Photochemical aging of volatile organic compounds(VOCs)in the atmosphere is an important source of secondary organic aerosol(SOA).To evaluate the formation potential of SOA at an urban site in Lyon(France),an outdoor ...Photochemical aging of volatile organic compounds(VOCs)in the atmosphere is an important source of secondary organic aerosol(SOA).To evaluate the formation potential of SOA at an urban site in Lyon(France),an outdoor experiment using a Potential Aerosol Mass(PAM)oxidation flow reactor(OFR)was conducted throughout entire days during JanuaryFebruary 2017.Diurnal variation of SOA formations and their correlation with OH radical exposure(OHexp),ambient pollutants(VOCs and particulate matters,PM),Relative Humidity(RH),and temperature were explored in this study.Ambient urban air was exposed to high concentration of OH radicals with OHexp in range of(0.2-1.2)×10^12 molecule/(cm^3·sec),corresponding to several days to weeks of equivalent atmospheric photochemical aging.The results informed that urban air at Lyon has high potency to contribute to SOA,and these SOA productions were favored from OH radical photochemical oxidation rather than via ozonolysis.Maximum SOA formation(36μg/m^3)was obtained at OHexp of about 7.4×10^11 molecule/(cm^3·sec),equivalent to approximately 5 days of atmospheric oxidation.The correlation between SOA formation and ambient environment conditions(RH&temperature,VOCs and PM)was observed.It was the first time to estimate SOA formation potential from ambient air over a long period in urban environment of Lyon.展开更多
BACKGROUND Data comparing the outcomes of hepatocellular carcinoma(HCC)ablation by multibipolar radiofrequency ablation(mbp-RFA)and microwave ablation(MWA)are lacking.This study compares safety and efficacy of the two...BACKGROUND Data comparing the outcomes of hepatocellular carcinoma(HCC)ablation by multibipolar radiofrequency ablation(mbp-RFA)and microwave ablation(MWA)are lacking.This study compares safety and efficacy of the two techniques in treatment-naive HCC.AIM To compare the risk of local tumor progression(LTP)according to the technique;secondary endpoints included technique efficacy rate at one-month,overall survival and major complication rate.METHODS A bi-institutional retrospective analysis of patients undergoing treatment-naive HCC ablation by either technique was performed.Inverse probability of treatment weighting was used to compare the two groups.Mixed effects multivariate Cox regression was applied to identify risk factors for LTP.RESULTS A total of 362 patients(mean age,66.1±6.2 years,308 men)were included,of which 242(323 tumors)treated by mbp-RFA and 120(168 tumors)by MWA.After a median follow-up of 27 months,cumulative LTP was 11.4%after mbp-RFA and 25.2%after MWA.Independent risk factors for LTP at multivariate analysis were MWA(hazard ratio=2.85,P<0.001)and tumor size(hazard ratio=1.08,P<0.001).Two-year LTP-free survival was higher after mbp-RFA than MWA regardless of size(<3 cm:96%vs 87.1%,P<0.01;≥3 cm:87.5%vs 74%,P=0.04).Technique efficacy rate was higher after mbp-RFA(94.1%vs 87.5%,P=0.01).No difference was observed in major complication rate(9.5%vs 7.5%,P=0.59),nor 5-year overall survival(63.6%vs 58.3%,P=0.33).CONCLUSION Mbp-RFA leads to better local tumor control of treatment-naïve HCC than MWA regardless of tumor size and has better primary efficacy,while maintaining a comparable safety profile.展开更多
Several studies,from both the private sector(McKinsey,Engie,and EY)and international organizations(OECD,World Bank,and IMF),have shown that urban population in cities will grow in the coming decades.This growth implie...Several studies,from both the private sector(McKinsey,Engie,and EY)and international organizations(OECD,World Bank,and IMF),have shown that urban population in cities will grow in the coming decades.This growth implies an increased pressure on all urban networks-transporting people,goods,water,waste,electricity,information,heat,and so on.These functions are executed by urban infrastructures entailing huge investments.We have dedicated our research to the optimization of infrastructures and more precisely of metro systems to offer global solutions to fulfill city needs-the multifunctional metro.The innovative multifunctional metro system incorporates several other urban networks—optical fiber,high-voltage electric cables,water and sewage pipes,geothermal piles,pneumatic systems,merchandise shuttles,and many others depending on the context of each project.The aim of the multifunctional metro is to meet several needs of cities with one common infrastructure.Adding a function to a system increases its complexity.For this reason,we focus our research on the application of methods that allow better management of the complexity:systems engineering applied to infrastructures.In the first part of the paper,we will present a benchmark of multipurpose infrastructures across the world and the benefits of such a system for cities.In the second part,we will present and illustrate the concept of the multifunctional metro.Next,we will present the method based on systems engineering to analyse multifunctional systems.Finally,the concept of a multifunctional metro is illustrated with a case study on the future fifth metro line of Lyon,France.In conclusion,we will discuss the current barriers for the development of multifunctional infrastructures.展开更多
