Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B...Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.展开更多
Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphou...Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2).展开更多
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma...Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.展开更多
Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising a...Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs.展开更多
Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has ...Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.展开更多
In recent years,reducing carbon emissions to achieve carbon neutrality has become an urgent issue for environmental protection and sustainable development.Converting CO_(2) into valuable chemical products through elec...In recent years,reducing carbon emissions to achieve carbon neutrality has become an urgent issue for environmental protection and sustainable development.Converting CO_(2) into valuable chemical products through electrocatalysis powered by renewable electricity exhibits great potential.However,the electroreduction of CO_(2) heavily relies on efficient catalysts to overcome the required energy barrier due to the high stability of CO_(2).p-block metal-based MOFs and MOF-derived catalysts have been proven to be efficient catalysts for electrochemical CO_(2) reduction reaction(CO_(2)RR)due to their unique electronic structure and clear active sites.However,factors such as conductivity and stability limit the practical application of p-block metal-based MOFs and MOF-derived catalysts.In this review,we summarize the latest progress of MOFs and MOF-derived catalysts based on typical p-block metals in the field of CO_(2)RR.Then the modification strategies for MOFs-based catalysts and the related catalytic mechanism are briefly introduced.Furthermore,we offer the challenges and prospects of p-block metal-based MOFs and MOF-derived catalysts in the hope of providing guidance for potential applications.展开更多
High-entropy materials(HEMs)show exceptional mechanical properties,highly adjustable chemical characteristics,and outstanding stability,making them suitable for energy storage.However,the broad compositional space and...High-entropy materials(HEMs)show exceptional mechanical properties,highly adjustable chemical characteristics,and outstanding stability,making them suitable for energy storage.However,the broad compositional space and intricate chemical interactions in HEMs present challenges to traditional trial-and-error research methods,restricting their efficacy in swift screening and synthesis.Hence,the application of machine learning(ML)to the realm of high-entropy materials and energy storage becomes imperative.ML demonstrates its formidable capabilities for navigating the complexity of HEMs,with their diverse metal components,structures and property combinations,to advance energy storage applications.This review comprises the following sections:a concise introduction to the general process of ML in the energy materials field,a summary of HEMs in the energy storage field,a review of the latest achievements of ML in the HEMs and energy storage field,and finally,an exploration of current challenges and prospects in this interdisciplinary arena.With the advent of ML,the precision of its predictions and the efficiency of its screening methods have offered novel perspectives for material research,expediting the discovery and application of new materials.This article contributes to the advancement of research in related fields,hastening the development of novel materials to meet the escalating energy demands and promote sustainable development goals.展开更多
Recycling of indium secondary resources to prepare indium-based electrocatalysts for efficient CO_(2)reduction has been a promising strategy to bridge the gap between indium recycling and utilization.Herein,the chemis...Recycling of indium secondary resources to prepare indium-based electrocatalysts for efficient CO_(2)reduction has been a promising strategy to bridge the gap between indium recycling and utilization.Herein,the chemisorption of metal cations in indium tin oxide(ITO)etching wastewater by iminodiacetic groups of commercial D401 resin successfully achieves nearly 100%indium recovery and also fulfills wastewater emission standards.Theoretical calculation unveils that metallic indium over In_(2)O_(3)support(In/In_(2)O_(3))possesses the lowest energy barrier for electrochemical reduction of CO_(2)to formate.Such an In/In_(2)O_(3)is hence constructed by air annealing the metal cation-adsorbed resin and post in situ electrochemical reconstruction upon CO_(2)reduction.The In/In_(2)O_(3)derived from the ITO etching wastewater exhibits exceptional electrocatalytic CO_(2)-to-formate performance as current efficiency is higher than 92%throughout 145 h galvanostatic electrolysis at-250 mA cm^(-2).The rational integration of metallurgy and material for indium recycling and utilization adds knowledge on designing In-based electrocatalysts,contributing to addressing indium scarcity and carbon-neutral challenge.展开更多
Materials engineering plays a key role in the field of electrochemical energy storage,and considerable efforts have been made in recent years to fulfill the future requirements of electrochemical energy storage using ...Materials engineering plays a key role in the field of electrochemical energy storage,and considerable efforts have been made in recent years to fulfill the future requirements of electrochemical energy storage using novel functional electrode materials.Materials with hollow structures are of particular interests due to their low density,large specific surface area and high porosity,making them promising candidates for energy conversion and storage.The Kirkendall effect has been widely applied for the synthesis of nanoscale hollow structures,which involves an unbalanced counter diffusion through a reaction interface.Herein,the recent progress on the use of the nanoscale Kirkendall effect to synthesize hollow nanostructures,including nanoparticles,one-dimensional(1-D),two-dimensional(2-D),and three-dimensional(3-D)nanostructures,and their potential applications in energy storage devices are summarized and discussed.And prospects is made for the future development of this research field.展开更多
