One-third of the global population is affected by micronutrient deficiency, particularly folate. Although folate synthesis has been relatively well characterized, few folate-related genes in maize have been cloned, an...One-third of the global population is affected by micronutrient deficiency, particularly folate. Although folate synthesis has been relatively well characterized, few folate-related genes in maize have been cloned, and the molecular mechanism regulating folate synthesis in maize remains unclear. In this study,transcriptome and proteome analyses of three waxy maize inbred lines with high, medium, and low folate contents were performed to identify key genes controlling folate biosynthesis. Pairwise comparisons revealed 21 differentially expressed genes and 20 differentially expressed proteins potentially associated with folate biosynthesis in the three lines. Six key folate-associated genes, Zm Mocos2, Zm GGH,Zm ADCL2, Zm CBR1, Zm SHMT, and Zm Pur H, were identified. These genes encode enzymes that potentially function in folate biosynthesis. Functional validation of one of these genes, Zm ADCL2, using an EMS mutant(Mut9264) showed that a 4-base insertion in an exon increased the folate content of fresh maize kernels 1.37-fold that of the wild type. Zm ADCL2 was considered a potential target for generating maize lines with higher folate content. KEGG enrichment analysis of differentially expressed genes and proteins showed that several pathways in addition to folate biosynthesis were likely indirectly involved in folate metabolism and content(e.g., glycine, serine, and threonine metabolism;purine metabolism;cysteine and methionine metabolism;alanine, aspartate and glutamate metabolism;glutathione metabolism;and pyruvate metabolism. The transcriptome and proteomic data generated in this study will help to clarify the mechanisms underlying folate accumulation and aid breeding efforts to biofortify maize with folate.展开更多
Seed maturation is a critical development transition and it largely affects the final yield and quality of crops.Abscisic acid(ABA)-activated sucrose-non-fermentation kinase subfamily 2(SnRK2s)constitute a well-known ...Seed maturation is a critical development transition and it largely affects the final yield and quality of crops.Abscisic acid(ABA)-activated sucrose-non-fermentation kinase subfamily 2(SnRK2s)constitute a well-known regulatory network that modulate seed maturation in Arabidopsis;however,the underlying genetic and regulatory mechanisms in cereal crops remain largely unknown.Here,we found that ABA levels exhibited two distinct peaks during kernel development in maize,corresponding to the lag and maturation phase,respectively.Integrated transcriptome and proteome profiling of kernels treated with exogenous ABA at the pre-maturation stage suggested that the second peak of ABA acts as a trigger for kernel maturation program.Knockout of ZmSnRK2s demonstrated that subclassⅢZmSnRK2s are required for kernel maturation in maize,and the loss-of-function of subclassⅢZmSnRK2s showed a disruption in kernel dehydration and dormancy.We identified a conserved ABA–SnRK2–b ZIP signaling pathway mediating this process in maize.Additionally,ZmSnRK2.10 overexpression accelerates kernel dehydration during maturity,achieving reduced kernel moisture content(KMC)at physiological maturity(PM).Overall,our findings establish ABA-activated SnRK2s as central regulators of kernel maturation in maize and provide valuable genetic resources for breeding maize varieties with low moisture content at harvest.展开更多
Carotenoids are the largest group of natural pigments responsible for the yellow,orange,and red colors in plant kernels,fruits,and leaves(Gupta and Hirschberg,2021).In plants,carotenoids are involved in manybiological...Carotenoids are the largest group of natural pigments responsible for the yellow,orange,and red colors in plant kernels,fruits,and leaves(Gupta and Hirschberg,2021).In plants,carotenoids are involved in manybiological processes,such as acting as accessory light-harvesting pigments in photosynthesis,participating in photoprotection,and serving as precursors for the hormones abscisic acid(ABA)and strigolactones(Ruiz-Sola and Rodriguez-Concepcion,2012).展开更多
The yield of maize(Zea mays L.)is highly influenced by nitrogen fertilization.This study investigated the impact of nitrogen fertilization on morphophysiological traits in maize(Zea mays L.)and developed algorithms to...The yield of maize(Zea mays L.)is highly influenced by nitrogen fertilization.This study investigated the impact of nitrogen fertilization on morphophysiological traits in maize(Zea mays L.)and developed algorithms to relate manual phenotyping and digital phenotyping of maize with leaf nitrogen and digital field image traits.The experiment included three hybrid maize varieties,V1(Hybrid 981),V2(BARI Hybrid maize-9),and V3(Hybrid P3396),which were evaluated across three nitrogen levels(N1=100 kg N ha^(−1),N2=200 kg N ha^(−1),N3=300 kg N ha^(−1))in a split-plot design with three replications.The results revealed that nitrogen levels(N),varieties(V),and their interactions(V×N)significantly influenced traits such as plant height(PH),leaf area index(LAI),normalized difference vegetation index(NDVI),canopy cover(CC),chlorophyll content(Chl a and Chl b),leaf nitrogen content(LNC),total dry matter(TDM),and grain yield.The hybrid P3396 with 300 kg N ha^(−1)(V3N3)achieved the highest grain yield of 14.45 t ha^(−1),which was statistically similar to that of Hybrid 981 and 300 kg N ha^(−1)(V1N3).Nitrogen significantly improved dry matter accumulation,leaf area,and physiological parameters,with maximum values recorded during flowering.The NDVI,CC,and SPAD were strongly correlated with LNC and TDM,highlighting their potential as indicators for nitrogen management.The digital imaging traits analysed via software effectively differentiated the nitrogen treatments,demonstrating their utility for precise nitrogen application.In conclusion,nitrogen fertilization at 300 kg N ha^(−1) optimized the growth and yield of hybrid maize,with Hybrid P3396 performing best.This study underscores the role of advanced phenotyping tools in improving nitrogen use efficiency and sustainable maize production.展开更多
The maize mutant gene Vestigial glume 1(Vg1) has been fine-mapped to a narrow region by map-based cloning and the candidate gene for Vg1 spanned 19.5 kb. Here we report Vg1 genomic fosmid library construction and scre...The maize mutant gene Vestigial glume 1(Vg1) has been fine-mapped to a narrow region by map-based cloning and the candidate gene for Vg1 spanned 19.5 kb. Here we report Vg1 genomic fosmid library construction and screening. The fosmid library of Vg1 consisted of574,000 clones with an average insert size of 36.4 kb, representing 7.9-fold coverage of the maize genome. Fosmid stability assays indicated that clones were stable during propagation in the fosmid system. Using Vg1 candidate gene-specific primers, a positive clone was successfully identified. This discovery will pave the way for identifying the function of Vg1 in maize development.展开更多
Tassel branch number (TBN) is the principal component of maize tassel inflorescence architecture and is a typical quan- titative trait controlled by multiple genes. The main objective of this research was to detect ...Tassel branch number (TBN) is the principal component of maize tassel inflorescence architecture and is a typical quan- titative trait controlled by multiple genes. The main objective of this research was to detect quantitative trait loci (QTLs) for TBN. The maize inbred line SICAU1212 was used as the common parent to develop BC1S1 and recombinant inbred line (RIL) populations with inbred lines 3237 and B73, respectively. The two related populations consisted of 123 and 238 lines, respectively. Each population was grown and phenotyped for TBN in two environments. Eleven QTLs were detected in the BC1S1 population, located on chromosomes 2, 3, 5, and 7, accounted for 4.45-26.58% of the phenotypic variation. Two QTLs (qB11Jtbn2-1, qB12Ctbn2-1, qBJtbn2-1; q11JBtbn5-1, qB12Ctbn5-1, qBJtbn5-1) that accounted for more than 10% of the phenotypic variation were identified. Three QTLs located on chromosomes 2, 3 and 5, exhibited stable expres- sion in the two environments. Ten QTLs were detected in the RIL population, located on chromosomes 2, 3, 5, 8, and 10, accounted for 2.69-13.58% of the TBN variation. One QTL (qR14Dtbn2-2) explained 〉10% of the phenotypic variation. One common QTL (qB12Ctbn2-2, qR14Dtbn2-2, qRJtbn2-2) was detected between the two related populations. Three pairs of epistatic effects were identified between two loci with or without additive effects and accounted for 1.19-4.26% of the phenotypic variance. These results demonstrated that TBN variation was mainly caused by major effects, minor effects and slightly modified by epistatic effects. Thus, identification of QTL for TBN may help elucidate the genetic basis of TBN and also facilitate map-based cloning and marker-assisted selection (MAS) in maize breeding programs.展开更多
