期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
Collaborative manufacturing technologies of structure shape and surface integrity for complex thin-walled components of aero-engine:Status,challenge and tendency 被引量:12
1
作者 Biao ZHAO Wenfeng DING +10 位作者 Zhongde SHAN Jun WANG Changfeng YAO Zhengcai ZHAO Jia LIU Shihong XIAO Yue DING Xiaowei TANG Xingchao WANG Yufeng WANG Xin WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期1-24,共24页
Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex ... Presently,the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components.A high-efficiency and quality manufacturing of these complex thin-walled components creates a bottleneck that needs to be solved urgently in machinery manufacturing.To address this problem,the collaborative manufacturing of structure shape and surface integrity has emerged as a new process that can shorten processing cycles,improve machining qualities,and reduce costs.This paper summarises the research status on the material removal mechanism,precision control of structure shape,machined surface integrity control and intelligent process control technology of complex thin-walled components.Numerous solutions and technical approaches are then put forward to solve the critical problems in the high-performance manufacturing of complex thin-wall components.The development status,challenge and tendency of collaborative manufacturing technologies in the high-efficiency and quality manufacturing of complex thin-wall components is also discussed. 展开更多
关键词 Collaborative manufacturing of shape and performance Complex thin-walled component Intelligent process control Material removal mechanism Surface integrity
原文传递
Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review 被引量:16
2
作者 Shuaishuai Wei Jinliang Zhang +6 位作者 Lei Zhang Yuanjie Zhang Bo Song Xiaobo Wang Junxiang Fan Qi Liu Yusheng Shi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期1-29,共29页
NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibi... NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future. 展开更多
关键词 NiTi shape memory alloys laser powder bed fusion transformation behavior thermomechanical response lattice structures
在线阅读 下载PDF
Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing 被引量:8
3
作者 Jiahua Zhang Yi Yang +8 位作者 Sheng Cao Zhiqiang Cao Dmytro Kovalchuk Songquan Wu Enquan Liang Xi Zhang Wei Chen Fan Wu Aijun Huang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2020年第10期1311-1320,共10页
Coarse columnar β grains result in anisotropic mechanical properties in Ti alloys deposited by additive manufacturing. This study reports that Ti-6Al-4V alloy fabricated by coaxial electron beam wire feeding additive... Coarse columnar β grains result in anisotropic mechanical properties in Ti alloys deposited by additive manufacturing. This study reports that Ti-6Al-4V alloy fabricated by coaxial electron beam wire feeding additive manufacturing presents a weak anisotropy, high strength and ductility. The superior tensile property arises from a microstructure with fine equiaxed β grains(EGβ), discontinuous grain boundary α phase and short intragranular α lamellae. A large region of fine EGβ arises from a special combination of the temperature gradient and solidification rate, and attractive α morphology is caused by solid phase transformations during interpass thermal cycling and post heat treatments. 展开更多
关键词 Directed energy deposition Wire feeding additive manufacturing Ti–6Al–4V alloy Equiaxedβgrain Tensile properties
原文传递
Deformation behaviors of as-built and hot isostatically pressed Ti-6Al-4V alloys fabricated via electron beam rapid manufacturing 被引量:3
4
作者 Z.Liu Z.B.Zhao +6 位作者 J.R.Liu L.Wang S.X.Zhu G.Yang S.L Gong Q.J.Wang R.Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2552-2558,共7页
The deformation behavior of as-built and hot isostatically pressed(HIP)Ti-6Al-4V alloys fabricated using electron beam rapid manufacturing(EBRM)were investigated in this work.The deformation characteristics were chara... The deformation behavior of as-built and hot isostatically pressed(HIP)Ti-6Al-4V alloys fabricated using electron beam rapid manufacturing(EBRM)were investigated in this work.The deformation characteristics were characterized using a laser scanning confocal microscope and electron back-scattered diffraction(EBSD).In the as-built sample,prismatic slip was the main mode of deformation,as well as a small amount of basal slip and cross-slip.Some planar slip lines with large length scales were observed across severalαlamellae.After hot isostatical pressing,prismatic and basal slip were the main mode of deformation,accompanied by abundant cross-slip and multiple slip,and most of the slip lines were blocked within an a lamellae.These differences in deformation behavior were associated with the coarsening of a laths and the more retained p phase after HIP compared to the as-built alloy.More cross-slip and multiple slip can lead to superior elongation-to-failure and a greater strain hardening effect in the HIP alloy compared to the as-built sample. 展开更多
