In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were inve...In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were investigated.The results showed that the three materials had satisfactory compatibility in the composite film.Addition of EC and zein effectively improved the mechanical properties,thermodynamic properties,surface hydrophilicity,oxygen permeability,and degradation properties of PLA films.When the ratio of PLA to EC was 3:7,the tensile strength and elongation at break reached maximum values of 16.6 MPa and 30.5%,respectively.Moreover,under different conditions,the composite film exhibited better degradability than the PLA film.The composite film with a 3:7 ratio of PLA to EC had the best performance,with a degradation rate of 21.75%after 84 days.Chilled fresh meat wrapped with the composite film showed significantly improved antioxidant,antibacterial,and water-holding properties.展开更多
High-power laser melting deposition stands as a viable solution for the high-quality and efficient manufacturing of large-sized titani-um alloy components.This article explores how laser influences the quality of depo...High-power laser melting deposition stands as a viable solution for the high-quality and efficient manufacturing of large-sized titani-um alloy components.This article explores how laser influences the quality of deposited layers when operating within a laser power range of 3-8 kW,and a H-shaped TC4 component with half-meter high was successfully fabricated by the laser melting deposition technology with a power of 5 kW,exhibiting a well-formed surface.In addition,the microstructure and properties of deposited TC4 components were examined.The as-deposited component is mainly composed of coarse columnar crystals.However,the distribu-tion and size of grains are particularly uneven with a range of 1-5 mm in length.The deposited TC4 is made up of lots of basketweave structure and a bit Widmanstatten structures at the grain boundaries.What’s more,lath-shapedαphase and a small amount ofβphase can be found in the grain.There is no significant disparity in grain size along the height direction;however,the heat accumula-tion resulting from deposition leads to a reduced length-to-width ratio ofα-laths in the bottom region.The tensile performance of samples from the top area marginally surpasses that of the bottom,and the tensile performance in the vertical direction is marginally better than that in the horizontal direction.According to the prevailing GB/T 38915-2020 and HB 5432-89 standards,the tensile properties of the fabricated components,sampled from various regions and directions,exceed those of forgings.The direction of sampling has weak influence on impact energy;however,fatigue crack propagation experiments indicate that cracks are more pre-valent and propagate at a slightly faster rate in horizontally-oriented specimens,a phenomenon attributed to the combined effects of grain morphology and microstructure.展开更多
Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) kn...Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) knowledge,tools, rules, and methodologies, which has limited the penetration and impact of AM in industry. In this paper a comprehensive review of design and manufacturing strategies for Fused Deposition Modelling(FDM) is presented.Consequently, several DfAM strategies are proposed and analysed based on existing research works and the operation principles, materials, capabilities and limitations of the FDM process. These strategies have been divided into four main groups: geometry, quality, materials and sustainability. The implementation and practicality of the proposed DfAM is illustrated by three case studies. The new proposed DfAM strategies are intended to assist designers and manufacturers when making decisions to satisfy functional needs, while ensuring manufacturability in FDM systems.Moreover, many of these strategies can be applied or extended to other AM processes besides FDM.展开更多
With sustaining change of production mode,layout planning is no longer a thing built once for all.Cellular layout(CL) is becoming a hotspot in the research field of manufacturing system layout.Traditional researches o...With sustaining change of production mode,layout planning is no longer a thing built once for all.Cellular layout(CL) is becoming a hotspot in the research field of manufacturing system layout.Traditional researches on layout planning are mainly concentrating on aspects of layout arithmetic,style and evaluation,etc.Relatively seldom efforts are paid to CL and its specific problems as cell formation(CF),equipment sharing and CL analysis.Through problem analyzing of layout in cellular manufacturing system(CMS),research approach of cell formation,interactive layout and layout analysis threaded with process interconnection relationship(PIR) is proposed.Typical key technologies in CL like CF technology based on similarity analysis of part processes,interactive visual layout technology,layout evaluation technology founded on PIR analysis and algorithm of cell equipment sharing are put forward.Against the background of one enterprise which encounters problems of low utility of key equipments and disperse material logistic,an example of four-cell layout is given.The CL adjustment and analysis results show that equipment with high level of sharing degree should be disposed around the boundary of its main cell,and be near to other sharing cells as possible; process route should be centralized by all means,so equipment adjustment is to be implemented along direction that route intersection can be decreased; giving consideration to the existence of discrete cell,logistic route and its density should be centralized to cells formed.The proposed research can help improve equipment utility and material logistic efficiency of CL,and can be popularized to other application availably.展开更多
