Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis wa...Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis was performed for a coal-to-carbonfiber manufacture process developed at the University of Kentucky’s Center for Applied Energy Research.According to this process,coal,with decant oil as the solvent,was converted to mesophase pitch via solvent extraction,and the mesophase pitch was subsequently converted to carbon fiber.The total cost to produce carbon fibers from coal and decant oil via the solvent extraction process was estimated to be$11.50/kg for 50,000-tow pitch carbon fiber with a production volume of 3750 MT/year.The estimated carbon fiber cost was significantly lower than the current commercially available PAN-based carbon fiber price($20–$30/kg).With decant oil recycling rates of 50%and 70%in the solvent extraction process,the manufacturing cost of carbon fiber was estimated to be$9.90/kg and$9.50/kg of carbon fiber,respectively.A cradle-to-gate energy assessment revealed that carbon fiber derived from coal exhibited an embodied energy of 510 MJ/kg,significantly lower than that of conventionally produced carbon fiber from PAN.This notable difference is primarily attributed to the substantially higher conversion rate of coal-based mesophase pitch fibers into carbon fiber,surpassing PAN fibers by 1.6 times.These findings indicate that using coal for carbon fiber production through solvent extraction methods could offer a more energy-efficient and cost-competitive alternative to the traditional PAN based approach.展开更多
Sustainable aviation fuel(SAF)production from biomass and biowaste streams is an attractive option for decarbonizing the aviation sector,one of the most-difficult-to-electrify transportation sectors.Despite ongoing co...Sustainable aviation fuel(SAF)production from biomass and biowaste streams is an attractive option for decarbonizing the aviation sector,one of the most-difficult-to-electrify transportation sectors.Despite ongoing commercialization efforts using ASTM-certified pathways(e.g.,lipid conversion,Fischer-Tropsch synthesis),production capacities are still inadequate due to limited feedstock supply and high production costs.New conversion technologies that utilize lignocellulosic feedstocks are needed to meet these challenges and satisfy the rapidly growing market.Combining bio-and chemo-catalytic approaches can leverage advantages from both methods,i.e.,high product selectivity via biological conversion,and the capability to build C-C chains more efficiently via chemical catalysis.Herein,conversion routes,catalysis,and processes for such pathways are discussed,while key challenges and meaningful R&D opportunities are identified to guide future research activities in the space.Bio-and chemo-catalytic conversion primarily utilize the carbohydrate fraction of lignocellulose,leaving lignin as a waste product.This makes lignin conversion to SAF critical in order to utilize whole biomass,thereby lowering overall production costs while maximizing carbon efficiencies.Thus,lignin valorization strategies are also reviewed herein with vital research areas identified,such as facile lignin depolymerization approaches,highly integrated conversion systems,novel process configurations,and catalysts for the selective cleavage of aryl C-O bonds.The potential efficiency improvements available via integrated conversion steps,such as combined biological and chemo-catalytic routes,along with the use of different parallel pathways,are identified as key to producing all components of a cost-effective,100%SAF.展开更多
Carbon and oxygen-rich corrosion barrier layer formed on Mg by a simple and scalable CO_(2) atmospheric plasma(CO_(2)-AP)process.The reactive CO_(2)-AP interacts with the Mg surface and forms a unique layered structur...Carbon and oxygen-rich corrosion barrier layer formed on Mg by a simple and scalable CO_(2) atmospheric plasma(CO_(2)-AP)process.The reactive CO_(2)-AP interacts with the Mg surface and forms a unique layered structure with the top MgCO_(3)/MgO-intermixed particulates pillars and the bottom dense layer.The surface features were simultaneously formed on the nano-/micro-structured MgO layer by carbonate molecules,plasma-active CO_(2) molecules,and/or other volatile organic compounds on the nano-/micro-structured MgO particle layer.The resulting surfaces after CO_(2)-AP were either hydrophobic or hydrophilic and exhibited lower anodic current or high resistance for Mg corrosion.For the hydrophobic surfaces of CO_(2)-AP treated Mg,molecular dynamic simulations were performed to understand the origin of hydrophobicity and identified that the amorphous carbon layers formed on the Mg surface are the source.The environmentally benign abundant-gas-based process enables the cost reduction associated with waste treatment,generation of by-product,and supply of raw material.展开更多