关键词 Electron beam rapid manufacturing TI-6AL-4V Hot isostatic pressure Mechanical properties Slip behavior
原文传递
Effects of distance between arc and heat sink on stress and distortion in DC-LSND welding technology 被引量:1
5
作者 李菊 关桥 +3 位作者 郭德伦 杜欲晓 孙永春 史耀武 《China Welding》 EI CAS 2007年第3期6-9,共4页
The characteristics of temperatures, stresses and strains fields have been studied numerically for a titanium alloy sheet welded with an improved gas tungsten arc welding method, in which a trailing spot heat sink is ... The characteristics of temperatures, stresses and strains fields have been studied numerically for a titanium alloy sheet welded with an improved gas tungsten arc welding method, in which a trailing spot heat sink is introduced to control the welding stress and distortion. The impinging jet model is employed to describe the internee heat transfer between the cooling media and the top suufuce of the workpiece. The influcnee of the distance between arc and heat sink is investigated. Results show that there is an ideal range of distance. Using the ideal distance, a low stress and no distortion welding structure can be derived. 展开更多
关键词 gas tungsten arc welding dynamically controlled low stress no distortion STRESS DISTORTION finite element method titanium alloy
在线阅读 下载PDF
DESIGN OF RECONFIGURABLE MANUFACTURING SYSTEMS WITH STRONGLY COUPLED NATURE 被引量:1
6
作者 LANG Sherman Y T 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期91-95,共5页
Today's manufacturing cnvironmem forces manufacturing companies to make as many product variations as possible at affordable costs within a short time. Mass customisation is one of most important technologies for com... Today's manufacturing cnvironmem forces manufacturing companies to make as many product variations as possible at affordable costs within a short time. Mass customisation is one of most important technologies for companies to achieve their objectives. Efforts to mass customisation should be made on two aspects: (1) To modularize products and make them as less differences as possible; (2) To design manufacturing resources and make them provide as many processes variations as possible. This paper reports our recent work on aspect (2), i.e. how to design a reconfignrable manufacturing system (RMS) so that it can be competent to accomplish various processes optimally; Reconfignrable robot system (RRS) is taken as an example. RMS design involves architecture design and configuration design, and configuration design is further divided in design analysis and design synthesis. Axiomatic design theory (ADT) is applied to architecture design, the features and issues of RRS configuration design are discussed, automatic modelling method is developed for design analysis, and concurrent design methodology is presented for design synthesis. 展开更多
关键词 Mass customisation Reconfignrable manufacturing systems Reconfignrable robotic system Analysis Synthesis Architecture Adaptability Reconfignrability Configuration design
在线阅读 下载PDF
Thermal Tensioning Effects to Prevent Welding Buckling Distortions in Manufacturing of Thin-Walled Aerospace Shells and Panels 被引量:1
7
作者 Guan Qiao 《工程科学(英文版)》 2006年第3期1-10,共10页
To prevent buckling distortions of thin-walled elements, Low Stress No Distortion welding techniques have been pioneered and developed for product engineering and component manufacturing of aerospace structures with m... To prevent buckling distortions of thin-walled elements, Low Stress No Distortion welding techniques have been pioneered and developed for product engineering and component manufacturing of aerospace structures with material thickness less than 4 mm. In this paper, the nature of Low Stress No Distortion (LSND) welding techniques using thermal tensioning effects is described and special emphases are given to the mechanism of localized thermal tensioning effect. The fundamental principle of Low Stress No Distortion welding is to create active in-process control of incompatible (inherent) plastic strains and stresses formation during welding to achieve distortion-free results implying that no post weld costly reworking operations for distortion correction is required. Finite element analysis is applied to predict and optimize the localized thermal tensioning technique with a trailing spot heat sink coupled to the welding heat source. Comparisons of the thermal elastic-plastic stress-strain cycles are given between conventional gas tungsten arc welding and GTAW with a trailing spot heat sink. 展开更多
关键词 焊接残余应力 热源 冷源 弯曲变形 加热张拉 薄壁航空材料
在线阅读 下载PDF
Work Function Optimization Technology of Indium Tin Oxide Films
8
作者 Bo Zhang Zhibo Zhang +4 位作者 Xintao Guo Ya’nan Yang Ying Liu Lei Yang Jiaqi Zhu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第4期33-39,共7页