What is pursued by multi-product type and variant volume(MPTVV) production is rapid response and quick switching,so that structure of transferring line in manufacturing system is no longer unalterable.Cell formation...What is pursued by multi-product type and variant volume(MPTVV) production is rapid response and quick switching,so that structure of transferring line in manufacturing system is no longer unalterable.Cell formation(CF) algorithm is the key technology of cellular manufacturing system(CMS).Currently,CF methods are mainly extended on the idea of group technology(GT) that covers a lot on analysis of resource capability matching and its algorithm.Various constraints are considered,but seldom utilized comprehensively.Aimed to the problem of manufacturing cell(MC) formation under MPTVV production mode,integrated formation technologies for typical MC as group type of cell(GC),flow type of cell(FC) and inherited cell(IC) are presented based on technical analysis of CF.Oriented to practical production constraints like delivery time,product batch,equipment ability,key machine,key part and machine sharing,etc,an integrated formation model is constructed and internal interrelations of these constraints are analyzed synthetically.Ulteriorly,formation goals of types of MCs and their formation procedures under joint effect of formation constraints and rules are spread.In case study,three highly balanced GC are formed first;then FC formation are implemented based on the same data which indicate good balancing effect of cell load and flow-style production for key tasks;When task is adjusted,a new scheme is constructed on the result of FC configuration by using IC formation method,and more optimal performance of flow-style production is manifested.The proposed comparative study of different type of cells strongly explains the validation of integrated MC formation in support of rapid manufacturing resource transformation under MPTVV production mode.展开更多
Diamond tools with orderly arrangements of diamond grits have drawn considerable attention in the machining field owing to their outstanding advantages of high sharpness and long service life.This diamond super tool,a...Diamond tools with orderly arrangements of diamond grits have drawn considerable attention in the machining field owing to their outstanding advantages of high sharpness and long service life.This diamond super tool,as well as the manufacturing equipment,has been unavailable to Chinese enterprises for a long time due to patents.In this paper,a diamond blade segment with a 3D lattice of diamond grits was additively manufactured using a new type of cold pressing equipment(AME100).The equipment,designed with a rotary working platform and 16 molding stations,can be used to additively manufacture segments with diamond grits arranged in an orderly fashion,layer by layer;under this additive manufacturing process,at least 216000 pcs of diamond green segments with five orderly arranged grit layers can be produced per month.The microstructure of the segment was observed via SEM and the diamond blade fabricated using these segments was compared to other commercial cutting tools.The experimental results showed that the 3D lattice of diamond grits was formed in the green segment.The filling rate of diamond grits in the lattice could be guaranteed to be above 95%;this is much higher than the 90%filling rate of the automatic array system(ARIX).When used to cut stone,the cutting amount of the blade with segments made by AME100 is two times that of ordinary tools,with the same diamond concentration.When used to dry cut reinforced concrete,its cutting speed is 10%faster than that of ARIX.Under wet cutting conditions,its service life is twice that of ARIX.By applying the machine vision online inspection system and a special needle jig with a negative pressure system,this study developed a piece of additive manufacturing equipment for efficiently fabricating blade segments with a 3D lattice of diamond grits.展开更多
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT...Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.展开更多
BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To in...BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To investigate the mechanism of PA in treating GC via the combination of network pharmacology and experimental verification.METHODS The GeneCards and OMIM databases were used to derive the GC targets,while the Pharm Mapper database provided the PA targets.Utilizing the STRING database,a protein-protein interaction network was constructed and core targets were screened.The analyses of Gene Ontology,Kyoto Encyclopedia of Genes and Genomes(KEGG),and gene set enrichment analysis were conducted,and molecular docking and clinical correlation analyses were performed on the core targets.Ultimately,the network pharmacology findings were validated through in vitro cell assays,encompassing assessments of cell viability,apoptosis,cell cycle,cloning,and western blot analysis.RESULTS According to network pharmacology analysis,the core targets were screened,and the PI3K/AKT signaling pathway is likely to be the mechanism by which PA effectively treats GC,according to KEGG enrichment analysis.The experimental findings showed that PA could control PI3K/AKT signaling to prevent GC cell proliferation,induce apoptosis,and pause the cell cycle.CONCLUSION Network pharmacology demonstrated that PA could treat GC by controlling a variety of signaling pathways and acting on a variety of targets.This has also been supported by in vitro cell studies,which serve as benchmarks for further research.展开更多
In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orienta...In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations(0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite(γ) and delta-ferrite(δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both(within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle,and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts;it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft.展开更多
利用气化冲击焊接技术,制备了力学性能良好基于中间层的5A06铝合金与0Cr18Ni10Ti不锈钢气化冲击焊接接头,中间层3003铝合金与飞板5A06铝合金和靶板0Cr18Ni10Ti界面焊接良好,接头结合区域呈圆环状。通过信号采集系统分析了铝箔气化时间...利用气化冲击焊接技术,制备了力学性能良好基于中间层的5A06铝合金与0Cr18Ni10Ti不锈钢气化冲击焊接接头,中间层3003铝合金与飞板5A06铝合金和靶板0Cr18Ni10Ti界面焊接良好,接头结合区域呈圆环状。通过信号采集系统分析了铝箔气化时间和电流随能量输入的变化,采用OM和SEM分析了接头界面的微观形貌和元素分布。研究了能量输入对铝箔气化的时刻和接头力学性能的影响。结果表明,随着能量输入的增加,铝箔气化所需时间减小,最终碰撞速率增大,从而使焊接区域直径增大;接头的抗拉力和抗剪力随能量输入的增大而增大。当能量输入为9 kJ时,接头的最大抗拉力为44.0 k N,抗剪力为2.1 kN;5A06/3003界面呈中间对称波状结合,3003/0Cr18Ni10Ti界面以金属间化合物连接,结合区域错位分布。展开更多
