期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MF^(2)ResU-Net:a multi-feature fusion deep learning architecture for retinal blood vessel segmentation
1
作者 CUI Zhenchao SONG Shujie QI Jing 《Digital Chinese Medicine》 2022年第4期406-418,共13页
Objective For computer-aided Chinese medical diagnosis and aiming at the problem of insufficient segmentation,a novel multi-level method based on the multi-scale fusion residual neural network(MF2ResU-Net)model is pro... Objective For computer-aided Chinese medical diagnosis and aiming at the problem of insufficient segmentation,a novel multi-level method based on the multi-scale fusion residual neural network(MF2ResU-Net)model is proposed.Methods To obtain refined features of retinal blood vessels,three cascade connected UNet networks are employed.To deal with the problem of difference between the parts of encoder and decoder,in MF2ResU-Net,shortcut connections are used to combine the encoder and decoder layers in the blocks.To refine the feature of segmentation,atrous spatial pyramid pooling(ASPP)is embedded to achieve multi-scale features for the final segmentation networks.Results The MF2ResU-Net was superior to the existing methods on the criteria of sensitivity(Sen),specificity(Spe),accuracy(ACC),and area under curve(AUC),the values of which are 0.8013 and 0.8102,0.9842 and 0.9809,0.9700 and 0.9776,and 0.9797 and 0.9837,respectively for DRIVE and CHASE DB1.The results of experiments demonstrated the effectiveness and robustness of the model in the segmentation of complex curvature and small blood vessels.Conclusion Based on residual connections and multi-feature fusion,the proposed method can obtain accurate segmentation of retinal blood vessels by refining the segmentation features,which can provide another diagnosis method for computer-aided Chinese medical diagnosis. 展开更多
关键词 Medical image processing Atrous space pyramid pooling(ASPP) Residual neural network Multi-level model Retinal vessels segmentation
在线阅读 下载PDF
Semantic segmentation of agricultural images:A survey 被引量:3
2
作者 Zifei Luo Wenzhu Yang +2 位作者 Yunfeng Yuan Ruru Gou Xiaonan Li 《Information Processing in Agriculture》 EI CSCD 2024年第2期172-186,共15页
As an important research topic in recent years,semantic segmentation has been widely applied to image understanding problems in various fields.With the successful application of deep learning methods in machine vision... As an important research topic in recent years,semantic segmentation has been widely applied to image understanding problems in various fields.With the successful application of deep learning methods in machine vision,the superior performance has been transferred to agricultural image processing by combining them with traditional methods.Semantic segmentation methods have revolutionized the development of agricultural automation and are commonly used for crop cover and type analysis,pest and disease identification,etc.We frst give a review of the recent advances in traditional and deep learning methods for semantic segmentation of agricultural images according to different segmentation principles.Then we introduce the traditional methods that can effectively utilize the original image information and the powerful performance of deep learningbased methods.Finally,we outline their applications in agricultural image segmentation.In our literature,we identify the challenges in agricultural image segmentation and summarize the innovative developments that address these challenges.The robustness of the existing segmentation methods for processing complex images still needs to be improved urgently,and their generalization abilities are also insufficient.In particular,the limited number of labeled samples is a roadblock to new developed deep learning methods for their training and evaluation.To this,segmentation methods that augment the dataset or incorporate multimodal information enable deep learning methods to further improve the segmentation capabilities.This review provides a reference for the application of image semantic segmentation in the field of agricultural informatization. 展开更多
关键词 Semantic segmentation Agricultural images Deep learning Convolution neural networks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部