Indium tin oxide(In_(2)O_(3)∶Sn)film is one of the most potential materials in the field of semiconductor industry.However,untreated In2O3∶Sn film has a low work function which can result in a high energy barrier th... Indium tin oxide(In_(2)O_(3)∶Sn)film is one of the most potential materials in the field of semiconductor industry.However,untreated In2O3∶Sn film has a low work function which can result in a high energy barrier that hinders the passage of carriers through the interface,thus leading to poor overall performance of directly prepared devices.In this study,crystalline transparent conductive In_(2)O_(3)∶Sn films were prepared by plasma exposure assisted magnetron sputtering under room temperature.Based on multiple testing methods,it can be found that the low temperature crystallization characteristics of In_(2)O_(3)∶Sn film were enhanced and the work function was effectively improved after Ar^(+)plasma exposure.The increase of the work function of In_(2)O_(3)∶Sn film was due to the increment of Sn⁃O bond on the surface brought by the transition from low oxidation state Sn^(2+)to high oxidation state Sn^(4+)under the action of high exposure. 展开更多
关键词 work function indium tin oxide low temperature crystallization plasma exposure
在线阅读 下载PDF
Grain selection and growth orientation of prior-β phase for Ti-6-4 during additive manufacturing:insights from a modeling perspective
9
作者 Wei-zhao Sun Fei-hu Shan +2 位作者 Nan-fu Zong Hong-biao Dong Tao Jing 《China Foundry》 SCIE CAS 2021年第2期83-93,共11页
The microstructure of Ti-6-4 components produced by additive manufacturing suffers from the coarse and elongated prior-β grain,which leads to a decrease of the tensile behavior and the occurrence of anisotropy.To und... The microstructure of Ti-6-4 components produced by additive manufacturing suffers from the coarse and elongated prior-β grain,which leads to a decrease of the tensile behavior and the occurrence of anisotropy.To understand and control the grain evolution,a multiscale simulation is applied to investigate the relationship between the grain selection,growth orientation,and the molten pool morphology with the different deposition layer numbers and processing parameters.The accuracy of the simulation is validated by experiments in both qualitative and quantitative ways.Results show that when the grain with unfavorable orientation loses the competitive growth with its neighbors,there will be a great chance that the blocked grain is eliminated in the following layer-and-layer deposition,which leads to the increase of the grain width.The size of the molten pool increases remarkably as the layer number increases,which lays a heavy burden on the stability of the molten pool.The analytical relationship between the molten pool morphology and the grain growth orientation is also deduced.The flat molten pool causes the grains with the <001> direction close to the building direction to have greater survival potential.Besides,decreasing the line power energy shows little effect on the stability of the molten pool and the grain growth orientation,especially when the deposited layer number is large.The revealing mechanisms will help in understanding and further controlling the grain evolution. 展开更多
关键词 additive manufacturing Ti-6-4 simulation grain selection grain growth
在线阅读 下载PDF
High cycle fatigue performance at 650℃and corresponding fracture behaviors of GH4169 joint produced by linear friction welding 被引量:2
10
作者 Shitong MA Xiawei YANG +6 位作者 Zhenguo GUO Yu SU Xinyuan HE Ju LI Jun TAO Bo XIAO Wenya LI 《Chinese Journal of Aeronautics》 2025年第1期622-637,共16页
GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 58... GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 582 MPa and 820 MPa,respectively.The HCF strength of joint reaches 400 MPa,which is slightly lower than that of Base Metal(BM),indicating reliable quality of this type of joint.The microstructure observation results show that all cracks initiate at the inside of specimens and transfer into deeper region with decrease of external stress,and the crack initiation site is related with microhardness of matrix.The Electron Backscattered Diffraction(EBSD)results of the observed regions with different distances to fracture show that plastic deformation plays a key role in HCF,and the Schmid factor of most grains near fracture exceeds 0.4.In addition,the generation of twins plays a vital role in strain concentration release and coordinating plastic deformation among grains. 展开更多
关键词 High cycle fatigue GH4169 superalloy Linear friction welding Fracture mechanism Microstructure evolution
原文传递
Construction of 1D Mn_(x)O_(y)/C@Fe_(3)O_(4) Heterostructure for Ultralight Broadband Electromagnetic Wave Absorption
11
作者 SONG Zhiming LIU Bin +2 位作者 YI Peng HAN Xuhui LIU Xiaofang 《陶瓷学报》 北大核心 2025年第4期729-741,共13页