The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwe...The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwell time and controlling the surface form in the bonnet polishing has been little reported so far, but also little attention has been paid to research the material removal function of the convex surface based on the geometry model considering the influence of the curvature radius. Firstly in this paper, for realizing the control of the freeform surface automatically by the bonnet polishing, on the basis of the simplified geometric model of convex surface, the calculation expression of the polishing contact spot on the convex surface considering the influence of the curvature radius is deduced, and the calculation model of the pressure distribution considering the influence of the curvature radius on the convex surface is derived by the coordinate transformation. Then the velocity distribution model is built in the bonnet polishing the convex surface. On the basis of the above research and the semi-experimental modified Preston equation obtained from the combination method of experimental and theoretical derivation, the material removal model of the convex surface considering the influence of the curvature radius in the bonnet polishing is established. Finally, the validity of the model through the simulation method has been validated. This research presents an effective prediction model and the calculation method of material removal for convex surface in bonnet polishing and prepares for the bonnet polishing the free surface numerically and automatically.展开更多
Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric ...Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric design language(APDL), and detailed numerical simulations of temperature and thermal stress were conducted. Among those simulations, long-edge parallel reciprocating scanning method was introduced. The distribution regularities of temperature, temperature gradient, Von Mise’s effective stress, X-directional, Y-directional and Z-directional thermal stresses were studied. LMDS experiments were carried out with nickel-based superalloy using the same process parameters as those in simulation. The measured temperatures of molten pool are in accordance with the simulated results. The crack engendering and developing regularities of samples show good agreement with the simulation results.展开更多
AIM: To investigate the protective effects and mechanisms of Baicalin and octreotide on renal injury of rats with severe acute pancreatitis (SAP). METHODS: One hundred and eighty SD rats were randomly assigned to the ...AIM: To investigate the protective effects and mechanisms of Baicalin and octreotide on renal injury of rats with severe acute pancreatitis (SAP). METHODS: One hundred and eighty SD rats were randomly assigned to the model group, Baicalin-treated group, octreotide-treated group and sham operation group. The mortality, plasma endotoxin level, contents of blood urea nitrogen (BUN), creatinine (CREA), phospholipase A2 (PLA2), nitrogen monoxide (NO), tumor necrosis factor (TNF)-α, IL-6 and endothelin-1 (ET-1) in serum, expression levels of renal Bax and Bcl-2 protein, apoptotic indexes and pathological changes of kidney were observed at 3, 6 and 12 h after operation. RESULTS: The renal pathological changes were milder in treated group than in model group. The survival at 12 h and renal apoptotic indexes at 6 h were significantly (P < 0.05) higher in treated group than in model group [66.67% vs 100%; 0.00 (0.02)% and 0.00 (0.04)% vs 0.00 (0.00)%, respectively]. The serum CREA content was markedly lower in octreotide-treated group than in model group at 3 h and 6 h (P < 0.01, 29.200 ± 5.710 μmol/L vs 38.400 ± 11.344 μmol/L; P < 0.05, 33.533 ± 10.106 μmol/L vs 45.154 ± 17.435 μmol/L, respectively). The expression level of renal Bax protein was not significantly different between model group and treated groups at all time points. The expression level of renal Bcl-2 protein was lower in Baicalin-treated group than in model group at 6 h [P < 0.001, 0.00 (0.00) grade score vs 3.00 (3.00) grade score]. The Bcl-2 expression level was lower in octreotide-treated group than in model group at 6 h and 12 h [P < 0.05, 0.00 (0.00) grade score vs 3.00 (3.00) grade score; 0.00 (0.00) grade score vs 0.00 (1.25) grade score, respectively]. The serum NO contents were lower in treated groups than in model group at 3 h and 12 h [P < 0.05, 57.50 (22.50) and 52.50 (15.00) μmol/L vs 65.00 (7.50) μmol/L; P < 0.01, 57.50 (27.50) and 45.00 (12.50) μmol/L vs 74.10 (26.15) μmol/L, respectively]. The plasma endotoxin content and serum BUN content (at 6 h and 12 h) were lower in treated groups than in model group. The contents of IL-6, ET-1, TNF-α (at 6 h) and PLA2 (at 6 h and 12 h) were lower in treated groups than in model group [P < 0.001, 3.031 (0.870) and 2.646 (1.373) pg/mL vs 5.437 (1.025) pg/mL; 2.882 (1.392) and 3.076 (1.205) pg/mL vs 6.817 (0.810) pg/mL; 2.832 (0.597) and 2.462 (1.353) pg/mL vs 5.356 (0.747) pg/mL; 16.226 (3.174) and 14.855 (5.747) pg/mL vs 25.625 (7.973) pg/mL; 18.625 (5.780) and 15.185 (1.761) pg/mL vs 24.725 (3.759) pg/mL; 65.10 (27.51) and 47.60 (16.50) pg/mL vs 92.15 (23.12) pg/mL; 67.91 ± 20.61 and 66.86 ± 22.10 U/mL, 63.13 ± 26.31 and 53.63 ± 12.28 U/mL vs 101.46 ± 14.67 and 105.33 ± 18.10 U/mL, respectively]. CONCLUSION: Both Baicalin and octreotide can protect the kidney of rats with severe acute pancreatitis. The therapeutic mechanisms of Baicalin and octreotide might be related to their inhibition of inflammatory mediators and induction of apoptosis. Baicalin might be a promising therapeutic tool for severe acute pancreatitis.展开更多
AIM: To investigate the influence of high dose of dexamethasone on inflammatory mediators and apoptosis of rats with severe acute pancreatitis (SAP). METHODS: SAP rats were randomly assigned to the model group and tre...AIM: To investigate the influence of high dose of dexamethasone on inflammatory mediators and apoptosis of rats with severe acute pancreatitis (SAP). METHODS: SAP rats were randomly assigned to the model group and treatment group while the normal rats were assigned to the sham operation group. The mortality,ascite volumes,ascites/body weight ratio and pancreas pathological changes of all rats were observed at 3,6 and 12 h after operation. Their contents of amylase and endotoxin in plasma and contents of tumor necrosis factor (TNF-α),phospholipase A2 (PLA2) and IL-6 in serum were also determined. The microarray sections of their pancreatic tissues were prepared,terminal transferase dUTP nick end labeling (TUNEL) staining was performed and apoptotic indexes were calculated. RESULTS: There was no marked difference between treatment group and model group in survival. The contents of amylase and endotoxin in plasma and contents of TNF-α,PLA2 and IL-6 in serum,ascite volumes,ascites/body weight ratio and pancreas pathological scores were all lower in treatment group than in model group to different extents at different time points P < 0.05,58.3 (26.4) ng/L vs 77.535 (42.157) ng/L in TNF-α content,8.00 (2.00) points vs 9.00 (2.00) points in pathological score of pancreas respectively; P < 0.01,0.042 (0.018) EU/mL vs 0.056 (0.0195) EU/mL in endotoxin content,7791 (1863) U/L vs 9195 (1298) U/L in plasma amylase content,1.53 (0.79) vs 2.38 (1.10) in ascites/body weight ratio,8.00 (1.00) points vs 11.00 (1.50) points in pathological score of pancreas; P < 0.001,3.36 (1.56) ng/L vs 5.65 (1.08) ng/L in IL-6 content,4.50 (2.00) vs 7.20 (2.00),4.20 (1.60) vs 6.40 (2.30),3.40 (2.70) vs 7.90 (1.70) in ascite volumes,respectively. The apoptotic indexes of pancreas head and pancreas tail were all higher in treatment group than in model group at 6 h P < 0.01,0.00 (2.00)% vs 0.00 (0.00)%,0.20 (1.80) vs 0.00 (0.00) in apoptosis indexes,respectively. CONCLUSION: The mechanism of dexamethasone treatment in acute pancreatitis is related to its inhibition of inflammatory mediator generation and induction of pancreatic acinar cell apoptosis.展开更多
Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intr...Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intro- ducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature moni- toring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing tech- nology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articlesto guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.展开更多
As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function...As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children’s tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children’s bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.展开更多
Efficient fast-charging technology is necessary for the extension of the driving range of electric vehicles.However,lithium-ion cells generate immense heat at high-current charging rates.In order to address this probl...Efficient fast-charging technology is necessary for the extension of the driving range of electric vehicles.However,lithium-ion cells generate immense heat at high-current charging rates.In order to address this problem,an efficient fast charging–cooling scheduling method is urgently needed.In this study,a liquid cooling-based thermal management system equipped with mini-channels was designed for the fastcharging process of a lithium-ion battery module.A neural network-based regression model was proposed based on 81 sets of experimental data,which consisted of three sub-models and considered three outputs:maximum temperature,temperature standard deviation,and energy consumption.Each sub-model had a desirable testing accuracy(99.353%,97.332%,and 98.381%)after training.The regression model was employed to predict all three outputs among a full dataset,which combined different charging current rates(0.5C,1C,1.5C,2C,and 2.5C(1C=5 A))at three different charging stages,and a range of coolant rates(0.0006,0.0012,and 0.0018 kg·s^(-1)).An optimal charging–cooling schedule was selected from the predicted dataset and was validated by the experiments.The results indicated that the battery module’s state of charge value increased by 0.5 after 15 min,with an energy consumption lower than 0.02 J.The maximum temperature and temperature standard deviation could be controlled within 33.35 and 0.8C,respectively.The approach described herein can be used by the electric vehicles industry in real fast-charging conditions.Moreover,optimal fast charging-cooling schedule can be predicted based on the experimental data obtained,that in turn,can significantly improve the efficiency of the charging process design as well as control energy consumption during cooling.展开更多
The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit dia...The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit diagram(FFLD)was transformed into a stress-based(σ-FFLD)and effective plastic strain(EPS)vs triaxiality(η)plot to remove the excess dependency of fracture limits over the strains.For the prediction of fracture limits,seven different damage models were calibrated.The Oh model displayed the best ability to predict the fracture locus with the least absolute error.Though the experimentally obtained fracture limits have only been used for the numerical analysis,none of the considered damage models predicted the fracture strains over the entire considered range of stress triaxiality(0.33<η<0.66).The deep drawing process window helped to determine wrinkling,safe and fracture zones while drawing the cylindrical cups under different temperature and lubricating conditions.Further,the highest drawing ratio of 2 was achieved at 673 K under the lubricating condition.All the numerically predicted results of both stretch forming and deep drawing processes using the Hill 1948 anisotropic yielding function were found to be good within the acceptable range of error.展开更多
文摘In this study,composite films consisting of polylactic acid(PLA),ethyl cellulose(EC),and zein were prepared by solution casting method,and their performance and application in chilled fresh meat preservation were investigated.The results showed that the three materials had satisfactory compatibility in the composite film.Addition of EC and zein effectively improved the mechanical properties,thermodynamic properties,surface hydrophilicity,oxygen permeability,and degradation properties of PLA films.When the ratio of PLA to EC was 3:7,the tensile strength and elongation at break reached maximum values of 16.6 MPa and 30.5%,respectively.Moreover,under different conditions,the composite film exhibited better degradability than the PLA film.The composite film with a 3:7 ratio of PLA to EC had the best performance,with a degradation rate of 21.75%after 84 days.Chilled fresh meat wrapped with the composite film showed significantly improved antioxidant,antibacterial,and water-holding properties.
基金supported by National Key Research and Development Program Project(2022YFB4602300)National Natural Science Foundation Sponsored Project(52205419)Major Science and Technology Projects in Sichuan Province(2023ZDZX0003).