The authors evaluated 57 parental inbred lines of maize hybrids disseminated in Southwest China for drought tolerance under drought-stressed and well-watered conditions. Multiple regression analyses between drought to...The authors evaluated 57 parental inbred lines of maize hybrids disseminated in Southwest China for drought tolerance under drought-stressed and well-watered conditions. Multiple regression analyses between drought tolerant coefficients of the grain yield per plant and 15 morphological and physiological traits measured from a subset of 12 selected lines, identified traits 1 and 5, which were important for drought tolerance, at the seedling and reproductive stages respectively. Gene effects, combining abilities, and heritabilities of these traits were estimated using generation mean and diallel cross methods. Dominance effect was more important than additive effect for the plant height, anthesis-silking interval (ASI), root weight, and the grain yield per plant, whereas, they were about equal for the leaf emergence rate. The variances of special combining ability (SCA) were about double that of the general combining ability (GCA) for plant height, ASI and grain yield per plant, although they were about equal for leaf emergence rate and root weight. Narrow sense heritabilities of the five traits for the reproductive stage were not high (12.8-29.6%), although broad sense heritabilities for plant height, ASI, and grain yield were as high as 70-85%. A segregating population consisting of 183 F2 plants from the cross N87-1 (drought tolerant) × 9526 (susceptible), was genotyped at 103 SSR loci and the F2:4 families were evaluated under two water regimes. Twelve quantitative trait loci (QTLs) (two for plant height, five for ASI, four for root biomass, and one for grain yield) were identified, most of which had overdominant gene action. Some chromosomal regions, such as those linked to markers umcl051 (bin 4.08), umc2881 (bin 4.03), and phi034 (bin 7.02), had overlapping QTLs.展开更多
Two cycles of biparental mass selection (MS) and one cycle of half-sib-S3 family combining selection (HS-S3) for yield were carried out in 2 synthetic maize populations P4C0 and P5C0 synchronously. The genetic div...Two cycles of biparental mass selection (MS) and one cycle of half-sib-S3 family combining selection (HS-S3) for yield were carried out in 2 synthetic maize populations P4C0 and P5C0 synchronously. The genetic diversity of 8 maize populations, including both the basic populations and their developed populations, were evaluated by 30 SSR primers. On the 30 SSR loci, a total of 184 alleles had been detected in these populations. At each locus, the number of alleles varied from 2 to 14, with an average of 6.13. The number and ratio of polymorphic loci in both the basic populations were higher than those of their developed populations, respectively. There was nearly no difference after MS but decreased after HS-S3 in both the basic populations in the mean gene heterozygosity. The mean genetic distance changed slightly after MS but decreased in a bigger degree after HS-S3 in both the basic populations. Analyses on the distribution of genetic distances showed that the ranges of the genetic distance were wider after MS and most of the genetic distances in populations developed by HS-S3 were smaller than those in both the basic populations. The number of genotypes increased after MS but decreased after HS-S3 in both the basic populations. The genetic diversity of intra-population was much more than genetic diversity of inter-population in both the basic populations. All these indexes demonstrated that the genetic diversity of populations after MS was similar to their basic populations, and the genetic diversity was maintained during MS, whereas the genetic diversity of populations decreased after HS-S3. This result indicated that heterogeneity between some of the individuals in the developed populations increased after MS, whereas the populations become more homozygotic after HS-S3.展开更多
Better understanding of genotype-by-environment interaction (GEI) is expected to provide a solid foundation for genetic improvement of crop productivity especially under drought-prone environments. To elucidate the ...Better understanding of genotype-by-environment interaction (GEI) is expected to provide a solid foundation for genetic improvement of crop productivity especially under drought-prone environments. To elucidate the genetic basis of the plant and ear height, 2 F2:3 populations were derived from the crosses of Qi 319 × Huangzaosi (Q/H) and Ye 478 × Huangzaosi (Y/H) with 230 and 235 families, respectively, and their parents were evaluated under 3 diverse environments in Henan, Beijing, and Xinjiang, China during the year of 2007 and 2008, and all the lines were also evaluated under water stress environment. The mapping results showed that a total of 21 and 12 QTLs were identified for plant height in the Q/H and Y/H population, respectively, and 24 and 13 QTLs for ear height, respectively. About 56 and 73% of the QTLs for 2 traits did not present significant QTL-by-environment interaction (QE1) in the normal joint analyses for Q/H and Y/H population, respectively, and about 73% of the QTLs detected did not show significant QEI according to joint analyses for stress condition in Q/H. Most of the detected major QTLs exhibited high stability across different environments. Besides, several major QTLs were detected with large and consistent effect under normal condition (Chr. 6 and 7 in Q/H; Chr. 1, 3 and 9 in Y/H), or across 2 water regimes (Chr. 1, 8 and 10 for in Q/H). There were several constitutive QTLs (3 for Q/H and 1 for Y/H) with no or minor QTL-by-environment for the 2 populations. Finally, we found several genomic regions (Chr. 1, 10, etc.) to be co-located across the populations, which could provide useful reference for genetic improvement of these traits in maize breeding programs. Comparative genomic analysis revealed that 3 genes/genetic segments associated with plant height in rice were orthologous to these 3 identified genomic regions carrying the major QTLs for plant and ear height on Chr. 1, 6, and 8, respectively.展开更多
A field trial was conducted to investigate main morphological and physiological changes of different maize landraces to low-P stress at the stage of seedling. P-deficiency significantly decreased root volume, total le...A field trial was conducted to investigate main morphological and physiological changes of different maize landraces to low-P stress at the stage of seedling. P-deficiency significantly decreased root volume, total leaf area, and plant dry weight, but greatly increased density of root hairs and root top ratio. In addition, P-deficiency induced the significant enhancement of phosphorus utilization efficiency and the amount of proline, malondialdehye (MDA), acid phosphatase (APase), peroxidase (POD) and superoxide dismutase (SOD), but the significant reduction of P uptake and soluable protein content. Since P-deficiency had smaller effects on the P-tolerant maize landraces DP-44, DP-32 and DP-33 as compared with P-sensitive landraces DP-29 and DP-24, it was demonstrated that differences of tolerance to P-deficiency existed among different maize landraces. The results based on the correlation analysis showed that the economic yield of maize landraces had relationships with their morphological and physiological characteristics under P-deficiency.展开更多
ZAG2 has been identified as a maternally expressed imprinted gene in maize endosperm.Our study revealed that paternally inherited ZAG2 alleles were imprinted in maize endosperm and embryo at 14 days after pollination(...ZAG2 has been identified as a maternally expressed imprinted gene in maize endosperm.Our study revealed that paternally inherited ZAG2 alleles were imprinted in maize endosperm and embryo at 14 days after pollination(DAP), and consistently imprinted in endosperm at 10, 12, 16, 18, 20, 22, 24, 26, and 28 DAP in reciprocal crosses between B73 and Mo17. ZAG2 alleles were also imprinted in reciprocal crosses between Zheng 58 and Chang7-2 and between Huang C and 178. ZAG2 alleles exhibited differential imprinting in hybrids of 178 × Huang C and B73 × Mo17, while in other hybrids ZAG2 alleles exhibited binary imprinting. The tissue-specific expression pattern of ZAG2 showed that ZAG2 was expressed at a high level in immature ears, suggesting that ZAG2 plays important roles in not only kernel but ear development.展开更多
