With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping ...With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.展开更多
The Local Climate Zone(LCZ)scheme provides researchers with a standard method to monitor the Urban Heat Island(UHI)effect and conduct temperature studies.How to generate reliable LCZ maps has therefore become a resear...The Local Climate Zone(LCZ)scheme provides researchers with a standard method to monitor the Urban Heat Island(UHI)effect and conduct temperature studies.How to generate reliable LCZ maps has therefore become a research focus.In recent years,researchers have attempted to use Landsat imagery to delineate LCZs and generate maps worldwide based on the World Urban Database and Access Portal Tools(WUDAPT).However,the mapping results obtained by the WUDAPT method are not satisfactory.In this paper,to generate more accurate LCZ maps,we propose a novel Convolutional Neural Network(CNN)model(namely,LCZ-CNN),which is designed to cope with the issues of LCZ classification using Landsat imagery.Furthermore,in this study,we applied the LCZ-CNN model to generate LCZ mapping results for China’s 32 major cities distributed in various climatic zones,achieving a significantly better accuracy than the traditional classification strategies and a satisfactory computational efficiency.The pro-posed LCZ-CNN model achieved satisfactory classification accuracies in all 32 cities,and the Overall Accuracies(OAs)of more than half of the cities were higher than 80%.We also designed a series of experiments to comprehensively analyze the proposed LCZ-CNN model,with regard to the transferability of the network and the effectiveness of multiseasonal information.It was found that the first convolutional stage,corresponding to low-level features,shows better transferability than the second and third convolutional stages,which extract high-level and more image-or task-oriented features.It was also confirmed that the multi-seasonal information can improve the accuracy of LCZ classifica-tion.The thermal characteristics of the different LCZ classes were also analyzed based on the mapping results for China’s 32 major cities,and the experimental results confirmed the close relationship between the LCZ classes and the magnitude of the Land Surface Temperature(LST).展开更多
Antarctic surveying, mapping and remote sensing is one of the important aspects of the Chinese Antarctic geoscience research program that stretch back over 25 years, since the first Chinese National Antarctic Research...Antarctic surveying, mapping and remote sensing is one of the important aspects of the Chinese Antarctic geoscience research program that stretch back over 25 years, since the first Chinese National Antarctic Research Expedition (CHINARE) in 1984. During the 1980's, the geodetic datum, height system and absolute gravity datum were established at the Great Wall and Zhongshan Stations. Significant contributions have been made by the construction of the Chinese Great Wall, Zhongshan and Kunlun Stations in Antarctica. Geodetic control and gravity networks were established in the King George Islands, Grove Moun- tains and Dome Argus. An area of more than 200 000 km2 has been mapped using satellite image data, aerial photogrammetry and in situ data. Permanent GPS stations and tide gauges have been established at both the Great Wall and Zhongshan Stations. Studies involving plate motion, precise satellite orbit determination, the gravity field, sea level change, and various GPS applications for atmospheric studies have been carried out. Based on remote sensing techniques, studies have been undertaken on ice sheet and glacier movements, the distributions of blue ice and ice crevasses, and ice mass balance. Polar digital and visual mapping tech- niques have been introduced, and a polar survey space database has been built. The Chinese polar scientific expedition manage- ment information system and Chinese PANDA plan display platform were developed, which provides technical support for Chi- nese polar management. Finally, this paper examines prospects for future Chinese Antarctic surveying, mapping and remote sens- ing.展开更多
Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the govern...Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China.展开更多
Detailed and precise urban land-cover maps are crucial for urban-related studies. However, there are limited ways of mapping high-resolution urban land cover over large areas. In this paper, we propose an operational ...Detailed and precise urban land-cover maps are crucial for urban-related studies. However, there are limited ways of mapping high-resolution urban land cover over large areas. In this paper, we propose an operational framework to map urban land cover on the basis of Ziyuan-3 satellite images. Based on this framework, we produced the first high-resolution(2 m) urban land-cover map(Hi-ULCM) covering the 42 major cities of China. The overall accuracy of the Hi-ULCM dataset is 88.55%, of which 14 cities have an overall accuracy of over 90%. Most of the producer’s accuracies and user’s accuracies of the land-cover classes exceed 85%. We further conducted a landscape pattern analysis in the 42 cities based on Hi-ULCM. In terms of the comparison between the 42 cities in China, we found that the difference in the land-cover composition of urban areas is related to the climatic characteristics and urbanization levels, e.g., cities with warm climates generally have higher proportions of green spaces. It is also interesting to find that cities with higher urbanization levels are more habitable, in general. From the landscape viewpoint, the geometric complexity of the landscape increases with the urbanization level.Compared with the existing medium-resolution land-cover/use datasets(at a 30-m resolution), HiULCM represents a significant advance in accurately depicting the detailed land-cover footprint within the urban areas of China, and will be of great use for studies of urban ecosystems.展开更多