[Background and purposes]In recent years,there has been growing attention in academia and industry on the development of high-performance electromagnetic wave(EMW)absorbing materials.However,creating lightweight broad... [Background and purposes]In recent years,there has been growing attention in academia and industry on the development of high-performance electromagnetic wave(EMW)absorbing materials.However,creating lightweight broadband absorbers remains a challenge in terms of practical applications.EMW absorbing materials primarily rely on the magnetic loss of magnetic materials and/or the dielectric loss of dielectric materials to convert EMW energy into thermal energy for dissipation.Among various magnetic materials,Fe_(3)O_(4) plays an irreplaceable role in EMW absorption due to its high saturation magnetization,low cost and compatible dielectric loss in the gigahertz frequency range.Nevertheless,the high density,large matching thickness and narrow absorption bandwidth of Fe_(3)O_(4) pose significant challenges for practical applications.In contrast,one-dimensional(1D)structures not only retain the characteristic properties of lightweight,chemical stability and high dielectric loss,but also exhibit anisotropic structures and large aspect ratios.Additionally,researchers have found that the minimum reflection loss(RL)of hollow carbon materials with mesopores is nearly four times that of non-porous hollow carbon materials and nine times that of dense carbon materials.According to Maxwell's EMW theory,composites consisting of Fe_(3)O_(4) and one-dimensional(1D)mesoporous carbon materials can leverage their respective advantages by optimizing the composition and structure of the composites to balance u,and Er,thereby enhancing EMW absorption performance.Additionally,numerous studies have demonstrated that composites composed of multi-component heterostructures significantly enhance the EAB.This enhancement is primarily ascribed to the numerous interface polarization losses generated by the additional heterostructure interfaces,which also improve the overall impedance matching of the composites.In this study,we leverage the advantages of magnetic/carbon composites,one-dimensional(1D)mesoporous carbon and multi-component heterostructures to prepare a composite of 1D mesoporous carbon-coated manganese oxide(Mn_(3)O_(4) and MnO,denoted as Mn_(x)O_(y))embedded with Fe_(3)0_(4) nanoparticles(Mn_(x)O_(y)/C@Fe_(3)O_(4)).This composite was synthesized and its formation mechanism and microstructure were analyzed in detail.At the same time,the influence of this Mn_(x)O_(y)/C@Fe_(3)O_(4) structure on EMW properties and absorbing performance was further discussed.[Methods]Firstly,MnO_(2) nanowires were synthesized by using a simple hydrothermal method.Then,the MnO_(2) nanowires served as templates for the synthesis of MnO_(2)/PDA@Fe^(3+)composites through the in-situ polymerization of dopamine and Fe^(3+)adsorption.Finally,1D mesoporous carbon-coated manganese oxide composite embedded with Fe_(3)O_(4) nanoparticles(Mn_(x)O_(y)/C@Fe_(3)O_(4))composites were obtained after heat treatment at 550℃ in N_(2).The crystal structure of the samples was analyzed using X-ray diffractometer with Cu Ka irradiation.Scanning electron microscopy(SEM)and high-resolution transmission electron microscopy(TEM)were used to observe microstructure and morphology of the samples.Nitrogen sorption measurements were obtained at 77 K on a Quantachrome surface area and pore size analyzer to measure the specific surface area and pore size distribution.XPS analysis was performed on X-ray photoelectron spectrometer with monochromatic Al Ka radiation.Magnetization curves of the samples were recorded with a Quantum Design physical property measurement system(PPMS-9)at room temperature.The electromagnetic parameters of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composites were measured using an Agilent N5230C network analyzer in the frequency range of 2-18 GHz.For electromagentic testing,the Mn,Oy/C@Fe34 composites and paraffin wax were mixed at 50°C according to the mass ratio of 15 wt.%,20 wt.%and 25 wt.%,and pressed in a special mold to make coaxial rings(inner diameter=3.04 mm,outer diameter-7 mm),which were denoted as S-1,S-2 and S-3,respectively.[Results]SEM images illustrate the preparation process of iD mesoporous carbon-coated manganese oxide embedded with Fe3O4 nanoparticles composites(Mn_(x)O_(y)/C@Fe_(3)O_(4)).Most of the manganese oxide(Mn,Oy)was reduced to granular after heat treatment,while the outer carbon layer remains its 1D morphology and the carbon layer is interspersed with Fe_(3)O_(4) nanoparticles.The diffraction peaks of MnO_(2) nanowires align well with the body-centered tetragonal a-MnO2.For the Mn_(x)O_(y)/C@Fe_(3)O_(4) composites,the signals of α-MnO_(2) disappears,followed by the emergence of Mn_(3)O_(4) and three prominent diffraction peaks for the cubic MnO.In addition,four weak diffraction peaks correspond to the magnetite Fe_(3)O_(4),consistent with the HRTEM results.The corresponding nitrogen adsorption-desorption isotherm and pore size distribution curve are presented to further analyze the mesoporous structure of composite.The surface composition and element valence states of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composite