The polarity of solvents plays a critical role in various research applications,particularly in their solubilities.Polarity is conveniently characterized by the Kamlet-Taft parameters that is,the hydrogen bonding acid...The polarity of solvents plays a critical role in various research applications,particularly in their solubilities.Polarity is conveniently characterized by the Kamlet-Taft parameters that is,the hydrogen bonding acidity(α),the basicity(β),and the polarizability(π^(*)).Obtaining Kamlet-Taft parameters is very important for designer solvents,namely ionic liquids(ILs)and deep eutectic solvents(DESs).However,given the unlimited theoretical number of combinations of ionic pairs in ILs and hydrogen-bond donor/acceptor pairs in DESs,experimental determination of their Kamlet-Taft parameters is impractical.To address this,the present study developed two different machine learning(ML)algorithms to predict Kamlet-Taft parameters for designer solvents using quantum chemically derived input features.The ML models developed in the present study showed accurate predictions with high determination coefficient(R^(2))and low root mean square error(RMSE)values.Further,in the context of present interest in the circular bioeconomy,the relationship between the basicities and acidities of designer solvents and their ability to dissolve lignin and carbon dioxide(CO_(2))is discussed.Our method thus guides the design of effective solvents with optimal Kamlet-Taft parameter values dissolving and converting biomass and CO_(2)into valuable chemicals.展开更多
Metal additive manufacturing(AM)offers flexibility and cost-effectiveness for printing complex parts but is limited to few alloys.Qualifying new alloys requires process parameter optimisation to produce consistent,hig...Metal additive manufacturing(AM)offers flexibility and cost-effectiveness for printing complex parts but is limited to few alloys.Qualifying new alloys requires process parameter optimisation to produce consistent,high-quality components.High-resolution X-ray computed tomography(XCT)has not been effective for this task due to artifacts,slow scan speed,and costs.We propose a deep learning-based approach for rapid XCT acquisition and reconstruction of metal AM parts,leveraging computer-aided design models and physics-based simulations of nonlinear interactions between X-ray radiation and metals.This significantly reduces beam hardening and common XCT artifacts.We demonstrate high-throughput characterisation of over a hundred AlCe alloy components,quantifying improvements in characterisation time and quality compared to high-resolution microscopy and pycnometry.Our approach facilitates investigating the impact of process parameters and their geometry dependence in metal AM.展开更多
Considering the growing concerns about natural resource depletion,energy inequality,and climate crises,biomassderived materials—the most abundant organic matter on the planet—have received a lot of attention as a po...Considering the growing concerns about natural resource depletion,energy inequality,and climate crises,biomassderived materials—the most abundant organic matter on the planet—have received a lot of attention as a potential alternative to petroleum-based plastics.Herbaceous biomasses and extracted cellulose have recently been extensively used in the development of high-performance and multifunctional materials.Herbaceous biomass has sparked interest due to its species diversity,abundance,low cost,lightweight,and sustainability.This review discusses the structure versus property relationships of various sources of herbaceous biomasses(e.g.,sugarcane,straw,and bamboo)and their extracted biomaterials,as well as the latest emerging applications from macro-and microscales to nanoscales.High-strength structural materials,porous carbon materials,multichannel materials,and flexible materials are examples of these applications,which include sustainable electronics,environmentally friendly energy harvesting,smart materials,and biodegradable structural buildings.展开更多
基金sponsored by the US Department of Energy Fossil Energy and Carbon Management Program,project FEAA157 under contract DE-AC05-00OR22725 with UTBattelle,LLC.
文摘Coal is a versatile energy resource and was a driver of the industrial revolution that transformed the economies of Europe and North America and the trajectory of civilization.In this work,a technoeconomic analysis was performed for a coal-to-carbonfiber manufacture process developed at the University of Kentucky’s Center for Applied Energy Research.According to this process,coal,with decant oil as the solvent,was converted to mesophase pitch via solvent extraction,and the mesophase pitch was subsequently converted to carbon fiber.The total cost to produce carbon fibers from coal and decant oil via the solvent extraction process was estimated to be$11.50/kg for 50,000-tow pitch carbon fiber with a production volume of 3750 MT/year.The estimated carbon fiber cost was significantly lower than the current commercially available PAN-based carbon fiber price($20–$30/kg).With decant oil recycling rates of 50%and 70%in the solvent extraction process,the manufacturing cost of carbon fiber was estimated to be$9.90/kg and$9.50/kg of carbon fiber,respectively.A cradle-to-gate energy assessment revealed that carbon fiber derived from coal exhibited an embodied energy of 510 MJ/kg,significantly lower than that of conventionally produced carbon fiber from PAN.This notable difference is primarily attributed to the substantially higher conversion rate of coal-based mesophase pitch fibers into carbon fiber,surpassing PAN fibers by 1.6 times.These findings indicate that using coal for carbon fiber production through solvent extraction methods could offer a more energy-efficient and cost-competitive alternative to the traditional PAN based approach.
