In this paper, the Lie symmetry algebra of the coupled Kadomtsev-Petviashvili (cKP) equation is obtained by the classical Lie group method and this algebra is shown to have a Kac-Moody-Virasoro loop algebra structur...In this paper, the Lie symmetry algebra of the coupled Kadomtsev-Petviashvili (cKP) equation is obtained by the classical Lie group method and this algebra is shown to have a Kac-Moody-Virasoro loop algebra structure. Then the general symmetry groups of the cKP equation is also obtained by the symmetry group direct method which is proposed by Lou et alo From the general symmetry groups, the Lie symmetry group can be recovered and a group of discrete transformations can be derived simultaneously. Lastly, from a known simple solution of the cKP equation, we can easily obtain two new solutions by the general symmetry groups.展开更多
Researchers in computer science and computer engineering devote a significant part of their efforts on communication and interaction between man and machine. Indeed, with the advent of multimedia and multimodal proces...Researchers in computer science and computer engineering devote a significant part of their efforts on communication and interaction between man and machine. Indeed, with the advent of multimedia and multimodal processing in real time, the computer is no longer considered only as a computational tool, but as a machine for processing, communication, collection and control. Many machines assist and support many activities in daily life. The main objective of this paper is to propose a new methodological solution by modeling an architecture that facilitates the work of multimodal system especially for a fission module. To realize such systems, we rely on ontology to integrate data semantically. Ontologies provide a structured vocabulary usedas support for data representation. This paper provides a better understanding of the fission system and multimodal interaction. We present our architecture and the description of the detection of optimal modalities. This is done by using an ontological model that contains different applicable scenarios and describes the environment where a multimodal system exists.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10747141 and 10735030)National Basic Research Program of China (Grant No 2007CB814800)+2 种基金Natural Science Foundations of Zhejiang Province of China (Grant No605408)Ningbo Natural Science Foundation (Grant Nos 2007A610049 and 2008A610017)K. C.Wong Magna Fund in Ningbo University
文摘In this paper, the Lie symmetry algebra of the coupled Kadomtsev-Petviashvili (cKP) equation is obtained by the classical Lie group method and this algebra is shown to have a Kac-Moody-Virasoro loop algebra structure. Then the general symmetry groups of the cKP equation is also obtained by the symmetry group direct method which is proposed by Lou et alo From the general symmetry groups, the Lie symmetry group can be recovered and a group of discrete transformations can be derived simultaneously. Lastly, from a known simple solution of the cKP equation, we can easily obtain two new solutions by the general symmetry groups.
文摘Researchers in computer science and computer engineering devote a significant part of their efforts on communication and interaction between man and machine. Indeed, with the advent of multimedia and multimodal processing in real time, the computer is no longer considered only as a computational tool, but as a machine for processing, communication, collection and control. Many machines assist and support many activities in daily life. The main objective of this paper is to propose a new methodological solution by modeling an architecture that facilitates the work of multimodal system especially for a fission module. To realize such systems, we rely on ontology to integrate data semantically. Ontologies provide a structured vocabulary usedas support for data representation. This paper provides a better understanding of the fission system and multimodal interaction. We present our architecture and the description of the detection of optimal modalities. This is done by using an ontological model that contains different applicable scenarios and describes the environment where a multimodal system exists.