The ultra-high nickel cathode material has important application prospect in power lithium-ion batteries.However,the poor structural stability and serious surface/interfacial side reactions during long cycles severely...The ultra-high nickel cathode material has important application prospect in power lithium-ion batteries.However,the poor structural stability and serious surface/interfacial side reactions during long cycles severely hinder the material's practical application.In this paper,Cs^(+)doping and polymethyl methacrylate(PMMA)coating are used to synergistically modify the NCM955 material.The results show that the corresponding discharge specific capacity of NCMCs-2@P-2 material reaches 152.02 m Ah/g at 1 C(1 C=200 m A/g)and 125.66 m Ah/g at 5 C after 300 cycles,and the capacity retention is 78.11%and72.21%,respectively.In addition,it still maintains 156.36 m Ah/g discharge specific capacity at 10 C,and these rate and cycle properties exceed those reported on ultra-high nickel cathode material.Moreover,NCMCs-2@P-2 material has higher migration energy barrier of Ni^(2+)and lower migration energy barrier of Li+than that of NCM955 material.Therefore,NCMCs-2@P-2 material has excellent electrochemical properties,which has been proved by a series of structural characterization,theoretical calculation and performance test.The synergistic enhancement of Cs^(+)doping and PMMA coating accelerates lithium ion diffusion kinetics,stabilizes crystal structure,and inhabits surface/interface side reaction.展开更多
Transition metal oxides(TMOs)have received extensive attention for their unique physical and chemical properties.It is worth noting that Fe-based materials stand out because of their rich natural resources,low toxicit...Transition metal oxides(TMOs)have received extensive attention for their unique physical and chemical properties.It is worth noting that Fe-based materials stand out because of their rich natural resources,low toxicity,low price and other advantages,but at the same time confront with critical challenges such as capacity attenuation and volume expansion.Here,a universal synthesis method of MO/MFe_(2)O_(4)(M=Ni,Cu,Zn)nanomaterials derived from Prussian blue analogues(PBAs)is proposed based on the self-sacrificing template strategy of metal-organic frameworks(MOFs).The calcined products retain the porous structure and small particle size of PBAs,which shorten the ion transport path,provide abundant electroactive sites and void space,effectively alleviate the effect of volume expansion,and improve the reaction kinetics.These MO/MFe_(2)O_(4)anode materials exhibit excellent cyclic reversibility and stability during repeated charge/discharge process,among which,NiO/NiFe_(2)O_(4) shows the best electrochemical performance,retaining a superior specific capacity of 1301.7 mAh g^(-1) following 230 cycles at 0.1 A g^(-1).In addition,the lithium adsorption capacity of the materials was further explored through the calculation of density functional theory(DFT).The research perspectives and strategies reported in this paper have strong universality and offer innovative insights for the synthesis of alternative advanced materials.展开更多
In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactio...In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactions in the crystal state.Unexpectedly,substituting pyridine with the more extensivelyπ-conjugated quinoline significantly increases the dihedral angles between the phenyl and quinolyl groups of the bidentate ligands.This alteration disrupts theπ-πinteractions between molecules,resulting in distinct optical properties upon exposure to external stimuli.By integrating these complexes into polymers,we fabricate electrospun films containing luminescent nanofibers that exhibit reversible optical changes.These findings have paved the way for the development of high-performance optical encryption and anti-counterfeiting materials,achieved through the employment of simple chromophores.展开更多
Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic a...Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic applications,reticular framework materials,including metal-organic frameworks(MOFs),cova-lent organic frameworks(COFs),and hydrogen-bonded organic frameworks(HOFs),have attracted signif-icant attention due to their high surface area,tunable architectures,and versatile chemical compositions.These properties enable efficient light harvesting and charge separation,making them promising candi-dates for various photocatalytic processes.This review systematically explores recent advancements in the synthesis and structural properties of MOFs,COFs,and HOFs,elucidating the complex mechanisms governing solar-driven photocatalysis and comparing their performance with a particular focus on their applications in CO_(2)reduction,H_(2)generation,H_(2)O_(2)production,N_(2)fixation,and pollutant degradation.Key strategies for enhancing photocatalytic performance,including structural modifications,bandgap en-gineering,defect engineering,hybridization,and heterojunction formation,are critically analyzed.A com-parative evaluation of reticular framework materials against traditional semiconductors is provided,con-sidering factors such as efficiency,cost,and long-term stability.Furthermore,this review highlights the challenges related to stability and scalability,along with key achievements and barriers to practical im-plementation.This work offers possible insights to overcome existing limitations and improve efficiency.Ultimately,this comprehensive assessment highlights the pivotal role of reticular frameworks in advanc-ing sustainable energy solutions and provides a roadmap for future research and innovation in this rapidly evolving field.展开更多