基金supported by the Center for Bioenergy Innovation(CBI)supported by the Office of Biological and Environmental Research in the DOE Office of Science and led by Oak Ridge National Laboratory.Oak Ridge National Laboratory is managed by UT-Battelle,LLC for the US DOE under Contract Number DE-AC05-00OR22725+2 种基金authored in part by the Na-tional Renewable Energy Laboratory,operated by Alliance for Sustainable Energy,LLC,for the U.S.Department of Energy(DOE)under Contract No.DE-LC-000L054provided by the U.S.Department of Energy(DOE),Office of Energy Efficiency and Renewable Energy(EERE),and Bioenergy Technologies Office(BETO)at the Pacific Northwest National Laboratory(PNNL)under Contract No.DE-AC05-76RL01830supported by Laboratory Directed Research and Development(LDRD)funding from Argonne National Laboratory,provided by the Director,Office of Science,of the U.S.Department of Energy under Contract No.DE-AC02-06CH11357。
文摘Sustainable aviation fuel(SAF)production from biomass and biowaste streams is an attractive option for decarbonizing the aviation sector,one of the most-difficult-to-electrify transportation sectors.Despite ongoing commercialization efforts using ASTM-certified pathways(e.g.,lipid conversion,Fischer-Tropsch synthesis),production capacities are still inadequate due to limited feedstock supply and high production costs.New conversion technologies that utilize lignocellulosic feedstocks are needed to meet these challenges and satisfy the rapidly growing market.Combining bio-and chemo-catalytic approaches can leverage advantages from both methods,i.e.,high product selectivity via biological conversion,and the capability to build C-C chains more efficiently via chemical catalysis.Herein,conversion routes,catalysis,and processes for such pathways are discussed,while key challenges and meaningful R&D opportunities are identified to guide future research activities in the space.Bio-and chemo-catalytic conversion primarily utilize the carbohydrate fraction of lignocellulose,leaving lignin as a waste product.This makes lignin conversion to SAF critical in order to utilize whole biomass,thereby lowering overall production costs while maximizing carbon efficiencies.Thus,lignin valorization strategies are also reviewed herein with vital research areas identified,such as facile lignin depolymerization approaches,highly integrated conversion systems,novel process configurations,and catalysts for the selective cleavage of aryl C-O bonds.The potential efficiency improvements available via integrated conversion steps,such as combined biological and chemo-catalytic routes,along with the use of different parallel pathways,are identified as key to producing all components of a cost-effective,100%SAF.
基金the US Department of Energy’s(DOE’s)Office of Energy Efficiency and Renewable Energy,Vehicle Technology Office,Powertrain Materials Core and Light Metals Core ProgramsSample characterization is also partially supported by the Technology Commercialization Fund Fiscal Year 2020 of DOE’s Office of Technology Transitionsby the Creative Materials Discovery Program through the National Research Foundation of Korea,with computational modeling of amorphous carbons funded by the Ministry of Science,ICT and Future Planning(NRF-2016M3D1A1919181)。
文摘Carbon and oxygen-rich corrosion barrier layer formed on Mg by a simple and scalable CO_(2) atmospheric plasma(CO_(2)-AP)process.The reactive CO_(2)-AP interacts with the Mg surface and forms a unique layered structure with the top MgCO_(3)/MgO-intermixed particulates pillars and the bottom dense layer.The surface features were simultaneously formed on the nano-/micro-structured MgO layer by carbonate molecules,plasma-active CO_(2) molecules,and/or other volatile organic compounds on the nano-/micro-structured MgO particle layer.The resulting surfaces after CO_(2)-AP were either hydrophobic or hydrophilic and exhibited lower anodic current or high resistance for Mg corrosion.For the hydrophobic surfaces of CO_(2)-AP treated Mg,molecular dynamic simulations were performed to understand the origin of hydrophobicity and identified that the amorphous carbon layers formed on the Mg surface are the source.The environmentally benign abundant-gas-based process enables the cost reduction associated with waste treatment,generation of by-product,and supply of raw material.