The International GNSS Service(IGS) final products(ephemeris and clocks-correction) have made the GNSS an indispensable low-cost tool for scientific research, for example sub-daily atmospheric water vapor monitoring. ...The International GNSS Service(IGS) final products(ephemeris and clocks-correction) have made the GNSS an indispensable low-cost tool for scientific research, for example sub-daily atmospheric water vapor monitoring. In this study, we investigate if there is a systematic difference coming from the choice between the Vienna Mapping Function 1(VMF1) and the Global Mapping Function(GMF) for the modeling of Zenith Total Delay(ZTD) estimates, as well as the Integrated Precipitable Water Vapor(IPWV) estimates that are deduced from them. As ZTD estimates cannot be fully separated from coordinate estimates, we also investigated the coordinate repeatability between subsequent measurements.For this purpose, we monitored twelve GNSS stations on a global scale, for each of the three climatic zones(polar, mid-latitudes and tropical), with four stations on each zone. We used an automated processing based on the Bernese GNSS Software Version 5.2 by applying the Precise Point Positioning(PPP)approach, L3 Ionosphere-free linear combination, 7 cutoff elevation angle and 2 h sampling. We noticed an excellent agreement with the ZTD estimates and coordinate repeatability for all the stations w.r.t to CODE(the Center for Orbit Determination in Europe) and USNO(US Naval Observatory) products, except for the Antarctic station(Davis) which shows systematic biases for the GMF related results. As a final step, we investigated the effect of using two mapping functions(VMF1 and GMF) to estimate the IPWV,w.r.t the IPWV estimates provided by the Integrated Global Radiosonde Archive(IGRA). The GPS-derived IPWV estimates are very close to the radiosonde-derived IPWV estimates, except for one station in the tropics(Tahiti).展开更多
Mapping and monitoring the distribution of croplands and crop types support policymakers and international organizations by reducing the risks to food security,notably from climate change and,for that purpose,remote s...Mapping and monitoring the distribution of croplands and crop types support policymakers and international organizations by reducing the risks to food security,notably from climate change and,for that purpose,remote sensing is routinely used.However,identifying specific crop types,cropland,and cropping patterns using space-based observations is challenging because different crop types and cropping patterns have similarity spectral signatures.This study applied a methodology to identify cropland and specific crop types,including tobacco,wheat,barley,and gram,as well as the following cropping patterns:wheat-tobacco,wheat-gram,wheat-barley,and wheat-maize,which are common in Gujranwala District,Pakistan,the study region.The methodology consists of combining optical remote sensing images from Sentinel-2 and Landsat-8 with Machine Learning(ML)methods,namely a Decision Tree Classifier(DTC)and a Random Forest(RF)algorithm.The best time-periods for differentiating cropland from other land cover types were identified,and then Sentinel-2 and Landsat 8 NDVI-based time-series were linked to phenological parameters to determine the different crop types and cropping patterns over the study region using their temporal indices and ML algorithms.The methodology was subsequently evaluated using Landsat images,crop statistical data for 2020 and 2021,and field data on cropping patterns.The results highlight the high level of accuracy of the methodological approach presented using Sentinel-2 and Landsat-8 images,together with ML techniques,for mapping not only the distribution of cropland,but also crop types and cropping patterns when validated at the county level.These results reveal that this methodology has benefits for monitoring and evaluating food security in Pakistan,adding to the evidence base of other studies on the use of remote sensing to identify crop types and cropping patterns in other countries.展开更多
An increase in crop intensity could improve crop yield but may also lead to a series of environmental problems, such as depletion of ground water and increased soil salinity. The generation of high resolution(30 m) cr...An increase in crop intensity could improve crop yield but may also lead to a series of environmental problems, such as depletion of ground water and increased soil salinity. The generation of high resolution(30 m) crop intensity maps is an important method used to monitor these changes, but this is challenging because the temporal resolution of the 30-m image time series is low due to the long satellite revisit period and high cloud coverage. The recently launched Sentinel-2 satellite could provide optical images at 10–60 m resolution and thus improve the temporal resolution of the 30-m image time series. This study used harmonized Landsat Sentinel-2(HLS) data to identify crop intensity. The sixth polynomial function was used to fit the normalized difference vegetation index(NDVI) and enhanced vegetation index(EVI) curves. Then, 15-day NDVI and EVI time series were then generated from the fitted curves and used to generate the extent of croplands. Lastly, the first derivative of the fitted VI curves were used to calculate the VI peaks;spurious peaks were removed using artificially defined thresholds and crop intensity was generated by counting the number of remaining VI peaks. The proposed methods were tested in four study regions, with results showing that 15-day time series generated from the fitted curves could accurately identify cropland extent. Overall accuracy of cropland identification was higher than 95%. In addition, both the harmonized NDVI and EVI time series identified crop intensity accurately as the overall accuracies, producer’s accuracies and user’s accuracies of non-cropland, single crop cycle and double crop cycle were higher than 85%. NDVI outperformed EVI as identifying double crop cycle fields more accurately.展开更多
In a complex urban scene,observation from a single sensor unavoidably leads to voids in observations,failing to describe urban objects in a comprehensive manner.In this paper,we propose a spatio-temporal-spectral-angu...In a complex urban scene,observation from a single sensor unavoidably leads to voids in observations,failing to describe urban objects in a comprehensive manner.In this paper,we propose a spatio-temporal-spectral-angular observation model to integrate observations from UAV and mobile mapping vehicle platform,realizing a joint,coordinated observation operation from both air and ground.We develop a multi-source remote sensing data acquisition system to effectively acquire multi-angle data of complex urban scenes.Multi-source data fusion solves the missing data problem caused by occlusion and achieves accurate,rapid,and complete collection of holographic spatial and temporal information in complex urban scenes.We carried out an experiment on Baisha Town,Chongqing,China and obtained multi-sensor,multi-angle data from UAV and mobile mapping vehicle.We first extracted the point cloud from UAV and then integrated the UAV and mobile mapping vehicle point cloud.The inte-grated results combined both the characteristics of UAV and mobile mapping vehicle point cloud,confirming the practicability of the proposed joint data acquisition platform and the effectiveness of spatio-temporal-spectral-angular observation model.Compared with the observation from UAV or mobile mapping vehicle alone,the integrated system provides an effective data acquisition solution toward comprehensive urban monitoring.展开更多