Flexible electronic skin(E-skin)sensors offer innovative solutions for detecting human body signals,enabling human-machine interactions and advancing the development of intelligent robotics.Electrospun nanofibers are ...Flexible electronic skin(E-skin)sensors offer innovative solutions for detecting human body signals,enabling human-machine interactions and advancing the development of intelligent robotics.Electrospun nanofibers are particularly wellsuited for E-skin applications due to their exceptional mechanical properties,tunable breathability,and lightweight nature.Nanofiber-based composite materials consist of three-dimensional structures that integrate one-dimensional polymer nanofibers with other functional materials,enabling efficient signal conversion and positioning them as an ideal platform for next-generation intelligent electronics.Here,this review begins with an overview of electrospinning technology,including far-field electrospinning,near-field electrospinning,and melt electrospinning.It also discusses the diverse morphologies of electrospun nanofibers,such as core-shell,porous,hollow,bead,Janus,and ribbon structure,as well as strategies for incorporating functional materials to enhance nanofiber performance.Following this,the article provides a detailed introduction to electrospun nanofiber-based composite materials(i.e.,nanofiber/hydrogel,nanofiber/aerogel,nanofiber/metal),emphasizing their recent advancements in monitoring physical,physiological,body fluid,and multi-signal in human signal detection.Meanwhile,the review explores the development of multimodal sensors capable of responding to diverse stimuli,focusing on innovative strategies for decoupling multiple signals and their state-of-the-art advancements.Finally,current challenges are analyzed,while future prospects for electrospun nanofiber-based composite sensors are outlined.This review aims to advance the design and application of next-generation flexible electronics,fostering breakthroughs in multifunctional sensing and health monitoring technologies.展开更多
Lithium-sulfur(Li-S)batteries are widely deemed to be one of the most potential candidates for future secondary batteries because of their remarkable energy density.Nevertheless,notorious polysulfide shuttling and ret...Lithium-sulfur(Li-S)batteries are widely deemed to be one of the most potential candidates for future secondary batteries because of their remarkable energy density.Nevertheless,notorious polysulfide shuttling and retarded sulfur reaction kinetics pose significant obstacles to the further application of Li-S batteries.While rationally designed highly active electrocatalysts can facilitate polysulfide conversion,the universal and scalable synthesis strategies need to be developed.Herein,a universal synthetic strategy to construct a series of three-dimensional(3D)porous graphene-iron(3DGr-Fe)based electrocatalysts involving 3DGr-FeP,3DGr-Fe_(3)C,and 3DGr-Fe_(3)Se_(4)is exploited for manipulating the Li-S redox reactions.It has been observed that the implementation of a 3D porous Gr architecture leads to the well-designed conductive networks,while the uniformly dispersed iron nanoparticles introduce an abundance of active sites,fostering the lithium polysulfide conversion,thereby bolstering the overall electrochemical performance.The Li-S battery with the 3DGr-Fe based electrocatalyst exhibits remarkable capacity retention of 94.8%upon 100 times at 0.2 C.Moreover,the soft-packaged Li-S pouch cell based on such a 3DGr-Fe electrocatalyst delivers superior capacity of 1060.71 mA h g^(-1)and guarantees for the continuous 30 min work of fan toy.This investigation gives comprehensive insights into the design,synthesis,and mechanism of 3DGr-Fe based electrocatalysts with high activity toward efficient and durable Li-S batteries.展开更多
Clothianidin(CLO)is an insecticide with a high prevalence in environment and food samples.The identification of structural impurities is of great importance for the development of certified reference materials.Here,a ...Clothianidin(CLO)is an insecticide with a high prevalence in environment and food samples.The identification of structural impurities is of great importance for the development of certified reference materials.Here,a heuristic method for CLO impurity analysis combining liquid chromatography-high resolution mass spectrometry(Orbitrap)and a molecular annotation platform(SIRIUS)was applied.Precursor and product ion mass data was used to predict candidate chemical formulas,and SIRIUS,isotopes,fragmentation trees and ZODIAC scores were calculated for ranking.The chemical structures of the impurities were inferred based on the characteristic fragments of the main component CLO.Finally,25 impurities were identified and classified into four groups based on their structural differences.Among them,3 impurities had CAS registration numbers and 1 impurity was validated with a standard by HPLC-UV and mass spectrum.This work successfully combines ab initio identification tools with intellect in the analysis of structural related impurities.展开更多
Two-dimensional(2D)MXene nanomaterials have shown great promise for electronic devices,attributed to their metal-resembling conductivity and abundant surface functional groups.However,the utilization of intrinsic prop...Two-dimensional(2D)MXene nanomaterials have shown great promise for electronic devices,attributed to their metal-resembling conductivity and abundant surface functional groups.However,the utilization of intrinsic property of MXene in memristors remains challenging due to its free electron conducting behavior rather than semiconducting property.Here,a N-fused perylenediimide organic semiconductor(CBIN)with conjugated skeleton and heteroatoms(O,S,N)is designed to successfully actuate the surface modification of MXene.The organic CBIN-decorated MXene demonstrates remarkable bipolar memristive properties,such as low threshold voltages of approximate±1.4 V,exalted retention time exceeding 10^4s,and outstanding environmental stability even after exposure to ultraviolet and x-ray irradiations.Furthermore,the CBIN-MXene hybrid memristive device can mimic synaptic plasticity and holds potential for information encoding as quick response codes and image recognition processing.This study provides efficient guidelines for implementing MXene-based memristors by organic semiconductor modulation and opens up possibilities of extending their functionalities into information encryption and neuromorphic computing applications.展开更多
Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon ...Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon steel substrates via photo-assisted electrodeposition.A systematic investigation was conducted on the effects of cerium ion concentration and nano-ceria(CeO_(2))particle content in the electrolyte on the coating properties,along with an analysis of the temporal evolution of coating’s corrosion resistance.When the cerium ion concentration in the electrolyte was 0.05 mol/L,the coating exhibited a uniform black appearance with a light absorption rate of 95%,an emissivity of 0.87,maximum impedance,and the lowest corrosion tendency,demonstrating optimal comprehensive performance.The coating prepared with a nano-ceria concentration of 6 g/L in the electrolyte exhibited an emissivity of 0.9,achieved a 5B adhesion grade(ASTM D3359-09),and demonstrated a one-order-of-magnitude reduction in corrosion current density compared to coatings fabricated without nano-ceria in the electrolyte.With prolonged storage time,the coating's impedance slightly increased,leading to improved corrosion resistance.展开更多
Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt...Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt-based electrocatalysts,emphasizing their structural engineering for enhanced the performance of electrocatalytic nitrate reduction reaction(NO3RR)through dimensional control,compositional tuning,and coordination microenvironment modulation.Notably,by critically analyzing metallic cobalt,cobalt alloys,cobalt compounds,cobalt single atom and molecular catalyst configurations,we firstly establish correlations between atomic-scale structural features and catalytic performance in a coordination environment perspective for NO3RR,including the dynamic reconstruction during operation and its impact on active site.Synergizing experimental breakthroughs with computational modeling,we decode mechanisms underlying competitive hydrogen evolution suppression,intermediate adsorption-energy optimization,and durability enhancement in complex aqueous environments.The development of cobalt-based catalysts was summarized and prospected,and the emerging opportunities of machine learning in accelerating the research and development of high-performance catalysts and the configuration of series reactors for scalable nitrate-to-ammonia systems were also introduced.Bridging surface science and applications,it outlines a framework for designing multifunctional electrocatalysts to restore nitrogen cycle balance sustainably.展开更多
Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implem...Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implementation remains a significant challenge.Herein,we construct a free-standing polymer–inorganic hybrid photoelectrode with a direct Z-scheme heterostructure to develop high-efficiency PALSBs.Specifically,polypyrrole(PPy)is in situ vapor-phase polymerized on the surface of N-doped TiO_(2) nanorods supported on carbon cloth(N-TiO_(2)/CC),thereby forming a well-defined p–n heterojunction.This architecture efficiently facilitates the carrier separation of photo-generated electron–hole pairs and significantly enhances carrier transport by creating a built-in electric field.Thus,the PPy@N-TiO_(2)/CC can simultaneously act as a photocatalyst and an electrocatalyst to accelerate the reduction and evolution of sulfur,enabling ultrafast sulfur redox dynamics,as convincingly validated by both theoretical simulations and experimental results.Consequently,the PPy@N-TiO_(2)/CC PALSB achieves a high discharge capacity of 1653 mAh g−1,reaching 98.7%of the theoretical value.Furthermore,5 h of photo-charging without external voltage enables the PALSB to deliver a discharge capacity of 333 mAh g−1,achieving dual-mode energy harvesting capabilities.This work successfully integrates solar energy conversion and storage within a rechargeable battery system,providing a promising strategy for sustainable energy storage technologies.展开更多
基金supported by the National Natural Science Foundation of China(52276196)the Foundation of State Key Laboratory of Coal Combustion(FSKLCCA2508)the High-level Talent Foundation of Anhui Agricultural University(rc412307).
文摘Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality.
基金supported by the National Natural Science Foundation of China(22175136)the State Key Laboratory of Electrical Insulation and Power Equipment(EIPE23127)the Fundamental Research Funds for the Central Universities(xtr052024009).
文摘Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2).
基金financially supported by the National Key Research and Development Program of China (No. 2021YFB4000604)the National Natural Science Foundation of China (No. 52271220)+2 种基金the 111 Project (No. B12015)the Fundamental Research Funds for the Central UniversitiesHaihe Laboratory of Sustainable Chemical Transformations, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Science Research and Technology Development Project of Guilin (No. 20210102-4)
文摘Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.
基金supported by the National Natural Science Foundation of China(Grant No.W2412060,22325902 and 52171215)the State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2023002)。
文摘Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs.
基金funded by the National Key R&D Program of China(2021YFA1501101)the National Natural Science Foundation of China(No.22471103,22425105,22201111,21931001,22221001,and 22271124)+5 种基金Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province(2019ZX-04)the 111 Project(B20027)as well as the National Natural Science Foundation of Gansu Province(22JR5RA470)the Fundamental Research Funds for the Central Universities(lzujbky-2023-eyt03)supported by the Agency for Science,Technology and Research(A*STAR)MTC Individual Research Grants(IRG)M22K2c0078.
文摘Water splitting hinges crucially on the availability of electrocatalysts for the oxygen evolution reaction.The surface reconstruction has been widely observed in perovskite catalysts,and the reconstruction degree has been often correlated with the activity enhancement.Here,a systematic study on the roles of Fe substitution in activation of perovskite LaNiO_(3)is reported.The substituting Fe content influences both current change tendency and surface reconstruction degree.LaNi_(0.9)Fe_(0.1)O_(3)is found exhibiting a volcano-peak intrinsic activity in both pristine and reconstructed among all substituted perovskites in the LaNi_(1-x)Fe_(x)O_(3)(x=0.00,0.10,0.25,0.50,0.75,1.00)series.The reconstructed LaNi_(0.9)Fe_(0.1)O_(3)shows a higher intrinsic activity than most reported NiFe-based catalysts.Besides,density functional theory calculations reveal that Fe substitution can lower the O 2p level,which thus stabilize lattice oxygen in LaNi0.9Fe0.1O3 and ensure its long-term stability.Furthermore,it is vital interesting that activity of the reconstructed catalysts relied more on the surface chemistry rather than the reconstruction degree.The effect of Fe on the degree of surface reconstruction of the perovskite is decoupled from that on its activity enhancement after surface reconstruction.This finding showcases the importance to customize the surface chemistry of reconstructed catalysts for water oxidation.
