Triboelectric nanogenerators(TENGs)have potential to achieve energy harvesting and condition monitoring of oils,the“lifeblood”of industry.However,oil absorption on the solid surfaces is a great challenge for oil-sol...Triboelectric nanogenerators(TENGs)have potential to achieve energy harvesting and condition monitoring of oils,the“lifeblood”of industry.However,oil absorption on the solid surfaces is a great challenge for oil-solid TENG(O-TENG).Here,oleophobic/superamphiphobic O-TENGs are achieved via engineering of solid surface wetting properties.The designed O-TENG can generate an excellent electricity(with a charge density of 9.1μC m^(−2) and a power density of 1.23 mW m^(−2)),which is an order of magnitude higher than other O-TENGs made from polytetrafluoroethylene and polyimide.It also has a significant durability(30,000 cycles)and can power a digital thermometer for self-powered sensor applications.Further,a superhigh-sensitivity O-TENG monitoring system is successfully developed for real-time detecting particle/water contaminants in oils.The O-TENG can detect particle contaminants at least down to 0.01 wt%and water contaminants down to 100 ppm,which are much better than previous online monitoring methods(particle>0.1 wt%;water>1000 ppm).More interesting,the developed O-TENG can also distinguish water from other contaminants,which means the developed O-TENG has a highly water-selective performance.This work provides an ideal strategy for enhancing the output and durability of TENGs for oil-solid contact and opens new intelligent pathways for oil-solid energy harvesting and oil condition monitoring.展开更多
Recently, gears of high strength, reliability, and surface-damage-resistant under severe service conditions are required to achieve the weight saving and downsizing of a product. For the high-speed condition in partic...Recently, gears of high strength, reliability, and surface-damage-resistant under severe service conditions are required to achieve the weight saving and downsizing of a product. For the high-speed condition in particular, it is important to understand the influence of the surface properties on the scuffing resistance. If the effective surface profile to improve the lubrication property was found, the metal surfaces could be obtained with both surface strength and surface lubricity. Herein, the influence of surface properties modified with fine shot peening, which can form the arbitrary surface profile, on the scuffing resistance in the rolling-sliding contact machine element, was investigated. The scuffing test was performed using a two-cylinder rolling contact test machine. In a specific sliding, a faster roller of 60% and a sliding velocity of 1.75 m/s were utilized. The scuffing test results with shot-peened test rollers and those with non-shot-peened test roller were compared. The influence of the surface roughness of the shot-peened test roller was also discussed. We found that the shot-peened roller had a better scuffing resistance compared with the roller without the shot-peening process.展开更多
Grease life refers to the time it takes for the grease to lose its ability to keep the lubrication due to grease degradation. As grease life is generally shorter than fatigue life of bearing, the service life of greas...Grease life refers to the time it takes for the grease to lose its ability to keep the lubrication due to grease degradation. As grease life is generally shorter than fatigue life of bearing, the service life of grease-lubricated rolling bearings is often dominated by grease life. When designing a bearing systemolecular weightith grease lubrication, it is necessary to define the operating conditions limits of the bearing, for which grease life becomes a determining factor. Prolongation of grease life becomes an especially important challenge when the bearing is to be operated trader high-speed, high-temperature, and other severe conditions. Selecting a number of commercially sold greases composed of varying base oils, the author evaluated their properties and analyzed how each property affected the grease life by performing a multiple regression analysis. The optimum grease composition to best exploit each property was also examined. The results revealed among others that one would need to first determine the base oil type and then maximize ultimate bleeding while minimizing the evaporation rate.展开更多
Trends in modern industry show a tendency towards demassovization of production as a response to the customers' specific needs for unique and personalized products. This provokes significant changes in the processes ...Trends in modern industry show a tendency towards demassovization of production as a response to the customers' specific needs for unique and personalized products. This provokes significant changes in the processes of manufacturing, assembly, and testing The cost of such a type of production can be reduced by employing highly productive reconfigurable equipment with proper software to enable optimization. This paper presents a decision support extension for directing of hydraulic cylinders to assembly-testing lines using fuzzy logic in the Enterprise Resource Planning system of a small size production in a factory in Bulgaria. Different assembly-testing lines are flexibly assigned to the specific cylinder's parameters by the developed fuzzy system on the basis of the overlapping of parameters in the hydraulic cylinders classification. The final decision on the line assigned in case of alternatives is made through accounting for the minimal cylinder delay time. The effectiveness of the approach is assessed by simulation. It leads to an increase of the efficiency of the assembly-testing flow lines, a reduction of the time needed for hydraulic cylinders assembling and testing and balanced loading of the modules.展开更多
This work is aimed at investigating the friction and wear performance of different polymeric materials having potential for hydraulic system components under lubricated sliding conditions against a steel counter face....This work is aimed at investigating the friction and wear performance of different polymeric materials having potential for hydraulic system components under lubricated sliding conditions against a steel counter face.A pin-on-disc test configuration was used for the experimental study.The different polymeric materials selected for these studies were commercial polyimides(PI),polyether ether ketone(PEEK),and flouropolymers.Some of these materials were bulk materials whereas others were used as coatings applied on to the cast iron substrate.The tribological characteristics of the polymers were compared with a reference grey cast iron.The frictional characteristics were evaluated in both static and dynamic conditions.The results have shown that by using polymeric materials it is possible to reduce breakaway friction by an order of magnitude compared to grey cast iron.However,the breakaway friction increased significantly after the wear tests.The polymeric materials having lowest breakaway friction have shown the highest wear with the exception of the PEEK-PTFE coating which showed low wear.PI with graphite fillers also showed low wear but it resulted in relatively high friction.The carbon fibre reinforced materials resulted in unstable friction as well as higher wear compared to the PI materials with graphite fillers.展开更多
基金want to thank Swedish Kempe Scholarship Project(No.JCK-1903.1)the Swedish Research Council for Environment,Agricultural Sciences and Spatial Planning(Formas,No.2019-00904)+1 种基金the Swedish Research Council(No.2019-04941)and the National Natural Science Foundation of China(Grant No.51905027).