The measurement accuracy of the Mobile Mapping System (MMS) is the main problem, which restricts its development and application, so how to calibrate the MMS to improve its measure-ment accuracy has always been a rese...The measurement accuracy of the Mobile Mapping System (MMS) is the main problem, which restricts its development and application, so how to calibrate the MMS to improve its measure-ment accuracy has always been a research hotspot in the industry. This paper proposes a position and attitude calibration method with error correction based on the combination of the feature point and feature surface. First, the initial value of the spatial position relation-ship between each sensor of MMS is obtained by close-range photogrammetry. Second, the optimal solution for error correction is calculated by feature points in global coordinates jointly measured with International GNSS Service (IGS) stations. Then, the final transformation para-meters are solved by combining the initial values obtained originally, thereby realizing the rapid calibration of the MMS. Finally, it analyzed the RMSE of MMS point cloud after calibration, and the results demonstrate the feasibility of the calibration approach proposed by this method. Under the condition of a single measurement sensor accuracy is low, the plane and elevation absolute accuracy of the point cloud after calibration can reach 0.043 m and 0.072 m, respectively, and the relative accuracy is smaller than 0.02 m. It meets the precision require-ments of data acquisition for MMS. It is of great significance for promoting the development of MMS technology and the application of some novel techniques in the future, such as auton-omous driving, digital twin city, urban brain et al.展开更多
Precise interferometric synthetic aperture radar (InSAR) is a new intelligent photogrammetric technology that uses automatic imaging and processing means. Precise InSAR has become the most efficient satellite surveyin...Precise interferometric synthetic aperture radar (InSAR) is a new intelligent photogrammetric technology that uses automatic imaging and processing means. Precise InSAR has become the most efficient satellite surveying and mapping (SASM) method that uses the interferometric phase to create a global digital elevation model (DEM) with high precision. In this paper, we propose the application of systematic InSAR technologies to SASM. Three key technologies are proposed: calibration technology, data processing technology and post-processing technology. First, we need to calibrate the geometric and interferometric parameters including the azimuth time delay, range time delay, and atmospheric delay, as well as baseline errors. Second, we use the calibrated parameters to create a precise DEM. One of the important procedures in data processing is the determination of phase ambiguities. Finally, we improve the DEM quality through the joint use of the block adjustment method, long and short baseline combination method and descending and ascending data merge method. We use 6 sets of TanDEM-X data covering Shanxi to conduct the experiment. The root mean square error of the final DEM is 5.07 m in the mountainous regions. In addition, the low coherence area is 0.8 km 2. The result meets the China domestic SASM accuracy standard at both the 1∶50 000 and 1∶25 000 measurement scales.展开更多
Different image processing algorithms have been evaluated in the context of geological mapping using Landsat TM data. False color composites, the principal component imagery, and IHS decorrelation stretching method fo...Different image processing algorithms have been evaluated in the context of geological mapping using Landsat TM data. False color composites, the principal component imagery, and IHS decorrelation stretching method for Landsat-5 TM data have been found useful for delineating the regional geological features, mainly to provide the maximum geological information of the studied area . The study testifies that using which image processing yields best results for geological mapping in arid and semiarid regions by preserving morphological and spectral information. Generally, the studied area can be divided into three main geological units: Basaltic intrusive rocks, Metamorphic with varying intensities and Sedimentary rocks.展开更多
Rodents are the main host animals that spread plague, and Spermophilus dauricus(S. dauricus) is the most common rodent in North China. In this study, a rodent density survey was carried out in China's Jilin Provinc...Rodents are the main host animals that spread plague, and Spermophilus dauricus(S. dauricus) is the most common rodent in North China. In this study, a rodent density survey was carried out in China's Jilin Province from April to August 2005. Moran's I and semivariogram curves were used to investigate the spatial distribution characteristics of the sampling data. We found that the spatial auto-correlation index was low and failed to generate a meaningful semivariogram curve. In this case, commonly used interpolators, such as kriging, were not suitable for mapping density over the study area. However, the Sandwich model, which is based on spatial stratified heterogeneity, could be applied to our data. Our results showed that the type of soil and land use significantly influenced the distribution of rodent density, and the interactive effect of these variables was much stronger than that of each variable alone. The Sandwich-estimated rodent density map showed that rodent density increased from the southeast to the northwest in Jilin Province. Finally, a framework of a rodent density survey using the Sandwich model was introduced.展开更多
The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m...The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.展开更多
surveying and mapping is indispensable for economic and social development andwidely applied in various fields in economic construction and social development. Modern surveying and mapping technology, taking satellite...surveying and mapping is indispensable for economic and social development andwidely applied in various fields in economic construction and social development. Modern surveying and mapping technology, taking satellite navigation and positioning, airborne and space remote sensing and geographical information system technologies as its core, represents a nation's science and technology development level and comprehensive state power.展开更多