Photoperiod sensitivity in maize plays an essential role in utilizing tropic and sub-tropic germplasm to temperate areas. This study aims to identify and map the QTLs responsible for the characteristics measuring phot...Photoperiod sensitivity in maize plays an essential role in utilizing tropic and sub-tropic germplasm to temperate areas. This study aims to identify and map the QTLs responsible for the characteristics measuring photoperiod sensitivity, days from planting to silking (SD), photoperiod response coefficient of silking (PRC), and anthesis-silking interval (ASI). Using the population derived from Zheng 58, photoperiod-insensitive parent, and Ya 8701, photoperiod-sensitive parent, a linkage map was constructed with 93 single sequence repeat (SSR) markers. Phenotyping of 296 F2-3 families of the population in replicated-field test was conducted in both long-day (Beijing, China) and short-day (Sichuan, China) conditions. Ten QTLs were identified to be associated with the SD and ASI on chromosomes 3, 4, 6, 8, and 10 in the longday conditions, and 11 QTLs were detected to be related to the SD and ASI on chromosomes 2, 3, 4, 5, 6, 8, and 10 in the short-day conditions, respectively. A QTL associated with the PRC as a major effect in the long-day conditions located in the same position as the QTL related to the SD and ASI in the map, and was on chromosome 10 linked with marker bnlg1655. Using these QTLs in the marker-assisted selection, the photoperiod sensibility could be reduced by selection of the alleles responsible for the SD, PRC, and ASI in breeding programs.展开更多
Drought is one of the major abiotic stresses that limit maize productivity. Apart from the principal transcriptional regulation, post-transcriptional regulation mediated by microRNAs appears to be the prevalent respon...Drought is one of the major abiotic stresses that limit maize productivity. Apart from the principal transcriptional regulation, post-transcriptional regulation mediated by microRNAs appears to be the prevalent response of plants to abiotic stress. In this study, the differential expression of microRNAs in the previously evaluated drought-tolerant inbred lines R09 under drought stress was detected by microarray hybridization. The target genes of the differentially-expressed microRNAs were predicted by bioinformatics software WMD3 for plant target gene prediction. The possible regulation of the differentially-expressed microRNAs as well as their target genes in maize response to drought stress was analysed according to Gene Ontology. Sixty-eight microRNAs in 29 microRNA families were detected to be differentially expressed in the seedling of the drought-tolerant inbred line R09, accounting for 5.97% of the total number of the probes. The expression profiles were different between the two time points of the drought stress. The functions of the genes targeted by the differentially-expressed microRNAs involve multiple physiological and biochemical pathways of response to abiotic stress, such as transcription regulation, metabolism, signal transduction, hormone stimulation, and transmembrane transport. Under drought stress, the differential expression of microRNAs regulates the expression of their target genes, resulting in multiple responses of physiological and biochemical pathways relative to drought tolerance of maize, miR156, miR159 and miR319 families may play more important roles. The different members of the same family may play similar regulation effects in most cases.展开更多
Waxy maize landraces are abundant inYunnan and Guizhou of China. Genetic diversity of waxy maize landraces from Yunnan and Guizhou were analyzed using SSR markers. We screened 38 landraces with 50 primers that generat...Waxy maize landraces are abundant inYunnan and Guizhou of China. Genetic diversity of waxy maize landraces from Yunnan and Guizhou were analyzed using SSR markers. We screened 38 landraces with 50 primers that generated 3 to 6 polymorphic bands, with an average of 4.13 bands. Shannon's information indices for genetic diversity of the 14 waxy maize landraces from Yunnan varied from 4.9571 to 42.1138 and averaged 26.5252; Shannon's information indices for genetic diversity of the 24 waxy maize landraces from Guizhou varied from 22.0066 to 40.6320 and averaged 32.3156. For the 14 waxy maize landraces from Yunnan, the within-landrace genetic diversity accounted for 45.40% and the among-landrace genetic diversity accounted for 54.60% of the total genetic diversity observed. For the 24 waxy maize landraces from Guizhou, the within-landrace genetic diversity accounted for 50.76% and the among-landrace genetic diversity accounted for 49.24% of the total observed. Some individual landraces possessed as much as 96.86% of the total genetic diversity occurring among landraces within origins. Differentiation between geographic origins accounted for only 3.14% of the total genetic diversity. Both Yunnan and Guizhou would be the diversity centers and the original centers of waxy maize.展开更多
Maize landraces White Dent and Golden Queen played a very important role in the pre-hybrid era of maize production in China. However, dozens of accessions with the same names of White Dent and Golden Queen are preserv...Maize landraces White Dent and Golden Queen played a very important role in the pre-hybrid era of maize production in China. However, dozens of accessions with the same names of White Dent and Golden Queen are preserved in China National Genebank (CNG). The present study investigated the genetic diversity of these two important groups of maize landraces, as well as the relationships within and among them. Thirty-four landrace accessions with the name of White Dent and 10 with Golden Queen preserved in CNG were fingerprinted with 52 simple sequence repeats with tailed primer M13. Summary statistics including average number of alleles per locus, gene diversity/expected heterozygosity, and observed heterozygosity were carried out using PowerMarker ver. 3.25 software. The test of Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) of all the 44 maize landrace accessions were also performed by PowerMarker. We observed a significant differentiation in terms of the average number of alleles between White Dent and Golden Queen (6.44 alleles per locus in White Dent, 4.48 in Golden Queen), while both groups of maize landraces had a relatively high but similar gene diversity (0.61 of White Dent, 0.63 of Golden Queen). The fixation index (FST) was only 0.0044, while the percentage of loci deviated from Hardy-Weinberg equilibrium within these two groups of White Dent and Golden Queen was 32.69 and 3.92%, respectively. The rather high genetic diversity and average number of alleles per locus confirmed that both groups of landraces had a rather broad germplasm base. The extremely low fixation index showed that there was little genetic variation between White Dent and Golden Queen and the molecular variation within these two groups was remarkably high, indicating no genetic drift between White Dent and Golden Queen and suggesting different improvement approaches to these two important groups of landraces. Hardy-Weinberg equilibrium test revealed that the group of White Dent was deviated from HWE, whereas Golden Queen was under HWE.展开更多
Artificial selection during domestication and post-domestication improvement results in loss of genetic diversity near target loci. However, the genetic locus associated with cob glume color and the nature of the geno...Artificial selection during domestication and post-domestication improvement results in loss of genetic diversity near target loci. However, the genetic locus associated with cob glume color and the nature of the genomic pattern surrounding it was elusive and the selection effect in that region was not clear. An association mapping panel consisting of 283 diverse modern temperate maize elite lines was genotyped by a chip containing over 55,000 evenly distributed SNPs. Ten-fold resequencing at the target region on 40 of the panel lines and 47 tropical lines was also undertaken. A genome-wide association study(GWAS) for cob glume color confirmed the P1 locus, which is located on the short arm of chromosome 1, with a-log10 P value for surrounding SNPs higher than the Bonferroni threshold(α/n, α < 0.001) when a mixed linear model(MLM) was implemented. A total of 26 markers were identified in a 0.78 Mb region surrounding the P1 locus, including 0.73 Mb and 0.05 Mb upstream and downstream of the P1 gene, respectively. A clear linkage disequilibrium(LD) block was found and LD decayed very rapidly with increasing physical distance surrounding the P1 locus. The estimates of π and Tajima's D were significantly(P < 0.001) lower at both ends compared to the locus. Upon comparison of temperate and tropical lines at much finer resolution by resequencing(180-fold finer than chip SNPs), a more structured LD block pattern was found among the 40 resequenced temperate lines. All evidence indicates that the P1 locus in temperate maize has not undergone neutral evolution but has been subjected to artificial selection during post-domestication selection or improvement. The information and analytical results generated in this study provide insights as to how breeding efforts have affected genome evolution in crop plants.展开更多