文摘Triboelectric nanogenerators(TENGs)have potential to achieve energy harvesting and condition monitoring of oils,the“lifeblood”of industry.However,oil absorption on the solid surfaces is a great challenge for oil-solid TENG(O-TENG).Here,oleophobic/superamphiphobic O-TENGs are achieved via engineering of solid surface wetting properties.The designed O-TENG can generate an excellent electricity(with a charge density of 9.1μC m^(−2) and a power density of 1.23 mW m^(−2)),which is an order of magnitude higher than other O-TENGs made from polytetrafluoroethylene and polyimide.It also has a significant durability(30,000 cycles)and can power a digital thermometer for self-powered sensor applications.Further,a superhigh-sensitivity O-TENG monitoring system is successfully developed for real-time detecting particle/water contaminants in oils.The O-TENG can detect particle contaminants at least down to 0.01 wt%and water contaminants down to 100 ppm,which are much better than previous online monitoring methods(particle>0.1 wt%;water>1000 ppm).More interesting,the developed O-TENG can also distinguish water from other contaminants,which means the developed O-TENG has a highly water-selective performance.This work provides an ideal strategy for enhancing the output and durability of TENGs for oil-solid contact and opens new intelligent pathways for oil-solid energy harvesting and oil condition monitoring.
文摘Recently, gears of high strength, reliability, and surface-damage-resistant under severe service conditions are required to achieve the weight saving and downsizing of a product. For the high-speed condition in particular, it is important to understand the influence of the surface properties on the scuffing resistance. If the effective surface profile to improve the lubrication property was found, the metal surfaces could be obtained with both surface strength and surface lubricity. Herein, the influence of surface properties modified with fine shot peening, which can form the arbitrary surface profile, on the scuffing resistance in the rolling-sliding contact machine element, was investigated. The scuffing test was performed using a two-cylinder rolling contact test machine. In a specific sliding, a faster roller of 60% and a sliding velocity of 1.75 m/s were utilized. The scuffing test results with shot-peened test rollers and those with non-shot-peened test roller were compared. The influence of the surface roughness of the shot-peened test roller was also discussed. We found that the shot-peened roller had a better scuffing resistance compared with the roller without the shot-peening process.
文摘Grease life refers to the time it takes for the grease to lose its ability to keep the lubrication due to grease degradation. As grease life is generally shorter than fatigue life of bearing, the service life of grease-lubricated rolling bearings is often dominated by grease life. When designing a bearing systemolecular weightith grease lubrication, it is necessary to define the operating conditions limits of the bearing, for which grease life becomes a determining factor. Prolongation of grease life becomes an especially important challenge when the bearing is to be operated trader high-speed, high-temperature, and other severe conditions. Selecting a number of commercially sold greases composed of varying base oils, the author evaluated their properties and analyzed how each property affected the grease life by performing a multiple regression analysis. The optimum grease composition to best exploit each property was also examined. The results revealed among others that one would need to first determine the base oil type and then maximize ultimate bleeding while minimizing the evaporation rate.
文摘Trends in modern industry show a tendency towards demassovization of production as a response to the customers' specific needs for unique and personalized products. This provokes significant changes in the processes of manufacturing, assembly, and testing The cost of such a type of production can be reduced by employing highly productive reconfigurable equipment with proper software to enable optimization. This paper presents a decision support extension for directing of hydraulic cylinders to assembly-testing lines using fuzzy logic in the Enterprise Resource Planning system of a small size production in a factory in Bulgaria. Different assembly-testing lines are flexibly assigned to the specific cylinder's parameters by the developed fuzzy system on the basis of the overlapping of parameters in the hydraulic cylinders classification. The final decision on the line assigned in case of alternatives is made through accounting for the minimal cylinder delay time. The effectiveness of the approach is assessed by simulation. It leads to an increase of the efficiency of the assembly-testing flow lines, a reduction of the time needed for hydraulic cylinders assembling and testing and balanced loading of the modules.
文摘This work is aimed at investigating the friction and wear performance of different polymeric materials having potential for hydraulic system components under lubricated sliding conditions against a steel counter face.A pin-on-disc test configuration was used for the experimental study.The different polymeric materials selected for these studies were commercial polyimides(PI),polyether ether ketone(PEEK),and flouropolymers.Some of these materials were bulk materials whereas others were used as coatings applied on to the cast iron substrate.The tribological characteristics of the polymers were compared with a reference grey cast iron.The frictional characteristics were evaluated in both static and dynamic conditions.The results have shown that by using polymeric materials it is possible to reduce breakaway friction by an order of magnitude compared to grey cast iron.However,the breakaway friction increased significantly after the wear tests.The polymeric materials having lowest breakaway friction have shown the highest wear with the exception of the PEEK-PTFE coating which showed low wear.PI with graphite fillers also showed low wear but it resulted in relatively high friction.The carbon fibre reinforced materials resulted in unstable friction as well as higher wear compared to the PI materials with graphite fillers.