基金supported by the National Natural Science Foundation of China(Nos.22061019 and 22261021)the Jiangxi Provincial Natural Science Foundation(Nos.20224BAB203002,20232ACB203018,20232BAB203005,and 20224BAB213001)+5 种基金the Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry(No.2024SSY05161)the Ganzhou Key Research and Development Program(No.2023PNS26963)the Youth Jinggang Scholars Program in Jiangxi Province(No.QNJG2019053)the Two Thousand Talents Program in Jiangxi Province(No.jxsq2019201068)the Doctor’s Starting Research Foundation of Jiangxi University of Science and Technology(No.205200100597)the Science and Technology Research Project of Jiangxi Provincial Department of Education(No.GJJ2200860).
文摘In recent years,reducing carbon emissions to achieve carbon neutrality has become an urgent issue for environmental protection and sustainable development.Converting CO_(2) into valuable chemical products through electrocatalysis powered by renewable electricity exhibits great potential.However,the electroreduction of CO_(2) heavily relies on efficient catalysts to overcome the required energy barrier due to the high stability of CO_(2).p-block metal-based MOFs and MOF-derived catalysts have been proven to be efficient catalysts for electrochemical CO_(2) reduction reaction(CO_(2)RR)due to their unique electronic structure and clear active sites.However,factors such as conductivity and stability limit the practical application of p-block metal-based MOFs and MOF-derived catalysts.In this review,we summarize the latest progress of MOFs and MOF-derived catalysts based on typical p-block metals in the field of CO_(2)RR.Then the modification strategies for MOFs-based catalysts and the related catalytic mechanism are briefly introduced.Furthermore,we offer the challenges and prospects of p-block metal-based MOFs and MOF-derived catalysts in the hope of providing guidance for potential applications.
基金supported by the National Natural Science Foundation of China(22005072,21965006)Guiyang Guian science and Technology Personnel Training Project(2024-2-13)+1 种基金Guizhou Provincial Key Technology R&D Program(Qian Ke He support(2023)General 122)Guizhou Provincial Science and Technology Foundation(ZD2025049,KXJZ2024029).
文摘High-entropy materials(HEMs)show exceptional mechanical properties,highly adjustable chemical characteristics,and outstanding stability,making them suitable for energy storage.However,the broad compositional space and intricate chemical interactions in HEMs present challenges to traditional trial-and-error research methods,restricting their efficacy in swift screening and synthesis.Hence,the application of machine learning(ML)to the realm of high-entropy materials and energy storage becomes imperative.ML demonstrates its formidable capabilities for navigating the complexity of HEMs,with their diverse metal components,structures and property combinations,to advance energy storage applications.This review comprises the following sections:a concise introduction to the general process of ML in the energy materials field,a summary of HEMs in the energy storage field,a review of the latest achievements of ML in the HEMs and energy storage field,and finally,an exploration of current challenges and prospects in this interdisciplinary arena.With the advent of ML,the precision of its predictions and the efficiency of its screening methods have offered novel perspectives for material research,expediting the discovery and application of new materials.This article contributes to the advancement of research in related fields,hastening the development of novel materials to meet the escalating energy demands and promote sustainable development goals.
基金funding support from the National Key R&D Program of China(2023YFA1508001)the National Natural Science Foundation of China(22272120 and U2202251)+1 种基金the Hainan Province Science and Technology Special Fund(ZDYF2023SHFZ120)the Research Foundation of Marine Science and Technology Collaborative Innovation Center of Hainan University(XTCX2022HYB01)。
文摘Recycling of indium secondary resources to prepare indium-based electrocatalysts for efficient CO_(2)reduction has been a promising strategy to bridge the gap between indium recycling and utilization.Herein,the chemisorption of metal cations in indium tin oxide(ITO)etching wastewater by iminodiacetic groups of commercial D401 resin successfully achieves nearly 100%indium recovery and also fulfills wastewater emission standards.Theoretical calculation unveils that metallic indium over In_(2)O_(3)support(In/In_(2)O_(3))possesses the lowest energy barrier for electrochemical reduction of CO_(2)to formate.Such an In/In_(2)O_(3)is hence constructed by air annealing the metal cation-adsorbed resin and post in situ electrochemical reconstruction upon CO_(2)reduction.The In/In_(2)O_(3)derived from the ITO etching wastewater exhibits exceptional electrocatalytic CO_(2)-to-formate performance as current efficiency is higher than 92%throughout 145 h galvanostatic electrolysis at-250 mA cm^(-2).The rational integration of metallurgy and material for indium recycling and utilization adds knowledge on designing In-based electrocatalysts,contributing to addressing indium scarcity and carbon-neutral challenge.
文摘Materials engineering plays a key role in the field of electrochemical energy storage,and considerable efforts have been made in recent years to fulfill the future requirements of electrochemical energy storage using novel functional electrode materials.Materials with hollow structures are of particular interests due to their low density,large specific surface area and high porosity,making them promising candidates for energy conversion and storage.The Kirkendall effect has been widely applied for the synthesis of nanoscale hollow structures,which involves an unbalanced counter diffusion through a reaction interface.Herein,the recent progress on the use of the nanoscale Kirkendall effect to synthesize hollow nanostructures,including nanoparticles,one-dimensional(1-D),two-dimensional(2-D),and three-dimensional(3-D)nanostructures,and their potential applications in energy storage devices are summarized and discussed.And prospects is made for the future development of this research field.
