This paper investigates a Luenberger flux observer with speed adaptation for a direct field oriented control of an induction motor. An improved method of speed estimation that operates on the principle of speed adapti...This paper investigates a Luenberger flux observer with speed adaptation for a direct field oriented control of an induction motor. An improved method of speed estimation that operates on the principle of speed adaptive flux and current observer has been proposed. An observer is basically an estimator that uses a plant model and a feedback loop with measured stator voltage and current. Simulation results show that the proposed direct field oriented control with the proposed observer provides good performance dynamic characteristics. The induction motor is fed by an indirect power electronics converter. This indirect converter is controlled by a sliding mode technique that enables minimization of harmonics introduced by the line converter, as well as the control of the power factor and DC-link voltage. The robustness of the overall system is studied using simulation for different operating modes and varied parameters.展开更多
In this paper, a new sensorless interior permanent magnet synchronous motor (IPMSM) drives method with extended Kalman filter (EKF) for speed, rotor position and load torque estimation is proposed. The direct torq...In this paper, a new sensorless interior permanent magnet synchronous motor (IPMSM) drives method with extended Kalman filter (EKF) for speed, rotor position and load torque estimation is proposed. The direct torque control (DTC) technique for permanem magnet synchronous motor (PMSM) is receiving increasing attention due to the important advantages of the low dependence on motor parameters when compared with other motor control techniques. The Kalman filter is an observer for linear and non-linear systems and is based on the stochastic intromission, in others words, noise. The PMSM is fed by an indirect power electronic converter which is controlled by a sliding mode technique. The simulation tests performed for different operating condi- tions have confirmed the robustness of the overall system; and it is shown that the sliding mode technique has successfully minimized the different harmonics introduced by the line converter.展开更多
In this paper, observer design for an induction motor has been investigated. The peculiarity of this paper is the synthesis of a mono-Luenberger observer for highly coupled system. To transform the nonlinear error dyn...In this paper, observer design for an induction motor has been investigated. The peculiarity of this paper is the synthesis of a mono-Luenberger observer for highly coupled system. To transform the nonlinear error dynamics for the induction motor into the linear parametric varying (LPV) system, the differential mean value theorem combined with the sector nonlinearity transformation has been used. Stability conditions based on the Lyapunov function lead to solvability of a set of linear matrix inequalities. The proposed observer guarantees the global exponential convergence to zero of the estimation error. Finally, the simulation results are given to show the performance of the observer design.展开更多
Induction motor driven by vector control method makes high performance control of torque and speed possible. The decoupling of flux and electromag netic torque obtained by field orientation depends on the precision an...Induction motor driven by vector control method makes high performance control of torque and speed possible. The decoupling of flux and electromag netic torque obtained by field orientation depends on the precision and the accuracy of the estimated states. Rotor asymmetries lead to perturbations of air gap flux patterns in induction machines. These perturbations in flux compo nents affect the electromagnetic torque, as well as stator currents and voltages. This paper first investigates the control of the induction motor using an extended Kalman filter (EKF) for a direct fieldoriented control. It then studies the broken rotor bars (BRBs) fault by the monitoring the rotor resistance. The hypothesis on which the detection is based is that the apparent rotor resistance of the motor will increase when a rotor bar breaks. The rotor resistance is estimated and value to detect BRBs fault. compared with its nominal The EKF estimates the rotor flux, speed and rotor resistance on line by using only measurements of the stator voltages and currents. Simula tion results show the effectiveness of the proposed method in the cases of load torque perturbation and speed reversion.展开更多
This paper introduces a technique based on linear quadratic regulator (LQR) to control the output voltage at the load point versus load variation from a stand- alone proton exchange membrane (PEM) fuel cell power ...This paper introduces a technique based on linear quadratic regulator (LQR) to control the output voltage at the load point versus load variation from a stand- alone proton exchange membrane (PEM) fuel cell power plant (FCPP) for a group housing use. The controller modifies the optimal gains ki by minimizing a cost function, and the phase angle of the AC output voltage to control the active and reactive power output from an FCPP to match the terminal load. The control actions are based on feedback signals from the terminal load, output voltage and fuel cell feedback current. The topology chosen for the simulation consists of a 45 kW proton exchange membrane fuel cell (PEMFC), boost type DC/ DC converter, a three-phase DC/AC inverter followed by an LC filter. Simulation results show that the proposed control strategy operated at low commutation frequency (2 kHz) offers good performances versus load variations with low total harmonic distortions (THD), which is very useful for high power applications.展开更多
文摘This paper investigates a Luenberger flux observer with speed adaptation for a direct field oriented control of an induction motor. An improved method of speed estimation that operates on the principle of speed adaptive flux and current observer has been proposed. An observer is basically an estimator that uses a plant model and a feedback loop with measured stator voltage and current. Simulation results show that the proposed direct field oriented control with the proposed observer provides good performance dynamic characteristics. The induction motor is fed by an indirect power electronics converter. This indirect converter is controlled by a sliding mode technique that enables minimization of harmonics introduced by the line converter, as well as the control of the power factor and DC-link voltage. The robustness of the overall system is studied using simulation for different operating modes and varied parameters.
