Rockfalls are among the frequent hazards in underground mines worldwide,requiring effective methods for detecting unstable rock blocks to ensure miners’and equipment’s safety.This study proposes a novel approach for...Rockfalls are among the frequent hazards in underground mines worldwide,requiring effective methods for detecting unstable rock blocks to ensure miners’and equipment’s safety.This study proposes a novel approach for identifying potential rockfall zones using infrared thermal imaging and image segmentation techniques.Infrared images of rock blocks were captured at the Draa Sfar deep underground mine in Morocco using the FLUKE TI401 PRO thermal camera.Two segmentation methods were applied to locate the potential unstable areas:the classical thresholding and the K-means clustering model.The results show that while thresholding allows a binary distinction between stable and unstable areas,K-means clustering is more accurate,especially when using multiple clusters to show different risk levels.The close match between the clustering masks of unstable blocks and their corresponding visible light images further validated this.The findings confirm that thermal image segmentation can serve as an alternative method for predicting rockfalls and monitoring geotechnical issues in underground mines.Underground operators worldwide can apply this approach to monitor rock mass stability.However,further research is recommended to enhance these results,particularly through deep learning-based segmentation and object detection models.展开更多
The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band ...The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band gaps of ZnO films with 2,4,and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness.However,the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24% and 12% for Mn-doping performed in the whole layers and two layers of the film respectively,while they exhibit spin glass phases for higher Mn concentrations.It is also found,on the one hand,that the spin glass phase turns into the ferromagnetic one,with the substitution of nitrogen atoms for oxygen atoms,for nitrogen concentrations higher than 16% and 5% for Mn-doping performed in the whole layers and two layers of the film respectively.On the other hand,the spin-glass state is more stable for ZnO bulk containing 5% of Mn impurities,while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system.Moreover,it is shown that using the effective field theory for ferromagnetic system,the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida(RKKY) interaction.展开更多
In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a me...In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a mean-field and high temperature series expansion (HTSE) combined with Pade approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, veff (mean), ratio of the critical exponents γ/v, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n = 2, 3, 4, 5, 6, and bulk (∞).展开更多
The intrinsic ferromagnetism of CoBr2 bulk was investigated using DFT(density functional theory)combined with the full potential linear augmented plane wave method and Monte Carlo simulations.The ground state of CoBr2...The intrinsic ferromagnetism of CoBr2 bulk was investigated using DFT(density functional theory)combined with the full potential linear augmented plane wave method and Monte Carlo simulations.The ground state of CoBr2 exhibits ferromagnetic behavior and a semiconductor character.We used the generalized gradient approximation(GGA)and GGA+U(Hubbard correction)approximations to determinate the magnetic moment.The magnetic moment reached the experimental value and was in good agreement with the other theoretical values.The value obtained was used as an input to a Monte Carlo study to calculate the thermal magnetization and magnetic hysteresis cycles.Ferromagnetic behavior was observed and was found to be due to an positive exchange interaction.These results lead us to believe that this material could be a promising spintronic material.展开更多
The magnetic properties of (Cox Fe1-x)A (Zn1-x Fe1+x)B O4 are studied using mean-field theory and the probability distribution law to obtain the saturation magnetization, the coercive field, the critical temperat...The magnetic properties of (Cox Fe1-x)A (Zn1-x Fe1+x)B O4 are studied using mean-field theory and the probability distribution law to obtain the saturation magnetization, the coercive field, the critical temperature, and the exchange interactions with different values of D (nm) and x. High-temperature series expansions (HTSEs) combined with the Pade approximant are used to calculate the critical temperature of (CoxFe1-x)A(Znl-xFe1+x)BO4, and the critical exponent associated with magnetic susceptibility is obtained.展开更多
Self-consistent ab initio calculations, based on the density functional theory (DFT) and using the full potential linear augmented plane wave (FLAPW) method, are performed to investigate both electronic and magnet...Self-consistent ab initio calculations, based on the density functional theory (DFT) and using the full potential linear augmented plane wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the MnS layers. Polarized spin and spin-orbit coupling are included in the calculations within the framework of the antiferromagnetic state between two adjacent Mn layers. Magnetic moments considered to lie along axes are computed. Obtained data from ab initio calculations are used as input data for the high temperature series expansion (HTSE) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the spin-4.39 nearest-neighbour Heisenberg model on centred face cubic (FCC) and lattices is thoroughly analysed by a power series coherent anomaly method (CAM). The exchange interactions between the magnetic atoms, the N@el temperature, and the critical exponent associated with the magnetic susceptibility are obtained for the MnS layer.展开更多