基金supported the National Science Foundation of China(Nos.22362011,22169007,51804199)the Science and Technology Major Project of Guangxi(No.AA19046001)+2 种基金the Open Research Fund of Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials(Nos.EMFM20201105,EMFM20181119)Shenzhen Medical Research Fund(No.20231211121324001)Shenzhen Science and Technology Program(No.KQTD20180412181422399)。
文摘The ultra-high nickel cathode material has important application prospect in power lithium-ion batteries.However,the poor structural stability and serious surface/interfacial side reactions during long cycles severely hinder the material's practical application.In this paper,Cs^(+)doping and polymethyl methacrylate(PMMA)coating are used to synergistically modify the NCM955 material.The results show that the corresponding discharge specific capacity of NCMCs-2@P-2 material reaches 152.02 m Ah/g at 1 C(1 C=200 m A/g)and 125.66 m Ah/g at 5 C after 300 cycles,and the capacity retention is 78.11%and72.21%,respectively.In addition,it still maintains 156.36 m Ah/g discharge specific capacity at 10 C,and these rate and cycle properties exceed those reported on ultra-high nickel cathode material.Moreover,NCMCs-2@P-2 material has higher migration energy barrier of Ni^(2+)and lower migration energy barrier of Li+than that of NCM955 material.Therefore,NCMCs-2@P-2 material has excellent electrochemical properties,which has been proved by a series of structural characterization,theoretical calculation and performance test.The synergistic enhancement of Cs^(+)doping and PMMA coating accelerates lithium ion diffusion kinetics,stabilizes crystal structure,and inhabits surface/interface side reaction.
文摘Transition metal oxides(TMOs)have received extensive attention for their unique physical and chemical properties.It is worth noting that Fe-based materials stand out because of their rich natural resources,low toxicity,low price and other advantages,but at the same time confront with critical challenges such as capacity attenuation and volume expansion.Here,a universal synthesis method of MO/MFe_(2)O_(4)(M=Ni,Cu,Zn)nanomaterials derived from Prussian blue analogues(PBAs)is proposed based on the self-sacrificing template strategy of metal-organic frameworks(MOFs).The calcined products retain the porous structure and small particle size of PBAs,which shorten the ion transport path,provide abundant electroactive sites and void space,effectively alleviate the effect of volume expansion,and improve the reaction kinetics.These MO/MFe_(2)O_(4)anode materials exhibit excellent cyclic reversibility and stability during repeated charge/discharge process,among which,NiO/NiFe_(2)O_(4) shows the best electrochemical performance,retaining a superior specific capacity of 1301.7 mAh g^(-1) following 230 cycles at 0.1 A g^(-1).In addition,the lithium adsorption capacity of the materials was further explored through the calculation of density functional theory(DFT).The research perspectives and strategies reported in this paper have strong universality and offer innovative insights for the synthesis of alternative advanced materials.
基金supported by the National Natural Science Foundation of China(Nos.22201057 and 22472044)Zhejiang Provincial Natural Science Foundation of China(Nos.LR22B010001 and LQ23B010001)。
文摘In this work,we synthesize two luminescent Pt(Ⅱ)complexes using differentπ-conjugated bidentate ligands.Both complexes are assembled into three-dimensional(3D)networks through non-classical intermolecular interactions in the crystal state.Unexpectedly,substituting pyridine with the more extensivelyπ-conjugated quinoline significantly increases the dihedral angles between the phenyl and quinolyl groups of the bidentate ligands.This alteration disrupts theπ-πinteractions between molecules,resulting in distinct optical properties upon exposure to external stimuli.By integrating these complexes into polymers,we fabricate electrospun films containing luminescent nanofibers that exhibit reversible optical changes.These findings have paved the way for the development of high-performance optical encryption and anti-counterfeiting materials,achieved through the employment of simple chromophores.
基金financially supported by the National Natural Science Foundation of China(Nos.22350410391 and 22001094)the Research Initiation Fund Project from Zhejiang Sci-Tech University(No.23212072-Y).
文摘Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic applications,reticular framework materials,including metal-organic frameworks(MOFs),cova-lent organic frameworks(COFs),and hydrogen-bonded organic frameworks(HOFs),have attracted signif-icant attention due to their high surface area,tunable architectures,and versatile chemical compositions.These properties enable efficient light harvesting and charge separation,making them promising candi-dates for various photocatalytic processes.This review systematically explores recent advancements in the synthesis and structural properties of MOFs,COFs,and HOFs,elucidating the complex mechanisms governing solar-driven photocatalysis and comparing their performance with a particular focus on their applications in CO_(2)reduction,H_(2)generation,H_(2)O_(2)production,N_(2)fixation,and pollutant degradation.Key strategies for enhancing photocatalytic performance,including structural modifications,bandgap en-gineering,defect engineering,hybridization,and heterojunction formation,are critically analyzed.A com-parative evaluation of reticular framework materials against traditional semiconductors is provided,con-sidering factors such as efficiency,cost,and long-term stability.Furthermore,this review highlights the challenges related to stability and scalability,along with key achievements and barriers to practical im-plementation.This work offers possible insights to overcome existing limitations and improve efficiency.Ultimately,this comprehensive assessment highlights the pivotal role of reticular frameworks in advanc-ing sustainable energy solutions and provides a roadmap for future research and innovation in this rapidly evolving field.