were investigated by using XPS.The polarization relaxation processes were analyzed according to the Debye theory which describes the relationship between e'and e".Besides the polarization loss,the contribution of the conduction loss plays an important role for the overall dielectric loss.The magnetization curve of Mn_(x)O_(y)/C@Fe_(3)O_(4) exhibits typical ferromagnetic behavior.The permittivity parameter(Co),defined as Co=u"(u)^(-2)f^(-1) determine the contribution of eddy current effect to magnetic loss.The tand values are all larger than those of tand,for the three samples,indicating that the loss capacity of Mn_(x)O_(y)/C@Fe_(3)O_(4) composites is mainly derived from the dielectric loss.Although tand,is smaller,it plays an important role in improving the impedance matching of Mn_(x)O_(y)/C@Fe_(3)O_(4) composites.When the filler loading is 15 wt.%,the RL of sample S-1 is about-10.0 dB at the thickness of 1.5 mm with narrow EAB.As the filler loading increased to 20 wt.%,the RL of sample S-2 reached-62.0 dB at a thickness of 2.2 mm and the EAB was 6.4 GHz at a small thickness of 1.7 mm.When the filler loading is further increased to 25 wt.%,the microwave absorption performance of sample S3 decreased significantly with a little region of RL<-10.0 dB at the thickness of 5.0 mm.The values of[Zin/Zol of the three samples at thicknesses of 1.5-5.0 mm were calculated.Due to good impedance matching of S-2,the incident EMW can enter the material and then can be dissipated through dipole polarization loss,interface polarization loss,conduction loss,eddy current loss and natural ferromagnetic resonance loss.[Conclusions]1D Mn_(x)O_(y)/C@Fe_(3)O_(4) was synthesized via a process involving the coating of polydopamine,adsorption of Fe(ll)salts and heat treatment,using MnO_(2) nanowires as templates.The multi-component heterostructure of the Mn_(x)O_(y)/C@Fe_(3)O_(4) composite(Mn_(3)O_(4),MnO,Fe_(3)O_(4),and C)enhances the interfacial interactions between the different phases,providing increased interface polarization loss under the action of an alternating electromagnetic field.The numerous defects and terminal groups in the mesoporous carbon provide abundant dipole polarization centers.Additionally,the presence of mesopores reduces the weight of the material while increasing the multiple scattering losses of the electromagnetic waves within the material.The ID carbon structure in the matrix forms a conductive network between adjacent fibers,facilitating electron migration and transition,thereby enhancing conductive loss.The incorporation of magnetic Fe_(3)O_(4) nanoparticles introduces eddy current loss and natural ferromagnetic resonance loss,thus increasing magnetic loss.Moreover,the synergistic effect between dielectric and magnetic losses improves the impedance matching of the material,leading to excellent EMW absorption performance. 展开更多
关键词 electromagnetic wave absorbing materials impedance matching ultralight BROADBAND
在线阅读 下载PDF
Plastic flow and interfacial bonding behaviors of embedded linear friction welding process:Numerical simulation combined with thermophysical experiment
12
作者 Tiejun MA Zhenguo GUO +6 位作者 Xiawei YANG Junlong JIN Xi CHEN Jun TAO Wenya LI Achilles VAIRIS Liukuan YU 《Chinese Journal of Aeronautics》 2025年第1期87-98,共12页
In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components ... In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components in aircraft.The interfacial plastic flow behavior and bonding mechanism of this process were investigated by a developed coupling EulerianLagrangian numerical model using software ABAQUS and a novel thermo-physical simulation method with designed embedded hot compression specimen.In addition,the formation mechanism and control method of welding defects caused by uneven plastic flow were discussed.The results reveal that the plastic flow along oscillating direction of this process is even and sufficient.In the direction perpendicular to oscillation,thermo-plastic metals mainly flow downward along welding interface under coupling of shear stress and interfacial pressure,resulting in the interfacial plastic zone shown as an inverted“V”shape.The upward plastic flow in this direction is relatively weak,and only a small amount of flash is extruded from top of joint.Moreover,the wedge block and welding components at top of joint are always in un-steady friction stage,leading to nonuniform temperature field distribution and un-welded defects.According to the results of numerical simulation,high oscillating frequency combined with low pressure and small amplitude is considered as appropriate parameter selection scheme to improve the upward interfacial plastic flow at top of joint and suppress the un-welded defects.The results of thermo-physical simulation illustrate that continuous dynamic recrystallization(CDRX)induces the bonding of interface,accompanying by intense dislocation movement and creation of many low-angle grain boundaries.In the interfacial bonding area,grain orientation is random with relatively low texture density(5.0 mud)owing to CDRX. 展开更多