The aim of this paper is to study the inheritance pattern of ear tip-barrenness trait in maize (Zea mays L.). Ear tipbarrenness trait in maize can be classified into two types, tip-barren and tip-barrenless. Two inb...The aim of this paper is to study the inheritance pattern of ear tip-barrenness trait in maize (Zea mays L.). Ear tipbarrenness trait in maize can be classified into two types, tip-barren and tip-barrenless. Two inbred lines, lx01-3 (tipbarrenless type), wx04-1 (tip-barren type), and their F1, F2, BC1, BC2 generations were analyzed on their ear tip-barrenness types. Results showed that F1 was tip-barren type; the ratio of tip-barren type versus tip-barrenless type followed a 12.78: 1 ratio in F2 segregation population and a 2.75:1 ratio in BC1. Z2 test indicated that the trait of ear tip-barrenness type followed an inheritance pattern of 2 duplicate dominant genes. SPSS analysis indicated that the trait of ear tip-barrenness length is of abnormal distribution. Above results mean that: (1) The trait of maize ear tip-barrenness type is controlled by 2 duplicate dominant genes; tip-barren type is dominant over tip-barrenless type; (2) the trait of tip-barrenness length is a quantitative character controlled by polygene with major genes expected.展开更多
Fusarium ear rot(FER)is a destructive maize fungal disease worldwide.In this study,three tropical maize populations consisting of 874 inbred lines were used to perform genomewide association study(GWAS)and genomic pre...Fusarium ear rot(FER)is a destructive maize fungal disease worldwide.In this study,three tropical maize populations consisting of 874 inbred lines were used to perform genomewide association study(GWAS)and genomic prediction(GP)analyses of FER resistance.Broad phenotypic variation and high heritability for FER were observed,although it was highly influenced by large genotype-by-environment interactions.In the 874 inbred lines,GWAS with general linear model(GLM)identified 3034 single-nucleotide polymorphisms(SNPs)significantly associated with FER resistance at the P-value threshold of 1×10^(-5),the average phenotypic variation explained(PVE)by these associations was 3%with a range from 2.33%to 6.92%,and 49 of these associations had PVE values greater than 5%.The GWAS analysis with mixed linear model(MLM)identified 19 significantly associated SNPs at the P-value threshold of 1×10^(-4),the average PVE of these associations was 1.60%with a range from 1.39%to 2.04%.Within each of the three populations,the number of significantly associated SNPs identified by GLM and MLM ranged from 25 to 41,and from 5 to 22,respectively.Overlapping SNP associations across populations were rare.A few stable genomic regions conferring FER resistance were identified,which located in bins 3.04/05,7.02/04,9.00/01,9.04,9.06/07,and 10.03/04.The genomic regions in bins 9.00/01 and 9.04 are new.GP produced moderate accuracies with genome-wide markers,and relatively high accuracies with SNP associations detected from GWAS.Moderate prediction accuracies were observed when the training and validation sets were closely related.These results implied that FER resistance in maize is controlled by minor QTL with small effects,and highly influenced by the genetic background of the populations studied.Genomic selection(GS)by incorporating SNP associations detected from GWAS is a promising tool for improving FER resistance in maize.展开更多
Head smut of maize (Zea mays L.), which was caused by Sporisorium reiliana, occurred in most of the maize growing areas of the world. The purpose of this study was to develop SCAR markers for map-based cloning of re...Head smut of maize (Zea mays L.), which was caused by Sporisorium reiliana, occurred in most of the maize growing areas of the world. The purpose of this study was to develop SCAR markers for map-based cloning of resistance genes and MAS. Two sets of BC3 progenies, one (BC3Q) derived from the cross Qi319 (resistance)×Huangzao 4 (susceptible), the other (BC3M) from Mol7 (resistance)× Huangzao 4 (susceptible), were generated. Huangzao 4 was the recurrent parent in both progenies. A combination of BSA (bulked segregant analysis) with AFLP (amplified fragment length polymorphism) method was applied to map the genes involving the resistance to S. reiliana, and corresponding resistant and susceptible bulks and their parental lines were used for screening polymorphic AFLP primer pairs. One fragment of PI3M61-152 was converted into SCAR (sequence charactered amplified fragment) marker S130. The marker was mapped at chromosome bin 2.09, the interval of a major QTL region previously reported to contribute to S. reiliana resistance. Furthermore, S130 was highly and facilitate map-based cloni associated with resistance to S. reiliana, and could be useful for marker-assisted selection ng of resistance genes.展开更多
The B-box(BBX)family of proteins consists of zinc-finger transcription factors with one or two highly conserved B-box motifs at their N-termini.BBX proteins play crucial roles in various aspects of plant growth and de...The B-box(BBX)family of proteins consists of zinc-finger transcription factors with one or two highly conserved B-box motifs at their N-termini.BBX proteins play crucial roles in various aspects of plant growth and development,including seedling photomorphogenesis,shade avoidance,flowering time,and biotic and abiotic stress responses.Previous studies have identified many different BBXs from several plant species,although the BBX family members in maize are largely unknown.Genome-wide identification and comprehensive analysis of maize BBX(ZmBBX)expression and interaction networks would therefore provide valuable information for understanding their functions.In this study,36 maize BBXs in three major clades were identified.The ZmBBXs within a given clade were found to share similar domains,motifs,and genomic structures.Gene duplication analyses revealed that the expansion of BBX proteins in maize has mainly occurred by segmental duplication.The expression levels of ZmBBXs were analyzed in various organs and tissues,and under different abiotic stress conditions.Protein–protein interaction networks of ZmBBXs were established using bioinformatic tools and verified by bimolecular fluorescence complementation(BiFC)assays.Our findings can facilitate a greater understanding of the complexity of the ZmBBX family and provide novel clues for unravelling ZmBBX protein functions.展开更多
基金supported by Youth Scientific Research Foundation of Beijing Academy of Agriculture and Forestry Sciences (QNJJ202208)the Collaborative Innovation Center of Beijing Academy of Agriculture and Forestry Sciences (KJCX20240408)+1 种基金Major Scientific and Technological Achievements Cultivation Project of Beijing Academy of Agriculture and Forestry SciencesNational Natural Science Foundation of China (32201815)。
文摘One-third of the global population is affected by micronutrient deficiency, particularly folate. Although folate synthesis has been relatively well characterized, few folate-related genes in maize have been cloned, and the molecular mechanism regulating folate synthesis in maize remains unclear. In this study,transcriptome and proteome analyses of three waxy maize inbred lines with high, medium, and low folate contents were performed to identify key genes controlling folate biosynthesis. Pairwise comparisons revealed 21 differentially expressed genes and 20 differentially expressed proteins potentially associated with folate biosynthesis in the three lines. Six key folate-associated genes, Zm Mocos2, Zm GGH,Zm ADCL2, Zm CBR1, Zm SHMT, and Zm Pur H, were identified. These genes encode enzymes that potentially function in folate biosynthesis. Functional validation of one of these genes, Zm ADCL2, using an EMS mutant(Mut9264) showed that a 4-base insertion in an exon increased the folate content of fresh maize kernels 1.37-fold that of the wild type. Zm ADCL2 was considered a potential target for generating maize lines with higher folate content. KEGG enrichment analysis of differentially expressed genes and proteins showed that several pathways in addition to folate biosynthesis were likely indirectly involved in folate metabolism and content(e.g., glycine, serine, and threonine metabolism;purine metabolism;cysteine and methionine metabolism;alanine, aspartate and glutamate metabolism;glutathione metabolism;and pyruvate metabolism. The transcriptome and proteomic data generated in this study will help to clarify the mechanisms underlying folate accumulation and aid breeding efforts to biofortify maize with folate.