文摘In this paper, a new sensorless interior permanent magnet synchronous motor (IPMSM) drives method with extended Kalman filter (EKF) for speed, rotor position and load torque estimation is proposed. The direct torque control (DTC) technique for permanem magnet synchronous motor (PMSM) is receiving increasing attention due to the important advantages of the low dependence on motor parameters when compared with other motor control techniques. The Kalman filter is an observer for linear and non-linear systems and is based on the stochastic intromission, in others words, noise. The PMSM is fed by an indirect power electronic converter which is controlled by a sliding mode technique. The simulation tests performed for different operating condi- tions have confirmed the robustness of the overall system; and it is shown that the sliding mode technique has successfully minimized the different harmonics introduced by the line converter.
文摘In this paper, observer design for an induction motor has been investigated. The peculiarity of this paper is the synthesis of a mono-Luenberger observer for highly coupled system. To transform the nonlinear error dynamics for the induction motor into the linear parametric varying (LPV) system, the differential mean value theorem combined with the sector nonlinearity transformation has been used. Stability conditions based on the Lyapunov function lead to solvability of a set of linear matrix inequalities. The proposed observer guarantees the global exponential convergence to zero of the estimation error. Finally, the simulation results are given to show the performance of the observer design.
文摘Induction motor driven by vector control method makes high performance control of torque and speed possible. The decoupling of flux and electromag netic torque obtained by field orientation depends on the precision and the accuracy of the estimated states. Rotor asymmetries lead to perturbations of air gap flux patterns in induction machines. These perturbations in flux compo nents affect the electromagnetic torque, as well as stator currents and voltages. This paper first investigates the control of the induction motor using an extended Kalman filter (EKF) for a direct fieldoriented control. It then studies the broken rotor bars (BRBs) fault by the monitoring the rotor resistance. The hypothesis on which the detection is based is that the apparent rotor resistance of the motor will increase when a rotor bar breaks. The rotor resistance is estimated and value to detect BRBs fault. compared with its nominal The EKF estimates the rotor flux, speed and rotor resistance on line by using only measurements of the stator voltages and currents. Simula tion results show the effectiveness of the proposed method in the cases of load torque perturbation and speed reversion.
文摘This paper introduces a technique based on linear quadratic regulator (LQR) to control the output voltage at the load point versus load variation from a stand- alone proton exchange membrane (PEM) fuel cell power plant (FCPP) for a group housing use. The controller modifies the optimal gains ki by minimizing a cost function, and the phase angle of the AC output voltage to control the active and reactive power output from an FCPP to match the terminal load. The control actions are based on feedback signals from the terminal load, output voltage and fuel cell feedback current. The topology chosen for the simulation consists of a 45 kW proton exchange membrane fuel cell (PEMFC), boost type DC/ DC converter, a three-phase DC/AC inverter followed by an LC filter. Simulation results show that the proposed control strategy operated at low commutation frequency (2 kHz) offers good performances versus load variations with low total harmonic distortions (THD), which is very useful for high power applications.