Currently,the BeiDou⁃3(BDS⁃3)precise point positioning(PPP)service(PPP⁃B2b)mostly employs the ionosphere⁃free(IF)combination model for precise timing,which tends to amplify the noise in observation values.To address t...Currently,the BeiDou⁃3(BDS⁃3)precise point positioning(PPP)service(PPP⁃B2b)mostly employs the ionosphere⁃free(IF)combination model for precise timing,which tends to amplify the noise in observation values.To address this issue,this paper proposes a real⁃time BDS⁃3 precise unidirectional timing model based on uncombined(UC)observations using the BDS⁃3 PPP⁃B2b service.This model resolves the challenge of the amplified observation noise inherent in the IF combination model.The experiment involved selecting eight global navigation satellite system(GNSS)observation stations within China and collecting continuous observation data for 15 d.A comparative analy⁃sis with the traditional dual⁃frequency IF combination PPP timing model showed that the BDS⁃3 UC PPP timing based on the BDS⁃3 PPP⁃B2b service can achieve a timing preci⁃sion of 0.5 ns.In addition,it was found that due to global positioning system(GPS)satellite clock products in the BDS⁃3 PPP⁃B2b service not being unified to the standard time,the GPS IF PPP timing method based on the BDS⁃3 PPP⁃B2b service is not recommended for precise timing.In summary,the BDS⁃3 UC PPP timing model proposed in this paper is suitable for precise timing,providing observa⁃tion values with smaller noise,and its timing accuracy is comparable to that of the BDS⁃3 IF PPP,with slightly better frequency stability.展开更多
With the continuous development of economy and technology, China has intensified its efforts in building construction in daily life. People's requirements for architecture are also relatively improved. At this tim...With the continuous development of economy and technology, China has intensified its efforts in building construction in daily life. People's requirements for architecture are also relatively improved. At this time, the quality of the project must be paid attention to. If you want to ensure the engineering quality, the engineering survey must be accurate without any mistakes. This paper aims at the in-depth study of the application of 3D mapping technology in modern engineering survey. Three-dimensional mapping technology is explained in detail from five aspects.展开更多
The traditional real estate house registration survey mainly uses the technologies such as total station, RTK field survey, etc. Although this kind of technology can also accurately complete the real estate surveying ...The traditional real estate house registration survey mainly uses the technologies such as total station, RTK field survey, etc. Although this kind of technology can also accurately complete the real estate surveying and mapping work, there are many problems such as small work area, high cost, difficulty in entering the house, etc., which seriously affect the efficiency of surveying and mapping work. Compared with the field measurement technology, the application of UAV tilt measurement technology in real estate surveying and mapping work has greatly improved the accuracy, timeliness and work efficiency of surveying and mapping work. However, in the large-scale graphic surveying and mapping work, the traditional UAV tilt measurement technology requires the field adjustment and painting of eaves and editing after correction, which also leads to the increase of production cost.展开更多
With the continuous development of economy and science and technology, GPS technology also ushered in greater development opportunities. People often use GPS technology for road navigation or manual positioning in lif...With the continuous development of economy and science and technology, GPS technology also ushered in greater development opportunities. People often use GPS technology for road navigation or manual positioning in life. GPS technology can not only play a role in life, but also take an important responsibility in marine surveying and mapping.展开更多
With the rapid development and progress of urbanization in China, there are many problems related to land planning in the process of development. In China, land management and utilization are closely related to people...With the rapid development and progress of urbanization in China, there are many problems related to land planning in the process of development. In China, land management and utilization are closely related to people's life. The most commonly used method in land management is surveying and mapping technology. The emergence of Surveying and mapping technology not only improves the quality of land management, but also makes rational use of land resources in China. Through the analysis of the relevant technology in surveying and mapping engineering, this paper deeply understands the application of Surveying and Mapping Engineering in land management and utilization, hoping to provide some help to the future land managers.展开更多
基金National Natural Science Foundation of China(Nos.91738302,91838303)。
文摘With the continuous improvement of the performance and the increasing variety of optical mapping and remote sensing satellites,they have become an important support for obtaining global accurate surveying and mapping remote sensing information.At present,optical mapping and remote sensing satellites already have sub-meter spatial resolution capabilities,but there is a serious lag problem in mapping and remote sensing information services.It is urgent to develop intelligent mapping and remote sensing satellites to promote the transformation and upgrading to real-time intelligent services.Firstly,based on the three imaging systems of the optical mapping and remote sensing satellites and their realization methods and application characteristics,this paper analyzes the applicable system of the intelligent mapping and remote sensing satellites.Further,according to the application requirements of real-time,intelligence,and popularization,puts forward the design concept of integrated intelligent remote sensing satellite integrating communication,navigation,and remote sensing and focuses on the service mode and integrated function composition of intelligent remote sensing satellite.Then expounds on the performance and characteristics of the Luojia-301 satellite,a new generation of intelligent surveying and mapping remote sensing scientific test satellite.And finally summarizes and prospects the development and mission of intelligent mapping remote sensing satellites.Luojia-301 satellite integrates remote sensing and communication functions.It explores an efficient and intelligent service mode of mapping and remote sensing information from data acquisition to the application terminal and provides a real service verification platform for on-orbit processing and real-time transmission of remote sensing data based on space-ground internet,which is of great significance to the construction of China’s spatial information network.