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are t...Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are taking measures to carry out energy transformation and construct new energy systems.As an important part of the new energy system,energy storage technology is highly valued by all countries.Among many large-scale energy storage technologies,salt cavern compressed air energy storage(CAES)technology stands out for its safety and economy,which is recognized and valued by scholars from various countries.For the construction of salt cavern CAES power station,it is very important to ensure the stability of salt cavern.Therefore,scholars have investigated the mechanical properties of salt rocks and the stability of salt caverns for CAES.This paper synthesizes the findings of current research on the creep and fatigue properties of salt rock,highlighting three key points:The factors influencing the creep and fatigue characteristics of salt rock include its composition,stress levels,and temperature.Notably,impurities and surrounding pressure tend to inhibit the deformation of salt rock,whereas elevated temperature and differential stress facilitate its deformation;The mechanisms governing creep and fatigue damage in salt rock are primarily associated with dislocation movement and microcracking;Most existing constitutive models for creep and fatigue are based on viscoelastic-plasticity theory,with fewer models derived from micro-mechanical perspectives.Additionally,this paper reviews studies on the stability of salt cavern CAES reservoirs utilizing numerical simulation methods and offers insights into future research directions concerning the creep and fatigue properties of salt rocks.展开更多
This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production fr...This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions.The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical cha racterization.In particula r,the nominal composition(0-5 mol%Fe)was preserved as ascertained by ICP-MS analysis,and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction.The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis,Raman,and photoluminescence spectroscopies.2.5 mol%iron was found to be an optimal content to achieve a significant decrease in the band gap,enhance the concentration of oxygen vacancy defects,and increase the charge carrier lifetime.The photocatalytic activity of Fe-doped CeO_(2)prepared at different Fe contents with RM preparation was studied and compared with undoped CeO_(2).The optimal iron load was identified to be2.5 mol%,achieving the highest hydrogen production(7566μmol L-1after 240 min under visible light).Moreover,for comparison,the conventional precipitation(P)method was adopted to prepare iron containing CeO_(2)at the optimal content(2.5 mol%Fe).The Fe-doped CeO_(2)catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method.The optimal Fe-doped CeO_(2),prepared by the RM method,was stable for six reuse cycles.Moreover,the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D2O.The obtained results evidenced that hydrogen was produced from the reduction of H^(+)by the electrons promoted in the conduction band,while methanol was preferentially oxidized by the photogenerated positive holes.展开更多
Introduction Progress toward the global elimination of cervical cancer as a public health concern remains slow and highly uneven across countries.High-income nations such as Australia and FinlandDboth of which have ac...Introduction Progress toward the global elimination of cervical cancer as a public health concern remains slow and highly uneven across countries.High-income nations such as Australia and FinlandDboth of which have achieved high human papillomavirus(HPV)vaccination coverage and implemented quality-assured cervical cancer screening programs-have successfully decreased the incidence rates to below 8 cases per 100,000 women~1.These countries are on track to reach the elimination threshold of fewer than 4 cases per 100,000 women within the next few years,as defined by the World Health Organization(WHO).展开更多