文摘High-power laser melting deposition stands as a viable solution for the high-quality and efficient manufacturing of large-sized titani-um alloy components.This article explores how laser influences the quality of deposited layers when operating within a laser power range of 3-8 kW,and a H-shaped TC4 component with half-meter high was successfully fabricated by the laser melting deposition technology with a power of 5 kW,exhibiting a well-formed surface.In addition,the microstructure and properties of deposited TC4 components were examined.The as-deposited component is mainly composed of coarse columnar crystals.However,the distribu-tion and size of grains are particularly uneven with a range of 1-5 mm in length.The deposited TC4 is made up of lots of basketweave structure and a bit Widmanstatten structures at the grain boundaries.What’s more,lath-shapedαphase and a small amount ofβphase can be found in the grain.There is no significant disparity in grain size along the height direction;however,the heat accumula-tion resulting from deposition leads to a reduced length-to-width ratio ofα-laths in the bottom region.The tensile performance of samples from the top area marginally surpasses that of the bottom,and the tensile performance in the vertical direction is marginally better than that in the horizontal direction.According to the prevailing GB/T 38915-2020 and HB 5432-89 standards,the tensile properties of the fabricated components,sampled from various regions and directions,exceed those of forgings.The direction of sampling has weak influence on impact energy;however,fatigue crack propagation experiments indicate that cracks are more pre-valent and propagate at a slightly faster rate in horizontally-oriented specimens,a phenomenon attributed to the combined effects of grain morphology and microstructure.
基金Supported by National Science and Technology Council(CONACYT)of Mexico(Grant No.CB-2010-01-154430)PROMEP Program of the Public Education Secretariat(SEP)of MexicoFund for Research Support(FAI)of UASLP
文摘Although several research works in the literature have focused on studying the capabilities of additive manufacturing(AM) systems, few works have addressed the development of Design for Additive Manufacturing(DfAM) knowledge,tools, rules, and methodologies, which has limited the penetration and impact of AM in industry. In this paper a comprehensive review of design and manufacturing strategies for Fused Deposition Modelling(FDM) is presented.Consequently, several DfAM strategies are proposed and analysed based on existing research works and the operation principles, materials, capabilities and limitations of the FDM process. These strategies have been divided into four main groups: geometry, quality, materials and sustainability. The implementation and practicality of the proposed DfAM is illustrated by three case studies. The new proposed DfAM strategies are intended to assist designers and manufacturers when making decisions to satisfy functional needs, while ensuring manufacturability in FDM systems.Moreover, many of these strategies can be applied or extended to other AM processes besides FDM.
基金supported by Defence Advanced Research Program of ChinaFoundation Research Program of Beijing Institute of Technology,China (Grant No. 20080342003)
文摘With sustaining change of production mode,layout planning is no longer a thing built once for all.Cellular layout(CL) is becoming a hotspot in the research field of manufacturing system layout.Traditional researches on layout planning are mainly concentrating on aspects of layout arithmetic,style and evaluation,etc.Relatively seldom efforts are paid to CL and its specific problems as cell formation(CF),equipment sharing and CL analysis.Through problem analyzing of layout in cellular manufacturing system(CMS),research approach of cell formation,interactive layout and layout analysis threaded with process interconnection relationship(PIR) is proposed.Typical key technologies in CL like CF technology based on similarity analysis of part processes,interactive visual layout technology,layout evaluation technology founded on PIR analysis and algorithm of cell equipment sharing are put forward.Against the background of one enterprise which encounters problems of low utility of key equipments and disperse material logistic,an example of four-cell layout is given.The CL adjustment and analysis results show that equipment with high level of sharing degree should be disposed around the boundary of its main cell,and be near to other sharing cells as possible; process route should be centralized by all means,so equipment adjustment is to be implemented along direction that route intersection can be decreased; giving consideration to the existence of discrete cell,logistic route and its density should be centralized to cells formed.The proposed research can help improve equipment utility and material logistic efficiency of CL,and can be popularized to other application availably.
基金supported by National Defence Science&Technology Foundation of China(Grant No.K1301020706)
文摘What is pursued by multi-product type and variant volume(MPTVV) production is rapid response and quick switching,so that structure of transferring line in manufacturing system is no longer unalterable.Cell formation(CF) algorithm is the key technology of cellular manufacturing system(CMS).Currently,CF methods are mainly extended on the idea of group technology(GT) that covers a lot on analysis of resource capability matching and its algorithm.Various constraints are considered,but seldom utilized comprehensively.Aimed to the problem of manufacturing cell(MC) formation under MPTVV production mode,integrated formation technologies for typical MC as group type of cell(GC),flow type of cell(FC) and inherited cell(IC) are presented based on technical analysis of CF.Oriented to practical production constraints like delivery time,product batch,equipment ability,key machine,key part and machine sharing,etc,an integrated formation model is constructed and internal interrelations of these constraints are analyzed synthetically.Ulteriorly,formation goals of types of MCs and their formation procedures under joint effect of formation constraints and rules are spread.In case study,three highly balanced GC are formed first;then FC formation are implemented based on the same data which indicate good balancing effect of cell load and flow-style production for key tasks;When task is adjusted,a new scheme is constructed on the result of FC configuration by using IC formation method,and more optimal performance of flow-style production is manifested.The proposed comparative study of different type of cells strongly explains the validation of integrated MC formation in support of rapid manufacturing resource transformation under MPTVV production mode.
基金Supported by Scientific Research Funds of Guangdong Province of China(Grant No.2017B090922008)the Scientific Project of Chaozhou of China(Grant No.2018ZD10).