基金This work is supported by the National Natural Science Foundation of China[Grant Nos 41971295 and 42071311].
文摘The Local Climate Zone(LCZ)scheme provides researchers with a standard method to monitor the Urban Heat Island(UHI)effect and conduct temperature studies.How to generate reliable LCZ maps has therefore become a research focus.In recent years,researchers have attempted to use Landsat imagery to delineate LCZs and generate maps worldwide based on the World Urban Database and Access Portal Tools(WUDAPT).However,the mapping results obtained by the WUDAPT method are not satisfactory.In this paper,to generate more accurate LCZ maps,we propose a novel Convolutional Neural Network(CNN)model(namely,LCZ-CNN),which is designed to cope with the issues of LCZ classification using Landsat imagery.Furthermore,in this study,we applied the LCZ-CNN model to generate LCZ mapping results for China’s 32 major cities distributed in various climatic zones,achieving a significantly better accuracy than the traditional classification strategies and a satisfactory computational efficiency.The pro-posed LCZ-CNN model achieved satisfactory classification accuracies in all 32 cities,and the Overall Accuracies(OAs)of more than half of the cities were higher than 80%.We also designed a series of experiments to comprehensively analyze the proposed LCZ-CNN model,with regard to the transferability of the network and the effectiveness of multiseasonal information.It was found that the first convolutional stage,corresponding to low-level features,shows better transferability than the second and third convolutional stages,which extract high-level and more image-or task-oriented features.It was also confirmed that the multi-seasonal information can improve the accuracy of LCZ classifica-tion.The thermal characteristics of the different LCZ classes were also analyzed based on the mapping results for China’s 32 major cities,and the experimental results confirmed the close relationship between the LCZ classes and the magnitude of the Land Surface Temperature(LST).
基金supported by the National Administration of Surveying, Mapping and Geoinformation (Grant no.1469990324229)the National Natural Science Foundation of China (Grant nos.40806076, 41176172, 41176173)+2 种基金the National High Technology Research and Development Program of China (Grant no. 2008AA121702–5)the National Science and Technology Infrastructure Program of China (Grant no.2006BAB18B01)the Chinese Arctic and Antarctic Administration, SOA(Grant no. 20070206)
文摘Antarctic surveying, mapping and remote sensing is one of the important aspects of the Chinese Antarctic geoscience research program that stretch back over 25 years, since the first Chinese National Antarctic Research Expedition (CHINARE) in 1984. During the 1980's, the geodetic datum, height system and absolute gravity datum were established at the Great Wall and Zhongshan Stations. Significant contributions have been made by the construction of the Chinese Great Wall, Zhongshan and Kunlun Stations in Antarctica. Geodetic control and gravity networks were established in the King George Islands, Grove Moun- tains and Dome Argus. An area of more than 200 000 km2 has been mapped using satellite image data, aerial photogrammetry and in situ data. Permanent GPS stations and tide gauges have been established at both the Great Wall and Zhongshan Stations. Studies involving plate motion, precise satellite orbit determination, the gravity field, sea level change, and various GPS applications for atmospheric studies have been carried out. Based on remote sensing techniques, studies have been undertaken on ice sheet and glacier movements, the distributions of blue ice and ice crevasses, and ice mass balance. Polar digital and visual mapping tech- niques have been introduced, and a polar survey space database has been built. The Chinese polar scientific expedition manage- ment information system and Chinese PANDA plan display platform were developed, which provides technical support for Chi- nese polar management. Finally, this paper examines prospects for future Chinese Antarctic surveying, mapping and remote sens- ing.
基金This work is supported by the National Natural Science Foundation of China[grant numbers 91738302 and 91838303]the National Science Fund for Distinguished Young Scholars[grant number 61825103]Thanks for the support of China Centre for Resources Satellite Data and Application(CRESDA).
文摘Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China.