Electronic and magnetic structures of zinc blende ZnO doped with V impurities are studied by first-principles calculations based on the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approx...Electronic and magnetic structures of zinc blende ZnO doped with V impurities are studied by first-principles calculations based on the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA). Calculations for the substitution of O by N or P are performed and the magnetic moment is found to be sensitive to the N or P content. Furthermore, the system exhibits a half-metallic band structure accompanied by the broadening of vanadium bands. The mechanism responsible for ferromagnetism is also discussed and the stability of the ferromagnetic state compared with that of the paramagnetic state is systematically investigated by calculating the total energy difference between them by using supercell method.展开更多
A new solvent free method for protection of carbonyl compounds as their thioacetals has been accomplished through the use of iodine supported on nanostructured pyrophosphate. Advantages of the methodology include very...A new solvent free method for protection of carbonyl compounds as their thioacetals has been accomplished through the use of iodine supported on nanostructured pyrophosphate. Advantages of the methodology include very short reaction time, the requirement for minimum amounts of catalyst, the remarkably simple experimental procedure, and no necessity for solvents or inert atmospheres, excellent yields and recyclability of the catalyst used. An efficient method for the chemoselective thioacetalization of ketones in the presence of aldehydes using I2/nanostructured pyrophosphate is also reported in this article. The nanostructured pyrophosphate was characterized by scanning electron microscopy, X-ray diffraction, infrared spectroscopy, Transmission electron microscopy and thermal gravimetric analysis, respectively.展开更多
The self-consistent ab initio calculations based on the density functional theory approach using the full potential linear augmented plane wave method are performed to investigate both the electronic and magnetic prop...The self-consistent ab initio calculations based on the density functional theory approach using the full potential linear augmented plane wave method are performed to investigate both the electronic and magnetic properties of the NiFe compound. Polarized spin within the framework of the ferromagnetic state between magnetic ions is considered. Also, magnetic moments considered to lie along (001) axes are computed. The Monte Carlo simulation is used to study the magnetic properties of NiFe. The transition temperature To, hysteresis loop, coercive field and remanent magnetization of the NiFe compound are obtained using the Monte Carlo simulation.展开更多
The characteristics of two different kinds of lignocellulosic materials(vegetable fillers)with two morphologies as Argania nut-shells(ANS)particles and Coir Fibers(CF)were used as reinforcement for phenolic resin(Bake...The characteristics of two different kinds of lignocellulosic materials(vegetable fillers)with two morphologies as Argania nut-shells(ANS)particles and Coir Fibers(CF)were used as reinforcement for phenolic resin(Bakelite)in this work,and the composite are studied as a function of filler types,shape,content(10,20,and 30%wt.percent)and manufacturing loading force(1500 and 3000 LBs).Compression molding was used to create the composites,which were then evaluated using Scanning electronic microscopy(SEM),Fourier-transform infrared spectroscopy(FTIR),bending,dynamic-mechanical-thermal and rheological studies.The morphology of broken samples demonstrates that both fillers are well dispersed and distributed.When fillers are added to the matrix,the flexural characteristics improve,and the optimal values are attained in the case of Argania nut-shells.The results showed that the kind and shape of the fillers had a direct influence on the dynamic mechanical characteristics of the composites due to the reinforcement's modulus augmentation.It was noticed that,the increment of manufacturing loading force decreased the mechanical and dynamical properties of composites.The optimum properties obtained indicate that the composites can only be manufactured at low manufacturing loading force(1500 LBs).展开更多
The exchange interactions of the nearest-neighbor exchange constant between tetrahedral and octahedral sublattices (JAB(x)), nearest-neighbor exchange constant inside tetrahedral sublattice (JAA(x)) and neares...The exchange interactions of the nearest-neighbor exchange constant between tetrahedral and octahedral sublattices (JAB(x)), nearest-neighbor exchange constant inside tetrahedral sublattice (JAA(x)) and nearest-neighbor exchange constant inside octahedral sublattice (JBB(x)) in cobalt and zinc chromites are calculated using the probability distribution. The Curie–Weiss temperature and the critical temperature are deduced using the mean field and the high temperature series expansion theories in ZnxCo1?xCr2O4. The critical exponent associated with the magnetic susceptibility (γ) is deduced for CoCr2O4.展开更多
基金supported by the Moroccan Ministry of Higher Education,Scientific Research,and Innovationthe Moroccan Digital Development Agency(DDA)+2 种基金the National Center for Scientific and Technical Research of Morocco(CNRST)through the Al-Khawarizmi projectthe MANAGEM groupMASCIR supporting this project.