Automatic analysis of student behavior in classrooms has gained importance with the rise of smart education and vision technologies.However,the limited real-time accuracy of existing methods severely constrains their ...Automatic analysis of student behavior in classrooms has gained importance with the rise of smart education and vision technologies.However,the limited real-time accuracy of existing methods severely constrains their practical classroom deployment.To address this issue of low accuracy,we propose an improved YOLOv11-based detector that integrates CARAFE upsampling,DySnakeConv,DyHead,and SMFA fusion modules.This new model for real-time classroom behavior detection captures fine-grained student behaviors with low latency.Additionally,we have developed a visualization system that presents data through intuitive dashboards.This system enables teachers to dynamically grasp classroom engagement by tracking student participation and involvement.The enhanced YOLOv11 model achieves an mAP@0.5 of 87.2%on the evaluated datasets,surpassing baseline models.This significance lies in two aspects.First,it provides a practical technical route for deployable live classroom behavior monitoring and engagement feedback systems.Second,by integrating this proposed system,educators could make data-informed and fine-grained teaching decisions,ultimately improving instructional quality and learning outcomes.展开更多
We present a study of the ion stopping power due to free and bound electrons in a warm dense plasma.Our main goal is to propose a method of stopping-power calculation expected to be valid for any ionization degree.The...We present a study of the ion stopping power due to free and bound electrons in a warm dense plasma.Our main goal is to propose a method of stopping-power calculation expected to be valid for any ionization degree.The free-electron contribution is described by the Maynard–Deutsch–Zimmerman formula,and the bound-electron contribution relies on the Bethe formula with corrections,in particular taking into account density and shell effects.The results of the bound-state computation using three different parametric potentials are investigated within the Garbet formalism for the mean excitation energy.The first parametric potential is due to Green,Sellin,and Zachor,the second one was proposed by Yunta,and the third one was introduced by Klapisch in the framework of atomic-structure computations.The results are compared with those of self-consistent average-atom calculations.This approach correctly bridges the limits of neutral and fully ionized matter.展开更多
Background:During the establishment of a model of acute kidney injury(AKI)in pigs,we observed a high prevalence of malignant hyperthermia(MH).These complications led us to refine the anesthetic protocol.This publicati...Background:During the establishment of a model of acute kidney injury(AKI)in pigs,we observed a high prevalence of malignant hyperthermia(MH).These complications led us to refine the anesthetic protocol.This publication describes the impact of the choice of anesthetics on the results obtained.Methods:Pigs were euthanized at the end of the procedure,without recovery from anesthesia.Three anesthetic protocols were used:sevoflurane inhalation(ProtocolA,n=5),a combination of ketamine,medetomidine and diazepam by intravenous infusion(ProtocolB,n=5),and a combination of ketamine,diazepam,medetomidine,glucose,and noradrenaline(ProtocolC,n=5).All pigs received morphine for analgesia.AKI was induced by interrupting renal perfusion for 90 min.MH was diagnosed based on clinical and biological parameters.Results:All MH pigs belonged to ProtocolA.MH pigs showed significantly higher maximum rectal temperature(p=0.04),maximum expired carbon dioxide(CO_(2);p=0.04),maximum heart rate(HR;p=0.03),plasma concentration of creatinine and potassium(p<0.0001).Protocol A pigs had a significantly higher maximum HR(p=0.01)and hyperkalemia compared to the two other groups(ProtocolB,p=0.005 and ProtocolC,p<0.0001).Pigs from ProtocolA had a significantly lower minimum mean arterial pressure(MAP)than ProtocolC group(p=0.03)and MAP remained below 60 mmHg for longer(p=0.004).In ProtocolB,minimum glycemia was lower than other groups(p=0.01).Conclusion:Sevoflurane use was associated with the occurrence of MH,hemodynamic alterations and changes in plasma concentration of creatinine and potassium.These modifications can have a major impact on the validation of an experimental AKI model.展开更多
The publisher regrets that the article type for this publication was incorrectly labeled as a Research Article.The correct designation should be Review Article.