基金supported by the National Natural Science Foundation of China (41771360 and 41971295)the National Program for Support of Top-notch Young Professionals, the Hubei Provincial Natural Science Foundation of China (2017CFA029)the National Key Resarch & Development Program of China (2016YFB0501403)。
文摘Detailed and precise urban land-cover maps are crucial for urban-related studies. However, there are limited ways of mapping high-resolution urban land cover over large areas. In this paper, we propose an operational framework to map urban land cover on the basis of Ziyuan-3 satellite images. Based on this framework, we produced the first high-resolution(2 m) urban land-cover map(Hi-ULCM) covering the 42 major cities of China. The overall accuracy of the Hi-ULCM dataset is 88.55%, of which 14 cities have an overall accuracy of over 90%. Most of the producer’s accuracies and user’s accuracies of the land-cover classes exceed 85%. We further conducted a landscape pattern analysis in the 42 cities based on Hi-ULCM. In terms of the comparison between the 42 cities in China, we found that the difference in the land-cover composition of urban areas is related to the climatic characteristics and urbanization levels, e.g., cities with warm climates generally have higher proportions of green spaces. It is also interesting to find that cities with higher urbanization levels are more habitable, in general. From the landscape viewpoint, the geometric complexity of the landscape increases with the urbanization level.Compared with the existing medium-resolution land-cover/use datasets(at a 30-m resolution), HiULCM represents a significant advance in accurately depicting the detailed land-cover footprint within the urban areas of China, and will be of great use for studies of urban ecosystems.
基金the innovation carrier project by Zhejiang provincial science and Technology Department (2017F10008)the French Space Agency (CNES) for their funding, through a DAR grant to the Geodesy Observatory of Tahiti
文摘The International GNSS Service(IGS) final products(ephemeris and clocks-correction) have made the GNSS an indispensable low-cost tool for scientific research, for example sub-daily atmospheric water vapor monitoring. In this study, we investigate if there is a systematic difference coming from the choice between the Vienna Mapping Function 1(VMF1) and the Global Mapping Function(GMF) for the modeling of Zenith Total Delay(ZTD) estimates, as well as the Integrated Precipitable Water Vapor(IPWV) estimates that are deduced from them. As ZTD estimates cannot be fully separated from coordinate estimates, we also investigated the coordinate repeatability between subsequent measurements.For this purpose, we monitored twelve GNSS stations on a global scale, for each of the three climatic zones(polar, mid-latitudes and tropical), with four stations on each zone. We used an automated processing based on the Bernese GNSS Software Version 5.2 by applying the Precise Point Positioning(PPP)approach, L3 Ionosphere-free linear combination, 7 cutoff elevation angle and 2 h sampling. We noticed an excellent agreement with the ZTD estimates and coordinate repeatability for all the stations w.r.t to CODE(the Center for Orbit Determination in Europe) and USNO(US Naval Observatory) products, except for the Antarctic station(Davis) which shows systematic biases for the GMF related results. As a final step, we investigated the effect of using two mapping functions(VMF1 and GMF) to estimate the IPWV,w.r.t the IPWV estimates provided by the Integrated Global Radiosonde Archive(IGRA). The GPS-derived IPWV estimates are very close to the radiosonde-derived IPWV estimates, except for one station in the tropics(Tahiti).
文摘Mapping and monitoring the distribution of croplands and crop types support policymakers and international organizations by reducing the risks to food security,notably from climate change and,for that purpose,remote sensing is routinely used.However,identifying specific crop types,cropland,and cropping patterns using space-based observations is challenging because different crop types and cropping patterns have similarity spectral signatures.This study applied a methodology to identify cropland and specific crop types,including tobacco,wheat,barley,and gram,as well as the following cropping patterns:wheat-tobacco,wheat-gram,wheat-barley,and wheat-maize,which are common in Gujranwala District,Pakistan,the study region.The methodology consists of combining optical remote sensing images from Sentinel-2 and Landsat-8 with Machine Learning(ML)methods,namely a Decision Tree Classifier(DTC)and a Random Forest(RF)algorithm.The best time-periods for differentiating cropland from other land cover types were identified,and then Sentinel-2 and Landsat 8 NDVI-based time-series were linked to phenological parameters to determine the different crop types and cropping patterns over the study region using their temporal indices and ML algorithms.The methodology was subsequently evaluated using Landsat images,crop statistical data for 2020 and 2021,and field data on cropping patterns.The results highlight the high level of accuracy of the methodological approach presented using Sentinel-2 and Landsat-8 images,together with ML techniques,for mapping not only the distribution of cropland,but also crop types and cropping patterns when validated at the county level.These results reveal that this methodology has benefits for monitoring and evaluating food security in Pakistan,adding to the evidence base of other studies on the use of remote sensing to identify crop types and cropping patterns in other countries.
