0%to 20%cement,the packing density based on the Aim-Goff model increases with the increase of RCP content,whereas the macro-mechanical properties first improve and then degrade with the increase of RCP content.Microscopic results show that at 5%RCP content,beneficial hydration products such as C-S-H and beneficial pore increase in cement-RCP paste;while at>15%content,beneficial products decrease and harmful substances such as Ca(OH)_(2)and harmful pore increases.These research findings suggest that the incorporation of RCP can make the cementitious system denser,and the appropriate RCP content can improve the macro-and microscopic properties of cement-based materials.
基金support of Isfahan University of Medical Sciences(Project code No.#1401262).
文摘Mimicking the hierarchical structure of the skin is one of the most important strategies in skin tissue engineering.Monolayer wound dressings are usually not able to provide several functions at the same time and cannot meet all clinical needs.In order to maximize therapeutic efficiency,herein,we fabricated a Tri-layer wound dressing,where the middle layer was fabricated via 3D-printing and composed of alginate,tragacanth and zinc oxide nanoparticles(ZnO NPs).Both upper and bottom layers were constructed using electrospinning technique;the upper layer was made of hydrophobic polycaprolactone to mimic epidermis,while the bottom layer consisted of Soluplus■ and insulin-like growth factor-1(IGF-1)to promote cell behavior.Swelling,water vapor permeability and tensile properties of the dressings were evaluated and the Tri-layer dressing exhibited impressive antibacterial activity and cell stimulation following by the release of ZnO NPs and IGF-1.Additionally,the Tri-layer dressing led to faster healing of full-thicknesswound in ratmodel compared to monolayer and Bilayer dressings.Overall,the evidence confirmed that the Trilayer wound dressing is extremely effective for full-thickness wound healing.
基金National Natural Science Foundation of China (62104061, 62074052, 61974173 and 52072327)。
文摘Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.
文摘The crisis of excessive increase in CO_(2)emissions has quickly become a serious issue and requires low-cost and bio-compatible solutions.The employee of membrane technology for CO_(2)gas separation has garnered significant interest among researchers.However,this method encounters challenges related to selectivity and permeability.Therefore,modifying and reinforcing the polymer membranes to improve gas separation performance seems essential.Among the various methods for polymer membrane modification,modification with magnesium-based fillers to prepare a mixed matrix membrane(MMM)is considered an efficient method.Owing to magnesium metal's low weight,low density,high strength,and good selectivity,magnesium-based materials(Mg-based materials)have more porosity,higher available surface area,more adsorption sites,lighter weight,and more gas absorption tendency than other fillers,which makes them an attractive choice for the preparation of gas separation MMMs.This research deals with the introduction of Mg-based materials,various methods of synthesis of Mg-based materials,different methods of introducing Mg-based materials into the membrane matrix,and their effect on the performance of MMMs in CO_(2)gas separation applications.Therefore,this review can provide researchers with light horizons in using the high potential of Mg-based materials as efficient fillers in MMMs to achieve excellent permeability and selectivity and generally improve their performance in CO_(2)gas separation applications.
基金supported by Natural Science Foundation of Ningxia Province,China(No.2023AAC05047)Special Project for the Central-Guided Local Science and Technology Development(No.2024FRD05062)+1 种基金Graduate Student Innovation Project of North Minzu University(No.YCX24102)Ningxia Science and Technology Innovation Team for Key Materials and Devices in High-Performance Secondary Batteries(No.2024CXTD003).
文摘Although manganese-based oxide is regarded as a promising cathode material for zincion hybrid supercapacitors(ZHSCs),its practical application is hindered by slow zinc ion diffusion and the instability of MnO_(2).To overcome this obstacle,a δ-MnO_(2)/MXene heterostructure was created using a simple one-step process under gentle condition.The ZHSC was assembled using this heterostructure as the cathode,activated carbon(AC)as the anode and 2 mol·L−1 ZnSO_(4) as the electrolyte.The resultingδ-MnO_(2)/MXene//ZnSO4//AC ZHSC shows a maximum specific capacitance of 97.4 F·g^(−1) and an energy density of 32.27 Wh·kg^(−1) at the best cathode-to-anode mass ratio.Ex situ characterizations reveal the reversible energy storage mechanism combing Zn^(2+)insertion/extraction in the cathode,ion adsorption and desorption on the anode surface,and partial reversible formation and dissolution of Zn_(4)SO_(4)(OH)_(6)·5H_(2)O(ZHS)components on both electrodes.Adding of Mn^(2+)to the electrolyte reduced Mn dissolution,improving the ZHSC’s specific capacitance and energy density to 140.4 F·g^(−1) and 49.36 Wh·kg^(−1),respectively,while also enhancing its rate performance and cyclability.The improved electrochemical reaction kinetics was verified through various tests.The results suggest that the δ-MnO_(2)/MXene heterostructure has great potential as a high-performance cathode material for ZHSCs.
基金supported by the Czech Science Foundation,under project No.20-12166S.
文摘The effect of using 2%and 10%sodium hydroxide solution as surface treatment of rape straw on its water vapor adsorption properties is analyzed in the relative humidity(RH)range of 0%to 98%.Scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),and Fourier-transform infrared spectroscopy(FTIR)are used to investigate the morphological,chemical and structural changes of the treated straw surface.The mineral particles formed on the surface after the treatment are analyzed using X-ray diffraction(XRD).The application of sodium hydroxide solution results in the disruption of the straw surface.As the concentration of sodium hydroxide increases,the disruption of the straw surface increases,and the ability of the straw to adsorb water vapor also increases over the entire RH range.In addition to the surface disruption and chemical changes caused by the alkaline treatment,the differences in the equilibrium moisture content of treated and untreated rape straw can also be attributed to the formation of minerals on the straw surface,namely calcite for the 2%sodium hydroxide solution,and gaylussite and thermonatrite for the 10%solution.