关键词 Embedded linear friction welding Plastic flow Interfacial bonding behavior Numerical simulation Thermo-physical simulation Temperature field Dynamic recrystallization
原文传递
High-temperature tensile failure mechanism of RTM-made composite T-joints
13
作者 Yujin Zhang Evance Obara +5 位作者 Shuai Wang Longyu Zhu Weidong Li Shiyun Lin Zhilin Han Chuyang Luo 《Defence Technology(防务技术)》 2025年第7期371-386,共16页
This paper focuses on the high-temperature tensile failure mechanism of RTM(resin transfer moulding)-made symmetric and asymmetric composite T-joints.The failure modes as well as the load-displacement curves of symmet... This paper focuses on the high-temperature tensile failure mechanism of RTM(resin transfer moulding)-made symmetric and asymmetric composite T-joints.The failure modes as well as the load-displacement curves of symmetric(three specimens)and asymmetric(three specimens)composite T-joints were determined by tensile tests at room and high temperatures.Progressive damage models(PDMs)of symmetric and asymmetric composite T-joints at room and high temperatures were established based on mixed criteria,and the result predicted from the aforementioned PDMs were compared with experimental data.The predicted initial and final failure loads and failure modes are in good agreement with the experimental results.The failure mechanisms of composite T-joints at different temperatures were investigated by scanning electron microscopy.The results reveal that while the failure mode of asymmetric T-joints at high temperatures resembles that at room temperature,there is a difference in the failure modes of symmetric T-joints.The ultimate failure load of symmetric and asymmetric T-joints at elevated temperatures increases and reduces by 18.4%and 4.97%,albeit with a more discrete distri-bution.This work is expected to provide us with more knowledge about the usability of composite T-joints in elevated temperature environments. 展开更多
关键词 COMPOSITE Failute mechanism T-JOINT High temperature Resin transfer moulding
在线阅读 下载PDF
Robust and resilient Mg-NiTi interpenetrating-phase composites with triply periodic minimal surface configuration
14
作者 Shiyu Zhong Chao Han +7 位作者 Zeyu Qin Amr Osman Lei Zhang Ying Li Shuo Wang Yulun Luo Dingfei Zhang Jian Lu 《Journal of Magnesium and Alloys》 2025年第9期4379-4394,共16页
Magnesium(Mg)-based materials are promising for lightweight structural applications.However,their widespread adoption is significantly constrained by inherent limitations in mechanical properties.To address this chall... Magnesium(Mg)-based materials are promising for lightweight structural applications.However,their widespread adoption is significantly constrained by inherent limitations in mechanical properties.To address this challenge,this study introduces a novel Mg-based interpenetratingphase composite reinforced with a nickel-titanium(NiTi)scaffold featuring a triply periodic minimal surface(TPMS)configuration.By combining experimental investigations with finite element simulations,we systematically elucidate the dual impact of the scaffold’s unit cell size(a)on manufacturing viability and mechanical enhancement.To compensate for compromised infiltration dynamics induced by decreasing a,a critical permeability threshold of 1×10^(-8) m^(2) is proposed for achieving successful composite fabrication.Mechanically,reducing a strengthens the interaction between the scaffold and matrix:the TPMS-configured NiTi scaffolds improve stress transfer,deflect crack propagation,and facilitate damage delocalization,whereas the Mg matrix preserves structural integrity and enables load redistribution.Consequently,the composites significantly outperform pure Mg,and lowering a leads to more substantial enhancements in compressive strength,energy dissipation,and deformation recoverability.This study offers valuable insight into the design and fabrication of highperformance Mg-based materials for structural and biomedical applications. 展开更多
关键词 Additive manufacturing Magnesium composites Shape memory alloy Triply periodic minimal surface Mechanical properties
在线阅读 下载PDF
Trajectory Planning Algorithm Based on Quaternion for 6-DOF Aircraft Wing Automatic Position and Pose Adjustment Method 被引量:13
15
作者 ZhuYongguo Huang Xiang +1 位作者 Fang Wei Li Shuanggao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第6期707-714,共8页