基金supported by the China Postdoctoral Science Foundation (2017M620075 and BX201700286)the National Natural Science Foundation of China (NSFC-61661136006)
文摘An increase in crop intensity could improve crop yield but may also lead to a series of environmental problems, such as depletion of ground water and increased soil salinity. The generation of high resolution(30 m) crop intensity maps is an important method used to monitor these changes, but this is challenging because the temporal resolution of the 30-m image time series is low due to the long satellite revisit period and high cloud coverage. The recently launched Sentinel-2 satellite could provide optical images at 10–60 m resolution and thus improve the temporal resolution of the 30-m image time series. This study used harmonized Landsat Sentinel-2(HLS) data to identify crop intensity. The sixth polynomial function was used to fit the normalized difference vegetation index(NDVI) and enhanced vegetation index(EVI) curves. Then, 15-day NDVI and EVI time series were then generated from the fitted curves and used to generate the extent of croplands. Lastly, the first derivative of the fitted VI curves were used to calculate the VI peaks;spurious peaks were removed using artificially defined thresholds and crop intensity was generated by counting the number of remaining VI peaks. The proposed methods were tested in four study regions, with results showing that 15-day time series generated from the fitted curves could accurately identify cropland extent. Overall accuracy of cropland identification was higher than 95%. In addition, both the harmonized NDVI and EVI time series identified crop intensity accurately as the overall accuracies, producer’s accuracies and user’s accuracies of non-cropland, single crop cycle and double crop cycle were higher than 85%. NDVI outperformed EVI as identifying double crop cycle fields more accurately.
基金This work is supported by the National Natural Science Foundation of China[grant numbers 42090012,41771452,41771454,and 41901340].
文摘In a complex urban scene,observation from a single sensor unavoidably leads to voids in observations,failing to describe urban objects in a comprehensive manner.In this paper,we propose a spatio-temporal-spectral-angular observation model to integrate observations from UAV and mobile mapping vehicle platform,realizing a joint,coordinated observation operation from both air and ground.We develop a multi-source remote sensing data acquisition system to effectively acquire multi-angle data of complex urban scenes.Multi-source data fusion solves the missing data problem caused by occlusion and achieves accurate,rapid,and complete collection of holographic spatial and temporal information in complex urban scenes.We carried out an experiment on Baisha Town,Chongqing,China and obtained multi-sensor,multi-angle data from UAV and mobile mapping vehicle.We first extracted the point cloud from UAV and then integrated the UAV and mobile mapping vehicle point cloud.The inte-grated results combined both the characteristics of UAV and mobile mapping vehicle point cloud,confirming the practicability of the proposed joint data acquisition platform and the effectiveness of spatio-temporal-spectral-angular observation model.Compared with the observation from UAV or mobile mapping vehicle alone,the integrated system provides an effective data acquisition solution toward comprehensive urban monitoring.
基金This research was funded by the National Natural Science Foundation of China[grant number 41971350 and 41571437]Beijing Advanced Innovation Centre for Future Urban Design Project[grant number UDC2019031724]+4 种基金Teacher Support Program for Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture[grant number JDJQ20200307]State Key Laboratory of Geo-Information Engineering[grant number SKLGIE2019-Z-3-1]Open Research Fund Program of LIESMARS[grant number 19E01]National Key Research and Development Program of China[grant number 2019YFC1520100]The Fundamental Research Funds for Beijing University of Civil Engineering and Architecture[grant number X18050].
文摘The measurement accuracy of the Mobile Mapping System (MMS) is the main problem, which restricts its development and application, so how to calibrate the MMS to improve its measure-ment accuracy has always been a research hotspot in the industry. This paper proposes a position and attitude calibration method with error correction based on the combination of the feature point and feature surface. First, the initial value of the spatial position relation-ship between each sensor of MMS is obtained by close-range photogrammetry. Second, the optimal solution for error correction is calculated by feature points in global coordinates jointly measured with International GNSS Service (IGS) stations. Then, the final transformation para-meters are solved by combining the initial values obtained originally, thereby realizing the rapid calibration of the MMS. Finally, it analyzed the RMSE of MMS point cloud after calibration, and the results demonstrate the feasibility of the calibration approach proposed by this method. Under the condition of a single measurement sensor accuracy is low, the plane and elevation absolute accuracy of the point cloud after calibration can reach 0.043 m and 0.072 m, respectively, and the relative accuracy is smaller than 0.02 m. It meets the precision require-ments of data acquisition for MMS. It is of great significance for promoting the development of MMS technology and the application of some novel techniques in the future, such as auton-omous driving, digital twin city, urban brain et al.
文摘Precise interferometric synthetic aperture radar (InSAR) is a new intelligent photogrammetric technology that uses automatic imaging and processing means. Precise InSAR has become the most efficient satellite surveying and mapping (SASM) method that uses the interferometric phase to create a global digital elevation model (DEM) with high precision. In this paper, we propose the application of systematic InSAR technologies to SASM. Three key technologies are proposed: calibration technology, data processing technology and post-processing technology. First, we need to calibrate the geometric and interferometric parameters including the azimuth time delay, range time delay, and atmospheric delay, as well as baseline errors. Second, we use the calibrated parameters to create a precise DEM. One of the important procedures in data processing is the determination of phase ambiguities. Finally, we improve the DEM quality through the joint use of the block adjustment method, long and short baseline combination method and descending and ascending data merge method. We use 6 sets of TanDEM-X data covering Shanxi to conduct the experiment. The root mean square error of the final DEM is 5.07 m in the mountainous regions. In addition, the low coherence area is 0.8 km 2. The result meets the China domestic SASM accuracy standard at both the 1∶50 000 and 1∶25 000 measurement scales.