文摘Diamond tools with orderly arrangements of diamond grits have drawn considerable attention in the machining field owing to their outstanding advantages of high sharpness and long service life.This diamond super tool,as well as the manufacturing equipment,has been unavailable to Chinese enterprises for a long time due to patents.In this paper,a diamond blade segment with a 3D lattice of diamond grits was additively manufactured using a new type of cold pressing equipment(AME100).The equipment,designed with a rotary working platform and 16 molding stations,can be used to additively manufacture segments with diamond grits arranged in an orderly fashion,layer by layer;under this additive manufacturing process,at least 216000 pcs of diamond green segments with five orderly arranged grit layers can be produced per month.The microstructure of the segment was observed via SEM and the diamond blade fabricated using these segments was compared to other commercial cutting tools.The experimental results showed that the 3D lattice of diamond grits was formed in the green segment.The filling rate of diamond grits in the lattice could be guaranteed to be above 95%;this is much higher than the 90%filling rate of the automatic array system(ARIX).When used to cut stone,the cutting amount of the blade with segments made by AME100 is two times that of ordinary tools,with the same diamond concentration.When used to dry cut reinforced concrete,its cutting speed is 10%faster than that of ARIX.Under wet cutting conditions,its service life is twice that of ARIX.By applying the machine vision online inspection system and a special needle jig with a negative pressure system,this study developed a piece of additive manufacturing equipment for efficiently fabricating blade segments with a 3D lattice of diamond grits.
基金the National Natural Science Foundation(No.52073187)NSAF Foundation(No.U2230202)for their financial support of this project+3 种基金National Natural Science Foundation(No.51721091)Programme of Introducing Talents of Discipline to Universities(No.B13040)State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-2-03)support of China Scholarship Council
文摘Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.
基金Supported by Ningxia Science and Technology Benefiting People Program,No.2022CMG03064National Natural Science Foundation of China,No.82260879Ningxia Natural Science Foundation,No.2022AAC03144 and 2022AAC02039.
文摘BACKGROUND Pachymic acid(PA)is derived from Poria cocos.PA has a variety of pharmacological and inhibitory effects on various tumors.However,the mechanism of action of PA in gastric cancer(GC)remains unclear.AIM To investigate the mechanism of PA in treating GC via the combination of network pharmacology and experimental verification.METHODS The GeneCards and OMIM databases were used to derive the GC targets,while the Pharm Mapper database provided the PA targets.Utilizing the STRING database,a protein-protein interaction network was constructed and core targets were screened.The analyses of Gene Ontology,Kyoto Encyclopedia of Genes and Genomes(KEGG),and gene set enrichment analysis were conducted,and molecular docking and clinical correlation analyses were performed on the core targets.Ultimately,the network pharmacology findings were validated through in vitro cell assays,encompassing assessments of cell viability,apoptosis,cell cycle,cloning,and western blot analysis.RESULTS According to network pharmacology analysis,the core targets were screened,and the PI3K/AKT signaling pathway is likely to be the mechanism by which PA effectively treats GC,according to KEGG enrichment analysis.The experimental findings showed that PA could control PI3K/AKT signaling to prevent GC cell proliferation,induce apoptosis,and pause the cell cycle.CONCLUSION Network pharmacology demonstrated that PA could treat GC by controlling a variety of signaling pathways and acting on a variety of targets.This has also been supported by in vitro cell studies,which serve as benchmarks for further research.
基金Science&Engineering Research Board(SERB),DST,for its financial assistance received from the project(vide sanction order no.SPG/2021/003383)。
文摘In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations(0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite(γ) and delta-ferrite(δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both(within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle,and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts;it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft.
文摘利用气化冲击焊接技术,制备了力学性能良好基于中间层的5A06铝合金与0Cr18Ni10Ti不锈钢气化冲击焊接接头,中间层3003铝合金与飞板5A06铝合金和靶板0Cr18Ni10Ti界面焊接良好,接头结合区域呈圆环状。通过信号采集系统分析了铝箔气化时间和电流随能量输入的变化,采用OM和SEM分析了接头界面的微观形貌和元素分布。研究了能量输入对铝箔气化的时刻和接头力学性能的影响。结果表明,随着能量输入的增加,铝箔气化所需时间减小,最终碰撞速率增大,从而使焊接区域直径增大;接头的抗拉力和抗剪力随能量输入的增大而增大。当能量输入为9 kJ时,接头的最大抗拉力为44.0 k N,抗剪力为2.1 kN;5A06/3003界面呈中间对称波状结合,3003/0Cr18Ni10Ti界面以金属间化合物连接,结合区域错位分布。
基金Supported by Young Teacher Independent Research Subject of Yanshan University of China(Grant No.15LGA002)
文摘The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwell time and controlling the surface form in the bonnet polishing has been little reported so far, but also little attention has been paid to research the material removal function of the convex surface based on the geometry model considering the influence of the curvature radius. Firstly in this paper, for realizing the control of the freeform surface automatically by the bonnet polishing, on the basis of the simplified geometric model of convex surface, the calculation expression of the polishing contact spot on the convex surface considering the influence of the curvature radius is deduced, and the calculation model of the pressure distribution considering the influence of the curvature radius on the convex surface is derived by the coordinate transformation. Then the velocity distribution model is built in the bonnet polishing the convex surface. On the basis of the above research and the semi-experimental modified Preston equation obtained from the combination method of experimental and theoretical derivation, the material removal model of the convex surface considering the influence of the curvature radius in the bonnet polishing is established. Finally, the validity of the model through the simulation method has been validated. This research presents an effective prediction model and the calculation method of material removal for convex surface in bonnet polishing and prepares for the bonnet polishing the free surface numerically and automatically.