A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three... A 6-degree of freedom (6-DOF) aircraft wing position and pose automatic adjustment method is presented to improve ARJ21 wing-fuselage connection precision and efficiency. Wing position and pose are adjusted by three pillars which are driven by six high-precision servo motors. During the adjustment process, wing is tracked and positioned by laser tracker. Wing initial position and pose are calibrated by using the measurement coordinates of assembly reference points. Wing target position and pose are calculated according to wing initial, fuselage position and pose, and relative position and pose requirements between wing and fuselage for the connection. Combining Newton-Euler method with quaternion position and pose analyzing method, the inverse kinematics of servo motors, together with the adjustment system dynamics is obtained. Wing quintic polynomial trajectory planning algorithm based on quatemion is proposed; the initial, target position and pose need to be solved and the intermediate moving path is uncertain. Simulation results show that the adjustment method has good dynamic characteristics and satisfies engineering requirements. Preliminary engineering application indicates that ARJ21 wing adjustment efficiency and precision are improved by using the proposed method. 展开更多
关键词 AIRCRAFT assembly calibration position and pose adjustment trajectory planning QUATERNION
原文传递
Prediction of forming limit curve(FLC) for Al–Li alloy 2198-T3 sheet using diferent yield functions 被引量:7
16
作者 Li Xiaoqiang Song Nan +1 位作者 Guo Guiqiang Sun Zhonggang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1317-1323,共7页
The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of th... The Forming Limit Curve (FLC) of the third generation aluminum-lithium (Al-Li) alloy 2198-T3 is measured by conducting a hemispherical dome test with specimens of different widths. The theoretical prediction of the FLC of 2198-T3 is based on the M-K theory utilizing respectively the von Mises, Hill'48, Hosford and Barlat 89 yield functions, and the different predicted curves due to different yield functions are compared with the experimentally measured FLC of 2198-T3. The results show that though there are differences among the four predicted curves, yet they all agree well with the experimentally measured curve. In the area near the planar strain state, the predicted curves and experimentally measured curve are very close. The predicted curve based on the Hosford yield function is more accurate under the tension-compression strain states described in the left part of the FLC, while the accuracy is better for the predicted curve based on Hill'48 yield function under the tension-tension strain states shown in the right part. 展开更多
关键词 Aluminum-lithium alloy FRACTURE Forming limit curve M-K theory Theoretical prediction
原文传递
Tensile behavior of Ti-6Al-4V alloy fabricated by selective laser melting: effects of microstructures and as-built surface quality 被引量:12
17
作者 pan tao huai-xue li +3 位作者 bai-ying huang quan-dong hu shui-li gong qing-yan xu 《China Foundry》 SCIE 2018年第4期243-252,共10页
Selective laser melting (SLM) is a powerful additive manufacturing (AM) technology, of which the most prominent advantage is the ability to produce components with a complex geometry. The service performances of t... Selective laser melting (SLM) is a powerful additive manufacturing (AM) technology, of which the most prominent advantage is the ability to produce components with a complex geometry. The service performances of the SLM-processed components depend on the microstructure and surface quality. In this work, the microstructures, mechanical properties, and fracture behaviors of SLM-processed Ti-6AI-4V alloy under machined and as-built surfaces after annealing treatments and hot isostatic pressing (HIP) were investigated. The microstructures were analyzed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The mechanical properties were measured by tensile testing at room temperature. The results indicate that the as-deposited microstructures are characterized by columnar grains and fine brittle martensite and the as- deposited properties present high strength, low ductility and obvious anisotropy. After annealing at 800-900~C for 2-4 h and HIP at 920~C/100MPa for 2 h, the brittle martensite could be transformed into ductile lamellar (a+~) microstructure and the static tensile properties of SLM-processed Ti-6AI-4V alloys in the machined condition could be comparable to that of wrought materials. Even after HIP treatment, the as-built surfaces could decrease the ductility and reduction of area of SLM-processed fi-6AI-4V alloys to 9.2% and 20%, respectively. The crack initiation could occur at the columnar grain boundaries or at the as-built surfaces. The lamellar (a+13) microstructures and columnar grains could hinder or distort the crack propagation path during tensile tests. 展开更多
关键词 selective laser melting TI-6AL-4V MICROSTRUCTURE mechanical properties FRACTURE surface quality
在线阅读 下载PDF
Deep Learning in Sheet Metal Bending With a Novel Theory-Guided Deep Neural Network 被引量:6
18
作者 Shiming Liu Yifan Xia +3 位作者 Zhusheng Shi Hui Yu Zhiqiang Li Jianguo Lin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期565-581,共17页