基金supported by the National Natural Science Foundation of China(32201696)the Natural Science Foundation of Sichuan Province(23NSFSC4071)。
文摘Seed maturation is a critical development transition and it largely affects the final yield and quality of crops.Abscisic acid(ABA)-activated sucrose-non-fermentation kinase subfamily 2(SnRK2s)constitute a well-known regulatory network that modulate seed maturation in Arabidopsis;however,the underlying genetic and regulatory mechanisms in cereal crops remain largely unknown.Here,we found that ABA levels exhibited two distinct peaks during kernel development in maize,corresponding to the lag and maturation phase,respectively.Integrated transcriptome and proteome profiling of kernels treated with exogenous ABA at the pre-maturation stage suggested that the second peak of ABA acts as a trigger for kernel maturation program.Knockout of ZmSnRK2s demonstrated that subclassⅢZmSnRK2s are required for kernel maturation in maize,and the loss-of-function of subclassⅢZmSnRK2s showed a disruption in kernel dehydration and dormancy.We identified a conserved ABA–SnRK2–b ZIP signaling pathway mediating this process in maize.Additionally,ZmSnRK2.10 overexpression accelerates kernel dehydration during maturity,achieving reduced kernel moisture content(KMC)at physiological maturity(PM).Overall,our findings establish ABA-activated SnRK2s as central regulators of kernel maturation in maize and provide valuable genetic resources for breeding maize varieties with low moisture content at harvest.
基金supported by the National Key Research and Development Program of China(2022YFD1200704-3)Crop Varietal Improvement and Insect Pests Control by Nuclear Radiation,the Sichuan Province Science and Technology Program(2022NSFSC0018,2021YFYZ0011,2020YJ0249,MZGC20230108)the Biological Breeding Program of State Key of Sichuan Agricultural University(SKL-ZY202234).
文摘Carotenoids are the largest group of natural pigments responsible for the yellow,orange,and red colors in plant kernels,fruits,and leaves(Gupta and Hirschberg,2021).In plants,carotenoids are involved in manybiological processes,such as acting as accessory light-harvesting pigments in photosynthesis,participating in photoprotection,and serving as precursors for the hormones abscisic acid(ABA)and strigolactones(Ruiz-Sola and Rodriguez-Concepcion,2012).
基金supported by the Bangladesh Agricultural Research Insti-tute,Gazipur-1701,Bangladesh.This research was also funded by Taif University,Saudi Arabia,Project No.(TU-DSPP-2024-07).
文摘The yield of maize(Zea mays L.)is highly influenced by nitrogen fertilization.This study investigated the impact of nitrogen fertilization on morphophysiological traits in maize(Zea mays L.)and developed algorithms to relate manual phenotyping and digital phenotyping of maize with leaf nitrogen and digital field image traits.The experiment included three hybrid maize varieties,V1(Hybrid 981),V2(BARI Hybrid maize-9),and V3(Hybrid P3396),which were evaluated across three nitrogen levels(N1=100 kg N ha^(−1),N2=200 kg N ha^(−1),N3=300 kg N ha^(−1))in a split-plot design with three replications.The results revealed that nitrogen levels(N),varieties(V),and their interactions(V×N)significantly influenced traits such as plant height(PH),leaf area index(LAI),normalized difference vegetation index(NDVI),canopy cover(CC),chlorophyll content(Chl a and Chl b),leaf nitrogen content(LNC),total dry matter(TDM),and grain yield.The hybrid P3396 with 300 kg N ha^(−1)(V3N3)achieved the highest grain yield of 14.45 t ha^(−1),which was statistically similar to that of Hybrid 981 and 300 kg N ha^(−1)(V1N3).Nitrogen significantly improved dry matter accumulation,leaf area,and physiological parameters,with maximum values recorded during flowering.The NDVI,CC,and SPAD were strongly correlated with LNC and TDM,highlighting their potential as indicators for nitrogen management.The digital imaging traits analysed via software effectively differentiated the nitrogen treatments,demonstrating their utility for precise nitrogen application.In conclusion,nitrogen fertilization at 300 kg N ha^(−1) optimized the growth and yield of hybrid maize,with Hybrid P3396 performing best.This study underscores the role of advanced phenotyping tools in improving nitrogen use efficiency and sustainable maize production.
基金supported by a Chongqing Postdoctoral Science Foundation funded project (Xm201344)China Postdoctoral Science Foundation funded project (2014M552303)Fundamental Research Funds for the Central Universities (XDJK2013C023, 2362015xk05)
文摘The maize mutant gene Vestigial glume 1(Vg1) has been fine-mapped to a narrow region by map-based cloning and the candidate gene for Vg1 spanned 19.5 kb. Here we report Vg1 genomic fosmid library construction and screening. The fosmid library of Vg1 consisted of574,000 clones with an average insert size of 36.4 kb, representing 7.9-fold coverage of the maize genome. Fosmid stability assays indicated that clones were stable during propagation in the fosmid system. Using Vg1 candidate gene-specific primers, a positive clone was successfully identified. This discovery will pave the way for identifying the function of Vg1 in maize development.
基金the National Basic Research Program of China(the 973 Project,2014CB138203)the State Key Laboratory of Grassland Agro-ecosytems,China(SKLGAE201509)the National Natural Science Foundation of China(31101161)
文摘Tassel branch number (TBN) is the principal component of maize tassel inflorescence architecture and is a typical quan- titative trait controlled by multiple genes. The main objective of this research was to detect quantitative trait loci (QTLs) for TBN. The maize inbred line SICAU1212 was used as the common parent to develop BC1S1 and recombinant inbred line (RIL) populations with inbred lines 3237 and B73, respectively. The two related populations consisted of 123 and 238 lines, respectively. Each population was grown and phenotyped for TBN in two environments. Eleven QTLs were detected in the BC1S1 population, located on chromosomes 2, 3, 5, and 7, accounted for 4.45-26.58% of the phenotypic variation. Two QTLs (qB11Jtbn2-1, qB12Ctbn2-1, qBJtbn2-1; q11JBtbn5-1, qB12Ctbn5-1, qBJtbn5-1) that accounted for more than 10% of the phenotypic variation were identified. Three QTLs located on chromosomes 2, 3 and 5, exhibited stable expres- sion in the two environments. Ten QTLs were detected in the RIL population, located on chromosomes 2, 3, 5, 8, and 10, accounted for 2.69-13.58% of the TBN variation. One QTL (qR14Dtbn2-2) explained 〉10% of the phenotypic variation. One common QTL (qB12Ctbn2-2, qR14Dtbn2-2, qRJtbn2-2) was detected between the two related populations. Three pairs of epistatic effects were identified between two loci with or without additive effects and accounted for 1.19-4.26% of the phenotypic variance. These results demonstrated that TBN variation was mainly caused by major effects, minor effects and slightly modified by epistatic effects. Thus, identification of QTL for TBN may help elucidate the genetic basis of TBN and also facilitate map-based cloning and marker-assisted selection (MAS) in maize breeding programs.