文摘Rockfalls are among the frequent hazards in underground mines worldwide,requiring effective methods for detecting unstable rock blocks to ensure miners’and equipment’s safety.This study proposes a novel approach for identifying potential rockfall zones using infrared thermal imaging and image segmentation techniques.Infrared images of rock blocks were captured at the Draa Sfar deep underground mine in Morocco using the FLUKE TI401 PRO thermal camera.Two segmentation methods were applied to locate the potential unstable areas:the classical thresholding and the K-means clustering model.The results show that while thresholding allows a binary distinction between stable and unstable areas,K-means clustering is more accurate,especially when using multiple clusters to show different risk levels.The close match between the clustering masks of unstable blocks and their corresponding visible light images further validated this.The findings confirm that thermal image segmentation can serve as an alternative method for predicting rockfalls and monitoring geotechnical issues in underground mines.Underground operators worldwide can apply this approach to monitor rock mass stability.However,further research is recommended to enhance these results,particularly through deep learning-based segmentation and object detection models.
文摘The first-principles density functional calculation is used to investigate the electronic structures and magnetic properties of Mn-doped and N-co-doped ZnO nanofilms.The band structure calculation shows that the band gaps of ZnO films with 2,4,and 6 layers are larger than the band gap of the bulk with wurtzite structure and decrease with the increase of film thickness.However,the four-layer ZnO nanofilms exhibit ferromagnetic phases for Mn concentrations less than 24% and 12% for Mn-doping performed in the whole layers and two layers of the film respectively,while they exhibit spin glass phases for higher Mn concentrations.It is also found,on the one hand,that the spin glass phase turns into the ferromagnetic one,with the substitution of nitrogen atoms for oxygen atoms,for nitrogen concentrations higher than 16% and 5% for Mn-doping performed in the whole layers and two layers of the film respectively.On the other hand,the spin-glass state is more stable for ZnO bulk containing 5% of Mn impurities,while the ferromagnetic phase is stable by introducing the p-type carriers into the bulk system.Moreover,it is shown that using the effective field theory for ferromagnetic system,the Curie temperature is close to the room temperature for the undamped Ruderman-Kittel-Kasuya-Yoshida(RKKY) interaction.
文摘In this work, the magnetic properties of Ising and XY antiferromagnetic thin-films are investigated each as a function of Neel temperature and thickness for layers (n = 2, 3, 4, 5, 6, and bulk (∞) by means of a mean-field and high temperature series expansion (HTSE) combined with Pade approximant calculations. The scaling law of magnetic susceptibility and magnetization is used to determine the critical exponent γ, veff (mean), ratio of the critical exponents γ/v, and magnetic properties of Ising and XY antiferromagnetic thin-films for different thickness layers n = 2, 3, 4, 5, 6, and bulk (∞).
文摘The intrinsic ferromagnetism of CoBr2 bulk was investigated using DFT(density functional theory)combined with the full potential linear augmented plane wave method and Monte Carlo simulations.The ground state of CoBr2 exhibits ferromagnetic behavior and a semiconductor character.We used the generalized gradient approximation(GGA)and GGA+U(Hubbard correction)approximations to determinate the magnetic moment.The magnetic moment reached the experimental value and was in good agreement with the other theoretical values.The value obtained was used as an input to a Monte Carlo study to calculate the thermal magnetization and magnetic hysteresis cycles.Ferromagnetic behavior was observed and was found to be due to an positive exchange interaction.These results lead us to believe that this material could be a promising spintronic material.
文摘The magnetic properties of (Cox Fe1-x)A (Zn1-x Fe1+x)B O4 are studied using mean-field theory and the probability distribution law to obtain the saturation magnetization, the coercive field, the critical temperature, and the exchange interactions with different values of D (nm) and x. High-temperature series expansions (HTSEs) combined with the Pade approximant are used to calculate the critical temperature of (CoxFe1-x)A(Znl-xFe1+x)BO4, and the critical exponent associated with magnetic susceptibility is obtained.