In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method....In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method.Under radiation excitation,scintillation properties such as light yield,decay time,and afterglow level were measured and compared to non-co-doped LuYAG:Pr^(3+).The positive effect of Zr and Hf co-doping is to significantly shorten the scintillation time response.The negative effect is the decrease of scintillation yield and increase of afterglow.We propose that the positively charged defects induced by Zr/Hf co-doping are responsible for the spatial correlated traps around Pr centers causing the shortened scintillation decay via non-radiative recombination processes,and the deep traps as well for the prolonged afterglow.展开更多
In recent years,machine learning(ML)techniques have demonstrated a strong ability to solve highly complex and non-linear problems by analyzing large datasets and learning their intrinsic patterns and relationships.Par...In recent years,machine learning(ML)techniques have demonstrated a strong ability to solve highly complex and non-linear problems by analyzing large datasets and learning their intrinsic patterns and relationships.Particularly in chemical engineering and materials science,ML can be used to discover microstructural composition,optimize chemical processes,and create novel synthetic pathways.Electrochemical processes offer the advantages of precise process control,environmental friendliness,high energy conversion efficiency and low cost.This review article provides the first systematic summary of ML in the application of electrochemical oxidation,including pollutant removal,battery remediation,substance synthesis and material characterization prediction.Hot trends at the intersection of ML and electrochemical oxidation were analyzed through bibliometrics.Common ML models were outlined.The role of ML in improving removal efficiency,optimizing experimental conditions,aiding battery diagnosis and predictive maintenance,and revealing material characterization was highlighted.In addition,current issues and future perspectives were presented in relation to the strengths and weaknesses of ML algorithms applied to electrochemical oxidation.In order to further support the sustainable growth of electrochemistry from basic research to useful applications,this review attempts to make it easier to integrate ML into electrochemical oxidation.展开更多
基金the Institute for Research on Catalysis and the Environment of Lyon(IRCELYON)supported by the"Investissement d’Avenir"PEPS Program Project(ASTRAL)of the University of Lyon and French National center for Scientific Research(French:center national de la recherche scientifique,CNRS)as part of the ANR-11-IDEX-0007 programby the European Research Council under the Horizon 2020 Research and Innovation Program Project of the European Union under Convention N°690958(MARSU)。
文摘Photochemical aging of volatile organic compounds(VOCs)in the atmosphere is an important source of secondary organic aerosol(SOA).To evaluate the formation potential of SOA at an urban site in Lyon(France),an outdoor experiment using a Potential Aerosol Mass(PAM)oxidation flow reactor(OFR)was conducted throughout entire days during JanuaryFebruary 2017.Diurnal variation of SOA formations and their correlation with OH radical exposure(OHexp),ambient pollutants(VOCs and particulate matters,PM),Relative Humidity(RH),and temperature were explored in this study.Ambient urban air was exposed to high concentration of OH radicals with OHexp in range of(0.2-1.2)×10^12 molecule/(cm^3·sec),corresponding to several days to weeks of equivalent atmospheric photochemical aging.The results informed that urban air at Lyon has high potency to contribute to SOA,and these SOA productions were favored from OH radical photochemical oxidation rather than via ozonolysis.Maximum SOA formation(36μg/m^3)was obtained at OHexp of about 7.4×10^11 molecule/(cm^3·sec),equivalent to approximately 5 days of atmospheric oxidation.The correlation between SOA formation and ambient environment conditions(RH&temperature,VOCs and PM)was observed.It was the first time to estimate SOA formation potential from ambient air over a long period in urban environment of Lyon.
文摘BACKGROUND Data comparing the outcomes of hepatocellular carcinoma(HCC)ablation by multibipolar radiofrequency ablation(mbp-RFA)and microwave ablation(MWA)are lacking.This study compares safety and efficacy of the two techniques in treatment-naive HCC.AIM To compare the risk of local tumor progression(LTP)according to the technique;secondary endpoints included technique efficacy rate at one-month,overall survival and major complication rate.METHODS A bi-institutional retrospective analysis of patients undergoing treatment-naive HCC ablation by either technique was performed.Inverse probability of treatment weighting was used to compare the two groups.Mixed effects multivariate Cox regression was applied to identify risk factors for LTP.RESULTS A total of 362 patients(mean age,66.1±6.2 years,308 men)were included,of which 242(323 tumors)treated by mbp-RFA and 120(168 tumors)by MWA.After a median follow-up of 27 months,cumulative LTP was 11.4%after mbp-RFA and 25.2%after MWA.Independent risk factors for LTP at multivariate analysis were MWA(hazard ratio=2.85,P<0.001)and tumor size(hazard ratio=1.08,P<0.001).Two-year LTP-free survival was higher after mbp-RFA than MWA regardless of size(<3 cm:96%vs 87.1%,P<0.01;≥3 cm:87.5%vs 74%,P=0.04).Technique efficacy rate was higher after mbp-RFA(94.1%vs 87.5%,P=0.01).No difference was observed in major complication rate(9.5%vs 7.5%,P=0.59),nor 5-year overall survival(63.6%vs 58.3%,P=0.33).CONCLUSION Mbp-RFA leads to better local tumor control of treatment-naïve HCC than MWA regardless of tumor size and has better primary efficacy,while maintaining a comparable safety profile.