基金supported by the Asian Development Bank(RETA 6055,Asian Maize Biotechnology Network),the Rockefeller Foundation(2004 FS 047)the National Natural Science Foundation of China(30571172)the Program for Changjiang Scholars and Innovative Research Team in Universities,China(IRT0453).
文摘The authors evaluated 57 parental inbred lines of maize hybrids disseminated in Southwest China for drought tolerance under drought-stressed and well-watered conditions. Multiple regression analyses between drought tolerant coefficients of the grain yield per plant and 15 morphological and physiological traits measured from a subset of 12 selected lines, identified traits 1 and 5, which were important for drought tolerance, at the seedling and reproductive stages respectively. Gene effects, combining abilities, and heritabilities of these traits were estimated using generation mean and diallel cross methods. Dominance effect was more important than additive effect for the plant height, anthesis-silking interval (ASI), root weight, and the grain yield per plant, whereas, they were about equal for the leaf emergence rate. The variances of special combining ability (SCA) were about double that of the general combining ability (GCA) for plant height, ASI and grain yield per plant, although they were about equal for leaf emergence rate and root weight. Narrow sense heritabilities of the five traits for the reproductive stage were not high (12.8-29.6%), although broad sense heritabilities for plant height, ASI, and grain yield were as high as 70-85%. A segregating population consisting of 183 F2 plants from the cross N87-1 (drought tolerant) × 9526 (susceptible), was genotyped at 103 SSR loci and the F2:4 families were evaluated under two water regimes. Twelve quantitative trait loci (QTLs) (two for plant height, five for ASI, four for root biomass, and one for grain yield) were identified, most of which had overdominant gene action. Some chromosomal regions, such as those linked to markers umcl051 (bin 4.08), umc2881 (bin 4.03), and phi034 (bin 7.02), had overlapping QTLs.
基金the National High Technology Research and Development Program of China (863 Program,2004BA525B04)the Program for Changjiang Scholar and Innovation Research Team in University of China (IRT0453)
文摘Two cycles of biparental mass selection (MS) and one cycle of half-sib-S3 family combining selection (HS-S3) for yield were carried out in 2 synthetic maize populations P4C0 and P5C0 synchronously. The genetic diversity of 8 maize populations, including both the basic populations and their developed populations, were evaluated by 30 SSR primers. On the 30 SSR loci, a total of 184 alleles had been detected in these populations. At each locus, the number of alleles varied from 2 to 14, with an average of 6.13. The number and ratio of polymorphic loci in both the basic populations were higher than those of their developed populations, respectively. There was nearly no difference after MS but decreased after HS-S3 in both the basic populations in the mean gene heterozygosity. The mean genetic distance changed slightly after MS but decreased in a bigger degree after HS-S3 in both the basic populations. Analyses on the distribution of genetic distances showed that the ranges of the genetic distance were wider after MS and most of the genetic distances in populations developed by HS-S3 were smaller than those in both the basic populations. The number of genotypes increased after MS but decreased after HS-S3 in both the basic populations. The genetic diversity of intra-population was much more than genetic diversity of inter-population in both the basic populations. All these indexes demonstrated that the genetic diversity of populations after MS was similar to their basic populations, and the genetic diversity was maintained during MS, whereas the genetic diversity of populations decreased after HS-S3. This result indicated that heterogeneity between some of the individuals in the developed populations increased after MS, whereas the populations become more homozygotic after HS-S3.
基金supported by grants provided by the Ministry of Science and Technology of China(2006CB101700,2009CB118401,2006BAD13B03)National Natural Science Foundation of China(30730063)
文摘Better understanding of genotype-by-environment interaction (GEI) is expected to provide a solid foundation for genetic improvement of crop productivity especially under drought-prone environments. To elucidate the genetic basis of the plant and ear height, 2 F2:3 populations were derived from the crosses of Qi 319 × Huangzaosi (Q/H) and Ye 478 × Huangzaosi (Y/H) with 230 and 235 families, respectively, and their parents were evaluated under 3 diverse environments in Henan, Beijing, and Xinjiang, China during the year of 2007 and 2008, and all the lines were also evaluated under water stress environment. The mapping results showed that a total of 21 and 12 QTLs were identified for plant height in the Q/H and Y/H population, respectively, and 24 and 13 QTLs for ear height, respectively. About 56 and 73% of the QTLs for 2 traits did not present significant QTL-by-environment interaction (QE1) in the normal joint analyses for Q/H and Y/H population, respectively, and about 73% of the QTLs detected did not show significant QEI according to joint analyses for stress condition in Q/H. Most of the detected major QTLs exhibited high stability across different environments. Besides, several major QTLs were detected with large and consistent effect under normal condition (Chr. 6 and 7 in Q/H; Chr. 1, 3 and 9 in Y/H), or across 2 water regimes (Chr. 1, 8 and 10 for in Q/H). There were several constitutive QTLs (3 for Q/H and 1 for Y/H) with no or minor QTL-by-environment for the 2 populations. Finally, we found several genomic regions (Chr. 1, 10, etc.) to be co-located across the populations, which could provide useful reference for genetic improvement of these traits in maize breeding programs. Comparative genomic analysis revealed that 3 genes/genetic segments associated with plant height in rice were orthologous to these 3 identified genomic regions carrying the major QTLs for plant and ear height on Chr. 1, 6, and 8, respectively.
文摘A field trial was conducted to investigate main morphological and physiological changes of different maize landraces to low-P stress at the stage of seedling. P-deficiency significantly decreased root volume, total leaf area, and plant dry weight, but greatly increased density of root hairs and root top ratio. In addition, P-deficiency induced the significant enhancement of phosphorus utilization efficiency and the amount of proline, malondialdehye (MDA), acid phosphatase (APase), peroxidase (POD) and superoxide dismutase (SOD), but the significant reduction of P uptake and soluable protein content. Since P-deficiency had smaller effects on the P-tolerant maize landraces DP-44, DP-32 and DP-33 as compared with P-sensitive landraces DP-29 and DP-24, it was demonstrated that differences of tolerance to P-deficiency existed among different maize landraces. The results based on the correlation analysis showed that the economic yield of maize landraces had relationships with their morphological and physiological characteristics under P-deficiency.