Sheet metal forming technologies have been intensively studied for decades to meet the increasing demand for lightweight metal components.To surmount the springback occurring in sheet metal forming processes,numerous ... Sheet metal forming technologies have been intensively studied for decades to meet the increasing demand for lightweight metal components.To surmount the springback occurring in sheet metal forming processes,numerous studies have been performed to develop compensation methods.However,for most existing methods,the development cycle is still considerably time-consumptive and demands high computational or capital cost.In this paper,a novel theory-guided regularization method for training of deep neural networks(DNNs),implanted in a learning system,is introduced to learn the intrinsic relationship between the workpiece shape after springback and the required process parameter,e.g.,loading stroke,in sheet metal bending processes.By directly bridging the workpiece shape to the process parameter,issues concerning springback in the process design would be circumvented.The novel regularization method utilizes the well-recognized theories in material mechanics,Swift’s law,by penalizing divergence from this law throughout the network training process.The regularization is implemented by a multi-task learning network architecture,with the learning of extra tasks regularized during training.The stress-strain curve describing the material properties and the prior knowledge used to guide learning are stored in the database and the knowledge base,respectively.One can obtain the predicted loading stroke for a new workpiece shape by importing the target geometry through the user interface.In this research,the neural models were found to outperform a traditional machine learning model,support vector regression model,in experiments with different amount of training data.Through a series of studies with varying conditions of training data structure and amount,workpiece material and applied bending processes,the theory-guided DNN has been shown to achieve superior generalization and learning consistency than the data-driven DNNs,especially when only scarce and scattered experiment data are available for training which is often the case in practice.The theory-guided DNN could also be applicable to other sheet metal forming processes.It provides an alternative method for compensating springback with significantly shorter development cycle and less capital cost and computational requirement than traditional compensation methods in sheet metal forming industry. 展开更多
关键词 Data-driven deep learning deep learning deep neural network(DNN) intelligent manufacturing machine learning sheet metal forming SPRINGBACK theory-guided deep learning theoryguided regularization
在线阅读 下载PDF
An investigation on adaptively machining the leading and tailing edges of an SPF/DB titanium hollow blade using free-form deformation 被引量:11
19
作者 Zhengcai ZHAO Jiuhua XU +1 位作者 Yucan FU Zhiqiang LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期178-186,共9页
Titanium hollow blades are characterized with lightweight and high structural strength, which are widely used in advanced aircraft engines nowadays. Superplastic forming/diffusion bonding (SPF/DB) combined with nume... Titanium hollow blades are characterized with lightweight and high structural strength, which are widely used in advanced aircraft engines nowadays. Superplastic forming/diffusion bonding (SPF/DB) combined with numerical control (NC) milling is a major solution for manufacturing titanium hollow blades. Due to the shape deviation caused by multiple heat and pressure cycles in the SPF/DB process, it is hard to manufacture the leading and tailing edges by the milling process. This paper presents a new adaptive machining approach using free-form deformation to solve this problem. The actual SPF/DB shape of a hollow blade was firstly inspected by an on-machine measurement method. The measured point data were matched to the nominal SPF/DB shape with an improved ICP algorithm afterwards, by which the point-pairs between the measurement points and their corresponding points on the nominal SPF/DB shape were established, and the maximum modification amount of the final nominal shape was constrained. Based on the displacements between the point-pairs, an accurate FFD volume was iteratively calculated. By embedding the final nominal shape in the deformation space, a new final shape of the hollow blade was built. Finally, a series of measurement and machining tests was performed, the results of which validated the feasibility of the proposed adaptive machining approach. 展开更多
关键词 Adaptive machining Blade geometry Free-form deformation Reconstruction TITANIUM
原文传递
Springback prediction of TC4 titanium alloy V-bending under hot stamping condition 被引量:8
20
作者 YANG Xiao-ming DANG Li-ming +2 位作者 WANG Yao-qi ZHOU Jing WANG Bao-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2578-2591,共14页
In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback ... In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα. 展开更多
关键词 titanium alloy hot stamping SPRINGBACK FE modelling analytical model
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部