文摘Self-consistent ab initio calculations, based on the density functional theory (DFT) and using the full potential linear augmented plane wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the MnS layers. Polarized spin and spin-orbit coupling are included in the calculations within the framework of the antiferromagnetic state between two adjacent Mn layers. Magnetic moments considered to lie along axes are computed. Obtained data from ab initio calculations are used as input data for the high temperature series expansion (HTSE) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the spin-4.39 nearest-neighbour Heisenberg model on centred face cubic (FCC) and lattices is thoroughly analysed by a power series coherent anomaly method (CAM). The exchange interactions between the magnetic atoms, the N@el temperature, and the critical exponent associated with the magnetic susceptibility are obtained for the MnS layer.
文摘Electronic and magnetic structures of zinc blende ZnO doped with V impurities are studied by first-principles calculations based on the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA). Calculations for the substitution of O by N or P are performed and the magnetic moment is found to be sensitive to the N or P content. Furthermore, the system exhibits a half-metallic band structure accompanied by the broadening of vanadium bands. The mechanism responsible for ferromagnetism is also discussed and the stability of the ferromagnetic state compared with that of the paramagnetic state is systematically investigated by calculating the total energy difference between them by using supercell method.
文摘A new solvent free method for protection of carbonyl compounds as their thioacetals has been accomplished through the use of iodine supported on nanostructured pyrophosphate. Advantages of the methodology include very short reaction time, the requirement for minimum amounts of catalyst, the remarkably simple experimental procedure, and no necessity for solvents or inert atmospheres, excellent yields and recyclability of the catalyst used. An efficient method for the chemoselective thioacetalization of ketones in the presence of aldehydes using I2/nanostructured pyrophosphate is also reported in this article. The nanostructured pyrophosphate was characterized by scanning electron microscopy, X-ray diffraction, infrared spectroscopy, Transmission electron microscopy and thermal gravimetric analysis, respectively.
文摘The self-consistent ab initio calculations based on the density functional theory approach using the full potential linear augmented plane wave method are performed to investigate both the electronic and magnetic properties of the NiFe compound. Polarized spin within the framework of the ferromagnetic state between magnetic ions is considered. Also, magnetic moments considered to lie along (001) axes are computed. The Monte Carlo simulation is used to study the magnetic properties of NiFe. The transition temperature To, hysteresis loop, coercive field and remanent magnetization of the NiFe compound are obtained using the Monte Carlo simulation.
文摘The characteristics of two different kinds of lignocellulosic materials(vegetable fillers)with two morphologies as Argania nut-shells(ANS)particles and Coir Fibers(CF)were used as reinforcement for phenolic resin(Bakelite)in this work,and the composite are studied as a function of filler types,shape,content(10,20,and 30%wt.percent)and manufacturing loading force(1500 and 3000 LBs).Compression molding was used to create the composites,which were then evaluated using Scanning electronic microscopy(SEM),Fourier-transform infrared spectroscopy(FTIR),bending,dynamic-mechanical-thermal and rheological studies.The morphology of broken samples demonstrates that both fillers are well dispersed and distributed.When fillers are added to the matrix,the flexural characteristics improve,and the optimal values are attained in the case of Argania nut-shells.The results showed that the kind and shape of the fillers had a direct influence on the dynamic mechanical characteristics of the composites due to the reinforcement's modulus augmentation.It was noticed that,the increment of manufacturing loading force decreased the mechanical and dynamical properties of composites.The optimum properties obtained indicate that the composites can only be manufactured at low manufacturing loading force(1500 LBs).
文摘The exchange interactions of the nearest-neighbor exchange constant between tetrahedral and octahedral sublattices (JAB(x)), nearest-neighbor exchange constant inside tetrahedral sublattice (JAA(x)) and nearest-neighbor exchange constant inside octahedral sublattice (JBB(x)) in cobalt and zinc chromites are calculated using the probability distribution. The Curie–Weiss temperature and the critical temperature are deduced using the mean field and the high temperature series expansion theories in ZnxCo1?xCr2O4. The critical exponent associated with the magnetic susceptibility (γ) is deduced for CoCr2O4.