基金supported by the Fundamental Research Funds for the Central Universities (XDJK2013C023)the Chongqing Postdoctoral Science Foundation (Xm201344)+2 种基金the China Postdoctoral Science Foundation (2014M552303)the Research Fund for the Doctoral Program of Southwest University (SWU112037)the Research Fund for the Doctoral Program of Higher Education (2011182120011)
文摘ZAG2 has been identified as a maternally expressed imprinted gene in maize endosperm.Our study revealed that paternally inherited ZAG2 alleles were imprinted in maize endosperm and embryo at 14 days after pollination(DAP), and consistently imprinted in endosperm at 10, 12, 16, 18, 20, 22, 24, 26, and 28 DAP in reciprocal crosses between B73 and Mo17. ZAG2 alleles were also imprinted in reciprocal crosses between Zheng 58 and Chang7-2 and between Huang C and 178. ZAG2 alleles exhibited differential imprinting in hybrids of 178 × Huang C and B73 × Mo17, while in other hybrids ZAG2 alleles exhibited binary imprinting. The tissue-specific expression pattern of ZAG2 showed that ZAG2 was expressed at a high level in immature ears, suggesting that ZAG2 plays important roles in not only kernel but ear development.
基金supported forthis work by the program for Changjiang Scholars andInnovative Research Team in University of China(IRT0453)support was provided by the National Natural Science Foundation of China(30571173)
文摘Photoperiod sensitivity in maize plays an essential role in utilizing tropic and sub-tropic germplasm to temperate areas. This study aims to identify and map the QTLs responsible for the characteristics measuring photoperiod sensitivity, days from planting to silking (SD), photoperiod response coefficient of silking (PRC), and anthesis-silking interval (ASI). Using the population derived from Zheng 58, photoperiod-insensitive parent, and Ya 8701, photoperiod-sensitive parent, a linkage map was constructed with 93 single sequence repeat (SSR) markers. Phenotyping of 296 F2-3 families of the population in replicated-field test was conducted in both long-day (Beijing, China) and short-day (Sichuan, China) conditions. Ten QTLs were identified to be associated with the SD and ASI on chromosomes 3, 4, 6, 8, and 10 in the longday conditions, and 11 QTLs were detected to be related to the SD and ASI on chromosomes 2, 3, 4, 5, 6, 8, and 10 in the short-day conditions, respectively. A QTL associated with the PRC as a major effect in the long-day conditions located in the same position as the QTL related to the SD and ASI in the map, and was on chromosome 10 linked with marker bnlg1655. Using these QTLs in the marker-assisted selection, the photoperiod sensibility could be reduced by selection of the alleles responsible for the SD, PRC, and ASI in breeding programs.
基金support by the National Basic Research Program of China(2009CB118400)the National Natural Science Foundation of China(30971795 and 31071433)
文摘Drought is one of the major abiotic stresses that limit maize productivity. Apart from the principal transcriptional regulation, post-transcriptional regulation mediated by microRNAs appears to be the prevalent response of plants to abiotic stress. In this study, the differential expression of microRNAs in the previously evaluated drought-tolerant inbred lines R09 under drought stress was detected by microarray hybridization. The target genes of the differentially-expressed microRNAs were predicted by bioinformatics software WMD3 for plant target gene prediction. The possible regulation of the differentially-expressed microRNAs as well as their target genes in maize response to drought stress was analysed according to Gene Ontology. Sixty-eight microRNAs in 29 microRNA families were detected to be differentially expressed in the seedling of the drought-tolerant inbred line R09, accounting for 5.97% of the total number of the probes. The expression profiles were different between the two time points of the drought stress. The functions of the genes targeted by the differentially-expressed microRNAs involve multiple physiological and biochemical pathways of response to abiotic stress, such as transcription regulation, metabolism, signal transduction, hormone stimulation, and transmembrane transport. Under drought stress, the differential expression of microRNAs regulates the expression of their target genes, resulting in multiple responses of physiological and biochemical pathways relative to drought tolerance of maize, miR156, miR159 and miR319 families may play more important roles. The different members of the same family may play similar regulation effects in most cases.
基金the National Natural Science Foundation of China for supporting this research(39770464).
文摘Waxy maize landraces are abundant inYunnan and Guizhou of China. Genetic diversity of waxy maize landraces from Yunnan and Guizhou were analyzed using SSR markers. We screened 38 landraces with 50 primers that generated 3 to 6 polymorphic bands, with an average of 4.13 bands. Shannon's information indices for genetic diversity of the 14 waxy maize landraces from Yunnan varied from 4.9571 to 42.1138 and averaged 26.5252; Shannon's information indices for genetic diversity of the 24 waxy maize landraces from Guizhou varied from 22.0066 to 40.6320 and averaged 32.3156. For the 14 waxy maize landraces from Yunnan, the within-landrace genetic diversity accounted for 45.40% and the among-landrace genetic diversity accounted for 54.60% of the total genetic diversity observed. For the 24 waxy maize landraces from Guizhou, the within-landrace genetic diversity accounted for 50.76% and the among-landrace genetic diversity accounted for 49.24% of the total observed. Some individual landraces possessed as much as 96.86% of the total genetic diversity occurring among landraces within origins. Differentiation between geographic origins accounted for only 3.14% of the total genetic diversity. Both Yunnan and Guizhou would be the diversity centers and the original centers of waxy maize.
基金supported by the Special Program for Crop Germplasm Resources of the Ministry of Agriculture [(NB07-2130135-(25-30)-05]Natural Science Foundation of Beijing (6071003)+1 种基金Innovation Platform Program for Basic Research of Agricultural Breeding in Beijing (YZPT02-06)Scientific and Technological Key Project in Chongqing for Elite Variety Innovation of Rice and Maize (CSTC 2007AB1045)
文摘Maize landraces White Dent and Golden Queen played a very important role in the pre-hybrid era of maize production in China. However, dozens of accessions with the same names of White Dent and Golden Queen are preserved in China National Genebank (CNG). The present study investigated the genetic diversity of these two important groups of maize landraces, as well as the relationships within and among them. Thirty-four landrace accessions with the name of White Dent and 10 with Golden Queen preserved in CNG were fingerprinted with 52 simple sequence repeats with tailed primer M13. Summary statistics including average number of alleles per locus, gene diversity/expected heterozygosity, and observed heterozygosity were carried out using PowerMarker ver. 3.25 software. The test of Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) of all the 44 maize landrace accessions were also performed by PowerMarker. We observed a significant differentiation in terms of the average number of alleles between White Dent and Golden Queen (6.44 alleles per locus in White Dent, 4.48 in Golden Queen), while both groups of maize landraces had a relatively high but similar gene diversity (0.61 of White Dent, 0.63 of Golden Queen). The fixation index (FST) was only 0.0044, while the percentage of loci deviated from Hardy-Weinberg equilibrium within these two groups of White Dent and Golden Queen was 32.69 and 3.92%, respectively. The rather high genetic diversity and average number of alleles per locus confirmed that both groups of landraces had a rather broad germplasm base. The extremely low fixation index showed that there was little genetic variation between White Dent and Golden Queen and the molecular variation within these two groups was remarkably high, indicating no genetic drift between White Dent and Golden Queen and suggesting different improvement approaches to these two important groups of landraces. Hardy-Weinberg equilibrium test revealed that the group of White Dent was deviated from HWE, whereas Golden Queen was under HWE.