基金We would like to thank all the Egis team who took the time to help and dedicate their time in the development of the concept of the multifunctional metro,the Sytral for their support during our researches,and all the people interviewed at the Grand Lyon for their time,all the information they gave us about urban needs in Lyon and their wise advises on the appropriate functions to investigate.We also thank ESTP for their help in the definition and the development of the methodology to develop multifunctional infrastructures.
文摘Several studies,from both the private sector(McKinsey,Engie,and EY)and international organizations(OECD,World Bank,and IMF),have shown that urban population in cities will grow in the coming decades.This growth implies an increased pressure on all urban networks-transporting people,goods,water,waste,electricity,information,heat,and so on.These functions are executed by urban infrastructures entailing huge investments.We have dedicated our research to the optimization of infrastructures and more precisely of metro systems to offer global solutions to fulfill city needs-the multifunctional metro.The innovative multifunctional metro system incorporates several other urban networks—optical fiber,high-voltage electric cables,water and sewage pipes,geothermal piles,pneumatic systems,merchandise shuttles,and many others depending on the context of each project.The aim of the multifunctional metro is to meet several needs of cities with one common infrastructure.Adding a function to a system increases its complexity.For this reason,we focus our research on the application of methods that allow better management of the complexity:systems engineering applied to infrastructures.In the first part of the paper,we will present a benchmark of multipurpose infrastructures across the world and the benefits of such a system for cities.In the second part,we will present and illustrate the concept of the multifunctional metro.Next,we will present the method based on systems engineering to analyse multifunctional systems.Finally,the concept of a multifunctional metro is illustrated with a case study on the future fifth metro line of Lyon,France.In conclusion,we will discuss the current barriers for the development of multifunctional infrastructures.
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.
基金supported by the Natural Science Fund of China(No.51834003,52274073,52022014).
文摘Energy is an important resource that supports the development of human society,and energy security is even more relevant to the strength of a country.In order to ensure energy security,countries around the world are taking measures to carry out energy transformation and construct new energy systems.As an important part of the new energy system,energy storage technology is highly valued by all countries.Among many large-scale energy storage technologies,salt cavern compressed air energy storage(CAES)technology stands out for its safety and economy,which is recognized and valued by scholars from various countries.For the construction of salt cavern CAES power station,it is very important to ensure the stability of salt cavern.Therefore,scholars have investigated the mechanical properties of salt rocks and the stability of salt caverns for CAES.This paper synthesizes the findings of current research on the creep and fatigue properties of salt rock,highlighting three key points:The factors influencing the creep and fatigue characteristics of salt rock include its composition,stress levels,and temperature.Notably,impurities and surrounding pressure tend to inhibit the deformation of salt rock,whereas elevated temperature and differential stress facilitate its deformation;The mechanisms governing creep and fatigue damage in salt rock are primarily associated with dislocation movement and microcracking;Most existing constitutive models for creep and fatigue are based on viscoelastic-plasticity theory,with fewer models derived from micro-mechanical perspectives.Additionally,this paper reviews studies on the stability of salt cavern CAES reservoirs utilizing numerical simulation methods and offers insights into future research directions concerning the creep and fatigue properties of salt rocks.
基金funding from the"Ministero dell'Universitàe della Ricerca(MUR)"(Italy)under the"Dipartimento di Eccellenza 2018-2022"program.