文摘Different image processing algorithms have been evaluated in the context of geological mapping using Landsat TM data. False color composites, the principal component imagery, and IHS decorrelation stretching method for Landsat-5 TM data have been found useful for delineating the regional geological features, mainly to provide the maximum geological information of the studied area . The study testifies that using which image processing yields best results for geological mapping in arid and semiarid regions by preserving morphological and spectral information. Generally, the studied area can be divided into three main geological units: Basaltic intrusive rocks, Metamorphic with varying intensities and Sedimentary rocks.
基金National Natural Science Foundation of China,No.41531179No.41421001+2 种基金No.41271404MOST,No.2016YFC1302504Special Scientific Research Fund of Public Welfare Profession of China,No.GYHY20140616
文摘Rodents are the main host animals that spread plague, and Spermophilus dauricus(S. dauricus) is the most common rodent in North China. In this study, a rodent density survey was carried out in China's Jilin Province from April to August 2005. Moran's I and semivariogram curves were used to investigate the spatial distribution characteristics of the sampling data. We found that the spatial auto-correlation index was low and failed to generate a meaningful semivariogram curve. In this case, commonly used interpolators, such as kriging, were not suitable for mapping density over the study area. However, the Sandwich model, which is based on spatial stratified heterogeneity, could be applied to our data. Our results showed that the type of soil and land use significantly influenced the distribution of rodent density, and the interactive effect of these variables was much stronger than that of each variable alone. The Sandwich-estimated rodent density map showed that rodent density increased from the southeast to the northwest in Jilin Province. Finally, a framework of a rodent density survey using the Sandwich model was introduced.
基金Supported by the National Natural Science Foundation of China(42221002,42171432)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities.
文摘The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.
文摘surveying and mapping is indispensable for economic and social development andwidely applied in various fields in economic construction and social development. Modern surveying and mapping technology, taking satellite navigation and positioning, airborne and space remote sensing and geographical information system technologies as its core, represents a nation's science and technology development level and comprehensive state power.
基金The Basic Science Center Project of the National Natural Science Foundation of China(No.42388102)the Jiangsu Province Natural Resources Science and Technology Project(No.JSZRKJ202404).
文摘Currently,the BeiDou⁃3(BDS⁃3)precise point positioning(PPP)service(PPP⁃B2b)mostly employs the ionosphere⁃free(IF)combination model for precise timing,which tends to amplify the noise in observation values.To address this issue,this paper proposes a real⁃time BDS⁃3 precise unidirectional timing model based on uncombined(UC)observations using the BDS⁃3 PPP⁃B2b service.This model resolves the challenge of the amplified observation noise inherent in the IF combination model.The experiment involved selecting eight global navigation satellite system(GNSS)observation stations within China and collecting continuous observation data for 15 d.A comparative analy⁃sis with the traditional dual⁃frequency IF combination PPP timing model showed that the BDS⁃3 UC PPP timing based on the BDS⁃3 PPP⁃B2b service can achieve a timing preci⁃sion of 0.5 ns.In addition,it was found that due to global positioning system(GPS)satellite clock products in the BDS⁃3 PPP⁃B2b service not being unified to the standard time,the GPS IF PPP timing method based on the BDS⁃3 PPP⁃B2b service is not recommended for precise timing.In summary,the BDS⁃3 UC PPP timing model proposed in this paper is suitable for precise timing,providing observa⁃tion values with smaller noise,and its timing accuracy is comparable to that of the BDS⁃3 IF PPP,with slightly better frequency stability.
文摘With the continuous development of economy and technology, China has intensified its efforts in building construction in daily life. People's requirements for architecture are also relatively improved. At this time, the quality of the project must be paid attention to. If you want to ensure the engineering quality, the engineering survey must be accurate without any mistakes. This paper aims at the in-depth study of the application of 3D mapping technology in modern engineering survey. Three-dimensional mapping technology is explained in detail from five aspects.
文摘The traditional real estate house registration survey mainly uses the technologies such as total station, RTK field survey, etc. Although this kind of technology can also accurately complete the real estate surveying and mapping work, there are many problems such as small work area, high cost, difficulty in entering the house, etc., which seriously affect the efficiency of surveying and mapping work. Compared with the field measurement technology, the application of UAV tilt measurement technology in real estate surveying and mapping work has greatly improved the accuracy, timeliness and work efficiency of surveying and mapping work. However, in the large-scale graphic surveying and mapping work, the traditional UAV tilt measurement technology requires the field adjustment and painting of eaves and editing after correction, which also leads to the increase of production cost.
文摘With the continuous development of economy and science and technology, GPS technology also ushered in greater development opportunities. People often use GPS technology for road navigation or manual positioning in life. GPS technology can not only play a role in life, but also take an important responsibility in marine surveying and mapping.
文摘With the rapid development and progress of urbanization in China, there are many problems related to land planning in the process of development. In China, land management and utilization are closely related to people's life. The most commonly used method in land management is surveying and mapping technology. The emergence of Surveying and mapping technology not only improves the quality of land management, but also makes rational use of land resources in China. Through the analysis of the relevant technology in surveying and mapping engineering, this paper deeply understands the application of Surveying and Mapping Engineering in land management and utilization, hoping to provide some help to the future land managers.