基金Project(2002AA420060) supported by the Hi-tech Research and Development Program of China
文摘Abstract: Based on the element life and death theory of finite element analysis(FEA), a three-dimensional multi-track and multi-layer model for laser metal deposition shaping(LMDS) was developed with ANSYS parametric design language(APDL), and detailed numerical simulations of temperature and thermal stress were conducted. Among those simulations, long-edge parallel reciprocating scanning method was introduced. The distribution regularities of temperature, temperature gradient, Von Mise’s effective stress, X-directional, Y-directional and Z-directional thermal stresses were studied. LMDS experiments were carried out with nickel-based superalloy using the same process parameters as those in simulation. The measured temperatures of molten pool are in accordance with the simulated results. The crack engendering and developing regularities of samples show good agreement with the simulation results.
基金Supported by Technological Foundation Project of Traditional Chinese Medicine Science of Zhejiang Province, No. 2003C130 and No. 2004C142Foundation Project for Medical Science and Technology of Zhejiang Province, No. 2003B134+3 种基金Grave Foundation Project for Technology and Development of Hangzhou, No. 2003123B19Intensive Foundation Project for Technology of Hangzhou, No. 2004Z006Foundation Project for Medical Science and Technology of Hangzhou, No. 2003A004Foundation Project for Technology of Hangzhou, No. 2005224
文摘AIM: To investigate the protective effects and mechanisms of Baicalin and octreotide on renal injury of rats with severe acute pancreatitis (SAP). METHODS: One hundred and eighty SD rats were randomly assigned to the model group, Baicalin-treated group, octreotide-treated group and sham operation group. The mortality, plasma endotoxin level, contents of blood urea nitrogen (BUN), creatinine (CREA), phospholipase A2 (PLA2), nitrogen monoxide (NO), tumor necrosis factor (TNF)-α, IL-6 and endothelin-1 (ET-1) in serum, expression levels of renal Bax and Bcl-2 protein, apoptotic indexes and pathological changes of kidney were observed at 3, 6 and 12 h after operation. RESULTS: The renal pathological changes were milder in treated group than in model group. The survival at 12 h and renal apoptotic indexes at 6 h were significantly (P < 0.05) higher in treated group than in model group [66.67% vs 100%; 0.00 (0.02)% and 0.00 (0.04)% vs 0.00 (0.00)%, respectively]. The serum CREA content was markedly lower in octreotide-treated group than in model group at 3 h and 6 h (P < 0.01, 29.200 ± 5.710 μmol/L vs 38.400 ± 11.344 μmol/L; P < 0.05, 33.533 ± 10.106 μmol/L vs 45.154 ± 17.435 μmol/L, respectively). The expression level of renal Bax protein was not significantly different between model group and treated groups at all time points. The expression level of renal Bcl-2 protein was lower in Baicalin-treated group than in model group at 6 h [P < 0.001, 0.00 (0.00) grade score vs 3.00 (3.00) grade score]. The Bcl-2 expression level was lower in octreotide-treated group than in model group at 6 h and 12 h [P < 0.05, 0.00 (0.00) grade score vs 3.00 (3.00) grade score; 0.00 (0.00) grade score vs 0.00 (1.25) grade score, respectively]. The serum NO contents were lower in treated groups than in model group at 3 h and 12 h [P < 0.05, 57.50 (22.50) and 52.50 (15.00) μmol/L vs 65.00 (7.50) μmol/L; P < 0.01, 57.50 (27.50) and 45.00 (12.50) μmol/L vs 74.10 (26.15) μmol/L, respectively]. The plasma endotoxin content and serum BUN content (at 6 h and 12 h) were lower in treated groups than in model group. The contents of IL-6, ET-1, TNF-α (at 6 h) and PLA2 (at 6 h and 12 h) were lower in treated groups than in model group [P < 0.001, 3.031 (0.870) and 2.646 (1.373) pg/mL vs 5.437 (1.025) pg/mL; 2.882 (1.392) and 3.076 (1.205) pg/mL vs 6.817 (0.810) pg/mL; 2.832 (0.597) and 2.462 (1.353) pg/mL vs 5.356 (0.747) pg/mL; 16.226 (3.174) and 14.855 (5.747) pg/mL vs 25.625 (7.973) pg/mL; 18.625 (5.780) and 15.185 (1.761) pg/mL vs 24.725 (3.759) pg/mL; 65.10 (27.51) and 47.60 (16.50) pg/mL vs 92.15 (23.12) pg/mL; 67.91 ± 20.61 and 66.86 ± 22.10 U/mL, 63.13 ± 26.31 and 53.63 ± 12.28 U/mL vs 101.46 ± 14.67 and 105.33 ± 18.10 U/mL, respectively]. CONCLUSION: Both Baicalin and octreotide can protect the kidney of rats with severe acute pancreatitis. The therapeutic mechanisms of Baicalin and octreotide might be related to their inhibition of inflammatory mediators and induction of apoptosis. Baicalin might be a promising therapeutic tool for severe acute pancreatitis.