基金supported by the National Natural Science Foundation of China(22302110,22375047,22378068)National Key Research and Development Program of China(2022YFB3804905)+1 种基金the Open Project Foundation of Jiangsu Key Laboratory for Carbon-Based Functional Materials&Devices,Soochow University(No.KJS2210)High-level Talent Initiative Project at Anhui Agricultural University(rc362401)。
文摘Flexible electronic skin(E-skin)sensors offer innovative solutions for detecting human body signals,enabling human-machine interactions and advancing the development of intelligent robotics.Electrospun nanofibers are particularly wellsuited for E-skin applications due to their exceptional mechanical properties,tunable breathability,and lightweight nature.Nanofiber-based composite materials consist of three-dimensional structures that integrate one-dimensional polymer nanofibers with other functional materials,enabling efficient signal conversion and positioning them as an ideal platform for next-generation intelligent electronics.Here,this review begins with an overview of electrospinning technology,including far-field electrospinning,near-field electrospinning,and melt electrospinning.It also discusses the diverse morphologies of electrospun nanofibers,such as core-shell,porous,hollow,bead,Janus,and ribbon structure,as well as strategies for incorporating functional materials to enhance nanofiber performance.Following this,the article provides a detailed introduction to electrospun nanofiber-based composite materials(i.e.,nanofiber/hydrogel,nanofiber/aerogel,nanofiber/metal),emphasizing their recent advancements in monitoring physical,physiological,body fluid,and multi-signal in human signal detection.Meanwhile,the review explores the development of multimodal sensors capable of responding to diverse stimuli,focusing on innovative strategies for decoupling multiple signals and their state-of-the-art advancements.Finally,current challenges are analyzed,while future prospects for electrospun nanofiber-based composite sensors are outlined.This review aims to advance the design and application of next-generation flexible electronics,fostering breakthroughs in multifunctional sensing and health monitoring technologies.
基金Key Laboratory of Environment-friendly Energy Materials(SWUST,18ZD320304 and 22fksy23)Doctoral Fund of Henan University of Technology(31401577)+1 种基金Natural Science Foundation of Shandong Province(ZR2023MB053)Technological Innovation Project of Tai’an City(2022GX064)。
文摘Lithium-sulfur(Li-S)batteries are widely deemed to be one of the most potential candidates for future secondary batteries because of their remarkable energy density.Nevertheless,notorious polysulfide shuttling and retarded sulfur reaction kinetics pose significant obstacles to the further application of Li-S batteries.While rationally designed highly active electrocatalysts can facilitate polysulfide conversion,the universal and scalable synthesis strategies need to be developed.Herein,a universal synthetic strategy to construct a series of three-dimensional(3D)porous graphene-iron(3DGr-Fe)based electrocatalysts involving 3DGr-FeP,3DGr-Fe_(3)C,and 3DGr-Fe_(3)Se_(4)is exploited for manipulating the Li-S redox reactions.It has been observed that the implementation of a 3D porous Gr architecture leads to the well-designed conductive networks,while the uniformly dispersed iron nanoparticles introduce an abundance of active sites,fostering the lithium polysulfide conversion,thereby bolstering the overall electrochemical performance.The Li-S battery with the 3DGr-Fe based electrocatalyst exhibits remarkable capacity retention of 94.8%upon 100 times at 0.2 C.Moreover,the soft-packaged Li-S pouch cell based on such a 3DGr-Fe electrocatalyst delivers superior capacity of 1060.71 mA h g^(-1)and guarantees for the continuous 30 min work of fan toy.This investigation gives comprehensive insights into the design,synthesis,and mechanism of 3DGr-Fe based electrocatalysts with high activity toward efficient and durable Li-S batteries.
基金the National Institute of Metrology(ANL2504)the State Administration for Market Regulation(QNBJ202306).
文摘Clothianidin(CLO)is an insecticide with a high prevalence in environment and food samples.The identification of structural impurities is of great importance for the development of certified reference materials.Here,a heuristic method for CLO impurity analysis combining liquid chromatography-high resolution mass spectrometry(Orbitrap)and a molecular annotation platform(SIRIUS)was applied.Precursor and product ion mass data was used to predict candidate chemical formulas,and SIRIUS,isotopes,fragmentation trees and ZODIAC scores were calculated for ranking.The chemical structures of the impurities were inferred based on the characteristic fragments of the main component CLO.Finally,25 impurities were identified and classified into four groups based on their structural differences.Among them,3 impurities had CAS registration numbers and 1 impurity was validated with a standard by HPLC-UV and mass spectrum.This work successfully combines ab initio identification tools with intellect in the analysis of structural related impurities.