文摘This work aimed to study the efficiency of the reverse micelle(RM)preparation route in the syntheses of sub-5 nm Fe-doped CeO_(2)nanocrystals for boosting the visible-light-driven photocatalytic hydrogen production from methanol aqueous solutions.The effectiveness of confining precipitation reactions within micellar cages was evaluated through extensive physicochemical cha racterization.In particula r,the nominal composition(0-5 mol%Fe)was preserved as ascertained by ICP-MS analysis,and the absence of separate iron-containing crystalline phases was supported by X-ray diffraction.The effective aliovalent doping and modulation of the optical properties were investigated using UV-Vis,Raman,and photoluminescence spectroscopies.2.5 mol%iron was found to be an optimal content to achieve a significant decrease in the band gap,enhance the concentration of oxygen vacancy defects,and increase the charge carrier lifetime.The photocatalytic activity of Fe-doped CeO_(2)prepared at different Fe contents with RM preparation was studied and compared with undoped CeO_(2).The optimal iron load was identified to be2.5 mol%,achieving the highest hydrogen production(7566μmol L-1after 240 min under visible light).Moreover,for comparison,the conventional precipitation(P)method was adopted to prepare iron containing CeO_(2)at the optimal content(2.5 mol%Fe).The Fe-doped CeO_(2)catalyst prepared by RM showed a significantly higher hydrogen production than that obtained with the sample prepared by the P method.The optimal Fe-doped CeO_(2),prepared by the RM method,was stable for six reuse cycles.Moreover,the role of water in the mechanism of photocatalytic hydrogen evolution under visible light was studied through the test in the presence of D2O.The obtained results evidenced that hydrogen was produced from the reduction of H^(+)by the electrons promoted in the conduction band,while methanol was preferentially oxidized by the photogenerated positive holes.
文摘Introduction Progress toward the global elimination of cervical cancer as a public health concern remains slow and highly uneven across countries.High-income nations such as Australia and FinlandDboth of which have achieved high human papillomavirus(HPV)vaccination coverage and implemented quality-assured cervical cancer screening programs-have successfully decreased the incidence rates to below 8 cases per 100,000 women~1.These countries are on track to reach the elimination threshold of fewer than 4 cases per 100,000 women within the next few years,as defined by the World Health Organization(WHO).
文摘Automatic analysis of student behavior in classrooms has gained importance with the rise of smart education and vision technologies.However,the limited real-time accuracy of existing methods severely constrains their practical classroom deployment.To address this issue of low accuracy,we propose an improved YOLOv11-based detector that integrates CARAFE upsampling,DySnakeConv,DyHead,and SMFA fusion modules.This new model for real-time classroom behavior detection captures fine-grained student behaviors with low latency.Additionally,we have developed a visualization system that presents data through intuitive dashboards.This system enables teachers to dynamically grasp classroom engagement by tracking student participation and involvement.The enhanced YOLOv11 model achieves an mAP@0.5 of 87.2%on the evaluated datasets,surpassing baseline models.This significance lies in two aspects.First,it provides a practical technical route for deployable live classroom behavior monitoring and engagement feedback systems.Second,by integrating this proposed system,educators could make data-informed and fine-grained teaching decisions,ultimately improving instructional quality and learning outcomes.
文摘We present a study of the ion stopping power due to free and bound electrons in a warm dense plasma.Our main goal is to propose a method of stopping-power calculation expected to be valid for any ionization degree.The free-electron contribution is described by the Maynard–Deutsch–Zimmerman formula,and the bound-electron contribution relies on the Bethe formula with corrections,in particular taking into account density and shell effects.The results of the bound-state computation using three different parametric potentials are investigated within the Garbet formalism for the mean excitation energy.The first parametric potential is due to Green,Sellin,and Zachor,the second one was proposed by Yunta,and the third one was introduced by Klapisch in the framework of atomic-structure computations.The results are compared with those of self-consistent average-atom calculations.This approach correctly bridges the limits of neutral and fully ionized matter.