基金Supported by Grants for Traditional Chinese Medicine Science of Zhejiang Province,and Medical Science and Technology of Zhejiang Province and Hangzhou
文摘AIM: To investigate the influence of high dose of dexamethasone on inflammatory mediators and apoptosis of rats with severe acute pancreatitis (SAP). METHODS: SAP rats were randomly assigned to the model group and treatment group while the normal rats were assigned to the sham operation group. The mortality,ascite volumes,ascites/body weight ratio and pancreas pathological changes of all rats were observed at 3,6 and 12 h after operation. Their contents of amylase and endotoxin in plasma and contents of tumor necrosis factor (TNF-α),phospholipase A2 (PLA2) and IL-6 in serum were also determined. The microarray sections of their pancreatic tissues were prepared,terminal transferase dUTP nick end labeling (TUNEL) staining was performed and apoptotic indexes were calculated. RESULTS: There was no marked difference between treatment group and model group in survival. The contents of amylase and endotoxin in plasma and contents of TNF-α,PLA2 and IL-6 in serum,ascite volumes,ascites/body weight ratio and pancreas pathological scores were all lower in treatment group than in model group to different extents at different time points P < 0.05,58.3 (26.4) ng/L vs 77.535 (42.157) ng/L in TNF-α content,8.00 (2.00) points vs 9.00 (2.00) points in pathological score of pancreas respectively; P < 0.01,0.042 (0.018) EU/mL vs 0.056 (0.0195) EU/mL in endotoxin content,7791 (1863) U/L vs 9195 (1298) U/L in plasma amylase content,1.53 (0.79) vs 2.38 (1.10) in ascites/body weight ratio,8.00 (1.00) points vs 11.00 (1.50) points in pathological score of pancreas; P < 0.001,3.36 (1.56) ng/L vs 5.65 (1.08) ng/L in IL-6 content,4.50 (2.00) vs 7.20 (2.00),4.20 (1.60) vs 6.40 (2.30),3.40 (2.70) vs 7.90 (1.70) in ascite volumes,respectively. The apoptotic indexes of pancreas head and pancreas tail were all higher in treatment group than in model group at 6 h P < 0.01,0.00 (2.00)% vs 0.00 (0.00)%,0.20 (1.80) vs 0.00 (0.00) in apoptosis indexes,respectively. CONCLUSION: The mechanism of dexamethasone treatment in acute pancreatitis is related to its inhibition of inflammatory mediator generation and induction of pancreatic acinar cell apoptosis.
基金Supported by National Natural Science Foundation of China(Grant No.51475343)International Science and Technology Cooperation Program of China(Grant No.2015DFA70340)
文摘Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intro- ducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature moni- toring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing tech- nology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articlesto guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.
基金supported by Social Science Fund for Young Scholar of Ministry of Education of China(Grant No. 12YJC760092)Changzhou Key Digital Manufacturing Technology Laboratory Foundation of China(Grant No. CM2007301)
文摘As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children’s tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children’s bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.
基金This work was supported by the Program for Huazhong University of Science and Technology(HUST)Academic Frontier Youth Team(2017QYTD04)the Program for HUST Graduate Innovation and Entrepreneurship Fund(2019YGSCXCY037)+2 种基金Authors acknowledge Grant DMETKF2018019 by State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and TechnologyThis study was also financially supported by the Guangdong Science and Technology Project(2016B020240001)the Guangdong Natural Science Foundation(2018A030310150).
文摘Efficient fast-charging technology is necessary for the extension of the driving range of electric vehicles.However,lithium-ion cells generate immense heat at high-current charging rates.In order to address this problem,an efficient fast charging–cooling scheduling method is urgently needed.In this study,a liquid cooling-based thermal management system equipped with mini-channels was designed for the fastcharging process of a lithium-ion battery module.A neural network-based regression model was proposed based on 81 sets of experimental data,which consisted of three sub-models and considered three outputs:maximum temperature,temperature standard deviation,and energy consumption.Each sub-model had a desirable testing accuracy(99.353%,97.332%,and 98.381%)after training.The regression model was employed to predict all three outputs among a full dataset,which combined different charging current rates(0.5C,1C,1.5C,2C,and 2.5C(1C=5 A))at three different charging stages,and a range of coolant rates(0.0006,0.0012,and 0.0018 kg·s^(-1)).An optimal charging–cooling schedule was selected from the predicted dataset and was validated by the experiments.The results indicated that the battery module’s state of charge value increased by 0.5 after 15 min,with an energy consumption lower than 0.02 J.The maximum temperature and temperature standard deviation could be controlled within 33.35 and 0.8C,respectively.The approach described herein can be used by the electric vehicles industry in real fast-charging conditions.Moreover,optimal fast charging-cooling schedule can be predicted based on the experimental data obtained,that in turn,can significantly improve the efficiency of the charging process design as well as control energy consumption during cooling.
基金Science and Engineering Research Board,Government of India(ECR/2016/001402)BITS-Pilani,Hyderabad Campus。
文摘The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit diagram(FFLD)was transformed into a stress-based(σ-FFLD)and effective plastic strain(EPS)vs triaxiality(η)plot to remove the excess dependency of fracture limits over the strains.For the prediction of fracture limits,seven different damage models were calibrated.The Oh model displayed the best ability to predict the fracture locus with the least absolute error.Though the experimentally obtained fracture limits have only been used for the numerical analysis,none of the considered damage models predicted the fracture strains over the entire considered range of stress triaxiality(0.33<η<0.66).The deep drawing process window helped to determine wrinkling,safe and fracture zones while drawing the cylindrical cups under different temperature and lubricating conditions.Further,the highest drawing ratio of 2 was achieved at 673 K under the lubricating condition.All the numerically predicted results of both stretch forming and deep drawing processes using the Hill 1948 anisotropic yielding function were found to be good within the acceptable range of error.