基金supported by the Chinese National "863" Program from the China Ministry of Science and Technology (Grant No. 2012AA10A306-3)the National Science Foundation of China (Grant No. 31171562) to CXthe Core Research Budget of the Non-profit Governmental Research Institution from the Chinese Government to the Institute of Crop Science, Chinese Academy of Agricultural Sciences (Grant No. 2012001)
文摘Artificial selection during domestication and post-domestication improvement results in loss of genetic diversity near target loci. However, the genetic locus associated with cob glume color and the nature of the genomic pattern surrounding it was elusive and the selection effect in that region was not clear. An association mapping panel consisting of 283 diverse modern temperate maize elite lines was genotyped by a chip containing over 55,000 evenly distributed SNPs. Ten-fold resequencing at the target region on 40 of the panel lines and 47 tropical lines was also undertaken. A genome-wide association study(GWAS) for cob glume color confirmed the P1 locus, which is located on the short arm of chromosome 1, with a-log10 P value for surrounding SNPs higher than the Bonferroni threshold(α/n, α < 0.001) when a mixed linear model(MLM) was implemented. A total of 26 markers were identified in a 0.78 Mb region surrounding the P1 locus, including 0.73 Mb and 0.05 Mb upstream and downstream of the P1 gene, respectively. A clear linkage disequilibrium(LD) block was found and LD decayed very rapidly with increasing physical distance surrounding the P1 locus. The estimates of π and Tajima's D were significantly(P < 0.001) lower at both ends compared to the locus. Upon comparison of temperate and tropical lines at much finer resolution by resequencing(180-fold finer than chip SNPs), a more structured LD block pattern was found among the 40 resequenced temperate lines. All evidence indicates that the P1 locus in temperate maize has not undergone neutral evolution but has been subjected to artificial selection during post-domestication selection or improvement. The information and analytical results generated in this study provide insights as to how breeding efforts have affected genome evolution in crop plants.
文摘The aim of this paper is to study the inheritance pattern of ear tip-barrenness trait in maize (Zea mays L.). Ear tipbarrenness trait in maize can be classified into two types, tip-barren and tip-barrenless. Two inbred lines, lx01-3 (tipbarrenless type), wx04-1 (tip-barren type), and their F1, F2, BC1, BC2 generations were analyzed on their ear tip-barrenness types. Results showed that F1 was tip-barren type; the ratio of tip-barren type versus tip-barrenless type followed a 12.78: 1 ratio in F2 segregation population and a 2.75:1 ratio in BC1. Z2 test indicated that the trait of ear tip-barrenness type followed an inheritance pattern of 2 duplicate dominant genes. SPSS analysis indicated that the trait of ear tip-barrenness length is of abnormal distribution. Above results mean that: (1) The trait of maize ear tip-barrenness type is controlled by 2 duplicate dominant genes; tip-barren type is dominant over tip-barrenless type; (2) the trait of tip-barrenness length is a quantitative character controlled by polygene with major genes expected.
基金The authors gratefully acknowledge the financial support from the MasAgro project funded by Mexico’s Secretary of Agriculture and Rural Development(SADER),the Genomic Open-source Breeding Informatics Initiative(GOBII)(grant number OPP1093167)supported by the Bill&Melinda Gates Foundation,and the CGIAR Research Program(CRP)on maize(MAIZE)MAIZE receives W1&W2 support from the Governments of Australia,Belgium,Canada,China,France,India,Japan,the Republic of Korea,Mexico,Netherlands,New Zealand,Norway,Sweden,Switzerland,the United Kingdom,USA,and the World Bank+2 种基金The authors also thank the National Natural Science Foundation of China(grant number 31801442)the CIMMYT–China Specialty Maize Research Center Project funded by the Shanghai Municipal Finance Bureauthe China Scholarship Council.
文摘Fusarium ear rot(FER)is a destructive maize fungal disease worldwide.In this study,three tropical maize populations consisting of 874 inbred lines were used to perform genomewide association study(GWAS)and genomic prediction(GP)analyses of FER resistance.Broad phenotypic variation and high heritability for FER were observed,although it was highly influenced by large genotype-by-environment interactions.In the 874 inbred lines,GWAS with general linear model(GLM)identified 3034 single-nucleotide polymorphisms(SNPs)significantly associated with FER resistance at the P-value threshold of 1×10^(-5),the average phenotypic variation explained(PVE)by these associations was 3%with a range from 2.33%to 6.92%,and 49 of these associations had PVE values greater than 5%.The GWAS analysis with mixed linear model(MLM)identified 19 significantly associated SNPs at the P-value threshold of 1×10^(-4),the average PVE of these associations was 1.60%with a range from 1.39%to 2.04%.Within each of the three populations,the number of significantly associated SNPs identified by GLM and MLM ranged from 25 to 41,and from 5 to 22,respectively.Overlapping SNP associations across populations were rare.A few stable genomic regions conferring FER resistance were identified,which located in bins 3.04/05,7.02/04,9.00/01,9.04,9.06/07,and 10.03/04.The genomic regions in bins 9.00/01 and 9.04 are new.GP produced moderate accuracies with genome-wide markers,and relatively high accuracies with SNP associations detected from GWAS.Moderate prediction accuracies were observed when the training and validation sets were closely related.These results implied that FER resistance in maize is controlled by minor QTL with small effects,and highly influenced by the genetic background of the populations studied.Genomic selection(GS)by incorporating SNP associations detected from GWAS is a promising tool for improving FER resistance in maize.
基金funded by the National Hi-Tech R&D Program,China(863Program,2006AA100103,2007AA10Z172)the International Cooperation Project for Science and Technology(2007DFA31010)
文摘Head smut of maize (Zea mays L.), which was caused by Sporisorium reiliana, occurred in most of the maize growing areas of the world. The purpose of this study was to develop SCAR markers for map-based cloning of resistance genes and MAS. Two sets of BC3 progenies, one (BC3Q) derived from the cross Qi319 (resistance)×Huangzao 4 (susceptible), the other (BC3M) from Mol7 (resistance)× Huangzao 4 (susceptible), were generated. Huangzao 4 was the recurrent parent in both progenies. A combination of BSA (bulked segregant analysis) with AFLP (amplified fragment length polymorphism) method was applied to map the genes involving the resistance to S. reiliana, and corresponding resistant and susceptible bulks and their parental lines were used for screening polymorphic AFLP primer pairs. One fragment of PI3M61-152 was converted into SCAR (sequence charactered amplified fragment) marker S130. The marker was mapped at chromosome bin 2.09, the interval of a major QTL region previously reported to contribute to S. reiliana resistance. Furthermore, S130 was highly and facilitate map-based cloni associated with resistance to S. reiliana, and could be useful for marker-assisted selection ng of resistance genes.
基金financially supported by grants from the Natural Science Foundation of Shandong Province,China(ZR2018LC005 and ZR2019BC107)the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2022C02)。
文摘The B-box(BBX)family of proteins consists of zinc-finger transcription factors with one or two highly conserved B-box motifs at their N-termini.BBX proteins play crucial roles in various aspects of plant growth and development,including seedling photomorphogenesis,shade avoidance,flowering time,and biotic and abiotic stress responses.Previous studies have identified many different BBXs from several plant species,although the BBX family members in maize are largely unknown.Genome-wide identification and comprehensive analysis of maize BBX(ZmBBX)expression and interaction networks would therefore provide valuable information for understanding their functions.In this study,36 maize BBXs in three major clades were identified.The ZmBBXs within a given clade were found to share similar domains,motifs,and genomic structures.Gene duplication analyses revealed that the expansion of BBX proteins in maize has mainly occurred by segmental duplication.The expression levels of ZmBBXs were analyzed in various organs and tissues,and under different abiotic stress conditions.Protein–protein interaction networks of ZmBBXs were established using bioinformatic tools and verified by bimolecular fluorescence complementation(BiFC)assays.Our findings can facilitate a greater understanding of the complexity of the ZmBBX family and provide novel clues for unravelling ZmBBX protein functions.