基金supported by the U.S.Department of Energy,Office of Science,Biological and Environmental Research Program under award#ERKP752,and the DOE Office of Science,Office of Basic Energy Sciences,Division of Chemical Sciences,Geosciences,and Biosciences(CSGB)(Award No.DE-SC0022214FWP 3ERKCG25)This manuscript has been authored by UT-Battelle,LLC,under contract DEAC05-00OR22725 with the US Department of Energy(DOE)。
文摘The polarity of solvents plays a critical role in various research applications,particularly in their solubilities.Polarity is conveniently characterized by the Kamlet-Taft parameters that is,the hydrogen bonding acidity(α),the basicity(β),and the polarizability(π^(*)).Obtaining Kamlet-Taft parameters is very important for designer solvents,namely ionic liquids(ILs)and deep eutectic solvents(DESs).However,given the unlimited theoretical number of combinations of ionic pairs in ILs and hydrogen-bond donor/acceptor pairs in DESs,experimental determination of their Kamlet-Taft parameters is impractical.To address this,the present study developed two different machine learning(ML)algorithms to predict Kamlet-Taft parameters for designer solvents using quantum chemically derived input features.The ML models developed in the present study showed accurate predictions with high determination coefficient(R^(2))and low root mean square error(RMSE)values.Further,in the context of present interest in the circular bioeconomy,the relationship between the basicities and acidities of designer solvents and their ability to dissolve lignin and carbon dioxide(CO_(2))is discussed.Our method thus guides the design of effective solvents with optimal Kamlet-Taft parameter values dissolving and converting biomass and CO_(2)into valuable chemicals.
基金This manuscript has been authored by UT-Battelle,LLC,under contract DE-AC05-00OR22725 with the US Department of Energy(DOE)Research sponsored by the US Department of Energy,Office of Energy Efficiency and Renewable Energy,Advanced Manufacturing Office and Technology Commercialisation Fund(TCF-21-24881)+1 种基金under contract DE-AC05-00OR22725 with UT-Battelle,LLCThe US government retains and the publisher,by accepting the article for publication,acknowledges that the US government retains a nonexclusive,paid-up,irrevocable,worldwide license to publish or reproduce the published form of this manuscript,or allow others to do so,for US government purposes.DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan).
文摘Metal additive manufacturing(AM)offers flexibility and cost-effectiveness for printing complex parts but is limited to few alloys.Qualifying new alloys requires process parameter optimisation to produce consistent,high-quality components.High-resolution X-ray computed tomography(XCT)has not been effective for this task due to artifacts,slow scan speed,and costs.We propose a deep learning-based approach for rapid XCT acquisition and reconstruction of metal AM parts,leveraging computer-aided design models and physics-based simulations of nonlinear interactions between X-ray radiation and metals.This significantly reduces beam hardening and common XCT artifacts.We demonstrate high-throughput characterisation of over a hundred AlCe alloy components,quantifying improvements in characterisation time and quality compared to high-resolution microscopy and pycnometry.Our approach facilitates investigating the impact of process parameters and their geometry dependence in metal AM.
基金This manuscript was authored in part by UT-Battelle LLC under contract DE-AC05-00OR22725 with DOE.
文摘Considering the growing concerns about natural resource depletion,energy inequality,and climate crises,biomassderived materials—the most abundant organic matter on the planet—have received a lot of attention as a potential alternative to petroleum-based plastics.Herbaceous biomasses and extracted cellulose have recently been extensively used in the development of high-performance and multifunctional materials.Herbaceous biomass has sparked interest due to its species diversity,abundance,low cost,lightweight,and sustainability.This review discusses the structure versus property relationships of various sources of herbaceous biomasses(e.g.,sugarcane,straw,and bamboo)and their extracted biomaterials,as well as the latest emerging applications from macro-and microscales to nanoscales.High-strength structural materials,porous carbon materials,multichannel materials,and flexible materials are examples of these applications,which include sustainable electronics,environmentally friendly energy harvesting,smart materials,and biodegradable structural buildings.