基金financial support from the Natural Science Foundation of Jiangsu Province(Grant No.BK20230074)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.YESS20230439)+6 种基金the National Natural Science Foundation of China(Grant Nos.62304148 and 22008164)National Key Research and Development Program of China(Grant No.2023YFB3209200)the Youth Talent Support Program of Jiangsu Association for Science and Technology(TJ-2023-033)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.22KJB150037)Research in Cutting-Edge Technology of Suzhou(No.SYG202351)Basic Research Program of Xuzhou Science and Technology Bureau(KC22009)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_3304)。
文摘Two-dimensional(2D)MXene nanomaterials have shown great promise for electronic devices,attributed to their metal-resembling conductivity and abundant surface functional groups.However,the utilization of intrinsic property of MXene in memristors remains challenging due to its free electron conducting behavior rather than semiconducting property.Here,a N-fused perylenediimide organic semiconductor(CBIN)with conjugated skeleton and heteroatoms(O,S,N)is designed to successfully actuate the surface modification of MXene.The organic CBIN-decorated MXene demonstrates remarkable bipolar memristive properties,such as low threshold voltages of approximate±1.4 V,exalted retention time exceeding 10^4s,and outstanding environmental stability even after exposure to ultraviolet and x-ray irradiations.Furthermore,the CBIN-MXene hybrid memristive device can mimic synaptic plasticity and holds potential for information encoding as quick response codes and image recognition processing.This study provides efficient guidelines for implementing MXene-based memristors by organic semiconductor modulation and opens up possibilities of extending their functionalities into information encryption and neuromorphic computing applications.
文摘Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon steel substrates via photo-assisted electrodeposition.A systematic investigation was conducted on the effects of cerium ion concentration and nano-ceria(CeO_(2))particle content in the electrolyte on the coating properties,along with an analysis of the temporal evolution of coating’s corrosion resistance.When the cerium ion concentration in the electrolyte was 0.05 mol/L,the coating exhibited a uniform black appearance with a light absorption rate of 95%,an emissivity of 0.87,maximum impedance,and the lowest corrosion tendency,demonstrating optimal comprehensive performance.The coating prepared with a nano-ceria concentration of 6 g/L in the electrolyte exhibited an emissivity of 0.9,achieved a 5B adhesion grade(ASTM D3359-09),and demonstrated a one-order-of-magnitude reduction in corrosion current density compared to coatings fabricated without nano-ceria in the electrolyte.With prolonged storage time,the coating's impedance slightly increased,leading to improved corrosion resistance.
基金supported by the National Natural Science Foundation of China(Grant Nos.:21825201,52401244 and 52201227)Henan Province Key Research and Development and Promotion Program(Scientific and Technological Breakthrough Project:232102240088 and 252102230078)+3 种基金the Key Research&Development and Promotion of Special Project(Scientific Problem Tackling)of Henan Province(252102230078)Doctoral Research Startup Fund Project of Henan Open University(BSJH-2025-04)Zhejiang Provincial Natural Science Foundation of China(LQ24B020005,LQ23B030001)China Postdoctoral Science Foundation(2024M762442).
文摘Electrocatalytic nitrate-to-ammonia conversion offers dual environmental and sustainable synthesis benefits,but achieving high efficiency with low-cost catalysts remains a major challenge.This review focuses on cobalt-based electrocatalysts,emphasizing their structural engineering for enhanced the performance of electrocatalytic nitrate reduction reaction(NO3RR)through dimensional control,compositional tuning,and coordination microenvironment modulation.Notably,by critically analyzing metallic cobalt,cobalt alloys,cobalt compounds,cobalt single atom and molecular catalyst configurations,we firstly establish correlations between atomic-scale structural features and catalytic performance in a coordination environment perspective for NO3RR,including the dynamic reconstruction during operation and its impact on active site.Synergizing experimental breakthroughs with computational modeling,we decode mechanisms underlying competitive hydrogen evolution suppression,intermediate adsorption-energy optimization,and durability enhancement in complex aqueous environments.The development of cobalt-based catalysts was summarized and prospected,and the emerging opportunities of machine learning in accelerating the research and development of high-performance catalysts and the configuration of series reactors for scalable nitrate-to-ammonia systems were also introduced.Bridging surface science and applications,it outlines a framework for designing multifunctional electrocatalysts to restore nitrogen cycle balance sustainably.
基金financial support from the National Natural Science Foundation of China(22109127)the Chinese Postdoctoral Science Foundation(2021M702666),+1 种基金he Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(Grant No.2023-TS-02)financial support from the Youth Project of"Shaanxi High-level Talents Introduction Plan"and the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education)are also sincerely appreciated.
文摘Photo-assisted lithium–sulfur batteries(PALSBs)offer an eco-friendly solution to address the issue of sluggish reaction kinetics of conventional LSBs.However,designing an efficient photoelectrode for practical implementation remains a significant challenge.Herein,we construct a free-standing polymer–inorganic hybrid photoelectrode with a direct Z-scheme heterostructure to develop high-efficiency PALSBs.Specifically,polypyrrole(PPy)is in situ vapor-phase polymerized on the surface of N-doped TiO_(2) nanorods supported on carbon cloth(N-TiO_(2)/CC),thereby forming a well-defined p–n heterojunction.This architecture efficiently facilitates the carrier separation of photo-generated electron–hole pairs and significantly enhances carrier transport by creating a built-in electric field.Thus,the PPy@N-TiO_(2)/CC can simultaneously act as a photocatalyst and an electrocatalyst to accelerate the reduction and evolution of sulfur,enabling ultrafast sulfur redox dynamics,as convincingly validated by both theoretical simulations and experimental results.Consequently,the PPy@N-TiO_(2)/CC PALSB achieves a high discharge capacity of 1653 mAh g−1,reaching 98.7%of the theoretical value.Furthermore,5 h of photo-charging without external voltage enables the PALSB to deliver a discharge capacity of 333 mAh g−1,achieving dual-mode energy harvesting capabilities.This work successfully integrates solar energy conversion and storage within a rechargeable battery system,providing a promising strategy for sustainable energy storage technologies.