文摘Background:During the establishment of a model of acute kidney injury(AKI)in pigs,we observed a high prevalence of malignant hyperthermia(MH).These complications led us to refine the anesthetic protocol.This publication describes the impact of the choice of anesthetics on the results obtained.Methods:Pigs were euthanized at the end of the procedure,without recovery from anesthesia.Three anesthetic protocols were used:sevoflurane inhalation(ProtocolA,n=5),a combination of ketamine,medetomidine and diazepam by intravenous infusion(ProtocolB,n=5),and a combination of ketamine,diazepam,medetomidine,glucose,and noradrenaline(ProtocolC,n=5).All pigs received morphine for analgesia.AKI was induced by interrupting renal perfusion for 90 min.MH was diagnosed based on clinical and biological parameters.Results:All MH pigs belonged to ProtocolA.MH pigs showed significantly higher maximum rectal temperature(p=0.04),maximum expired carbon dioxide(CO_(2);p=0.04),maximum heart rate(HR;p=0.03),plasma concentration of creatinine and potassium(p<0.0001).Protocol A pigs had a significantly higher maximum HR(p=0.01)and hyperkalemia compared to the two other groups(ProtocolB,p=0.005 and ProtocolC,p<0.0001).Pigs from ProtocolA had a significantly lower minimum mean arterial pressure(MAP)than ProtocolC group(p=0.03)and MAP remained below 60 mmHg for longer(p=0.004).In ProtocolB,minimum glycemia was lower than other groups(p=0.01).Conclusion:Sevoflurane use was associated with the occurrence of MH,hemodynamic alterations and changes in plasma concentration of creatinine and potassium.These modifications can have a major impact on the validation of an experimental AKI model.
文摘The publisher regrets that the article type for this publication was incorrectly labeled as a Research Article.The correct designation should be Review Article.
基金supported by the National Key R&D Program of China(2022YFB3503900)National Natural Science Foundation of China(11975303,12211530561,12305211)+2 种基金Shanghai Municipal Natural Science Foundation(20ZR1473900,21TS1400100)CAS Cooperative Research Project(121631KYSB20210017)CAS Project for Young Scientist in Basic Research(YSBR-024)。
文摘In this study,we aim to clarify the luminescence and scintillation performance of 0.2 at%Pr^(3+)-doped LuYAG scintillators with either zirconium or hafnium co-doping obtained using the micro-pulling-down(μ-PD)method.Under radiation excitation,scintillation properties such as light yield,decay time,and afterglow level were measured and compared to non-co-doped LuYAG:Pr^(3+).The positive effect of Zr and Hf co-doping is to significantly shorten the scintillation time response.The negative effect is the decrease of scintillation yield and increase of afterglow.We propose that the positively charged defects induced by Zr/Hf co-doping are responsible for the spatial correlated traps around Pr centers causing the shortened scintillation decay via non-radiative recombination processes,and the deep traps as well for the prolonged afterglow.
基金funding from the National Natural Science Foundation of China(Nos.22122606,22076142,62276190)National Key Basic Research Program of China(No.2017YFA0403402)+2 种基金National Natural Science Foundation of China(No.U1932119)the Science&Technology Commission of Shanghai Municipality(No.14DZ2261100)the Fundamental Research Funds for the Central Universities。
文摘In recent years,machine learning(ML)techniques have demonstrated a strong ability to solve highly complex and non-linear problems by analyzing large datasets and learning their intrinsic patterns and relationships.Particularly in chemical engineering and materials science,ML can be used to discover microstructural composition,optimize chemical processes,and create novel synthetic pathways.Electrochemical processes offer the advantages of precise process control,environmental friendliness,high energy conversion efficiency and low cost.This review article provides the first systematic summary of ML in the application of electrochemical oxidation,including pollutant removal,battery remediation,substance synthesis and material characterization prediction.Hot trends at the intersection of ML and electrochemical oxidation were analyzed through bibliometrics.Common ML models were outlined.The role of ML in improving removal efficiency,optimizing experimental conditions,aiding battery diagnosis and predictive maintenance,and revealing material characterization was highlighted.In addition,current issues and future perspectives were presented in relation to the strengths and weaknesses of ML algorithms applied to electrochemical oxidation.In order to further support the sustainable growth of electrochemistry from basic research to useful applications,this review attempts to make it easier to integrate ML into electrochemical oxidation.