This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocatio...This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times.展开更多
This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The partici...This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The participants were a 17-year-old young lady with ASD and intellectual deficit, and a control participant: a preadolescent with ASD but no intellectual deficit (Asperger syndrome). The game is comprised of four phases: greetings, pairing, imitation, and closing. Field educators were involved, playing specific roles: visual or physical inciter. The use of a robot allows for catching the participants’ attention, playing the imitation game for a longer period of time than with a human partner, and preventing the game partner’s negative facial expressions resulting from tiredness, impatience, or boredom. The participants’ behavior was observed in terms of initial approach towards the robot, positioning relative to the robot in terms of distance and orientation, reactions to the robot’s voice or moves, signs of happiness, and imitation attempts. Results suggest a more and more natural approach towards the robot during the sessions, as well as a higher level of social interaction, based on the variations of the parameters listed above. We use these preliminary results to draw the next steps of our research work as well as identify further perspectives, with this aim in mind: improving social interactions with adolescents with ASD and intellectual deficit, allowing for better integration of these people into our societies.展开更多
This paper addresses the problem of the opportunistic spectrum access in Cognitive Radio. Indeed, most spectrum sensing algorithms suffer from a high computational cost to achieve the detection process. They need a pr...This paper addresses the problem of the opportunistic spectrum access in Cognitive Radio. Indeed, most spectrum sensing algorithms suffer from a high computational cost to achieve the detection process. They need a prior knowledge of signal characteristics and present a bad performance in low Signal to Noise Ratio (SNR) environment. The choice of the optimal detection threshold is another issue for these spectrum sensing algorithms. To overcome the limits of spectrum detectors, we propose in this paper, a blind detection method based on the cyclostationary features of communication signals. Our detector evaluates the level of hidden periodicity contained in the observed signal to make decision on the state of a bandwidth. In order to reduce the computational cost, we take advantage of the FFT Accumulation Method to estimate the cyclic spectrum of the observed signal. Then, we generate the Cyclic Domain Profile of the cyclic spectrum which allows us to evaluate the level of the hidden periodicity in the signal. This level of periodicity is quantified through the crest factor of Cyclic Domain Profile, which represents the decision statistic of the proposed detector. We have established the analytic expression of the optimal threshold of the detection and the probability of detection to evaluate the performance of the proposed detector. Simulation results show that the proposed detector is able to detect the presence of a communication signal on a bandwidth in a very low SNR scenario.展开更多
The adoption of Cloud Computing services in everyday business life has grown rapidly in recent years due to the many benefits of this paradigm. The various collaboration tools offered by Cloud Computing have eliminate...The adoption of Cloud Computing services in everyday business life has grown rapidly in recent years due to the many benefits of this paradigm. The various collaboration tools offered by Cloud Computing have eliminated or reduced the notion of distance between entities of the same company or between different organizations. This has led to an increase in the need to share resources (data and services). Community Cloud environments have thus emerged to facilitate interactions between organizations with identical needs and with specific and high security requirements. However, establishing trust and secure resource sharing relationships is a major challenge in this type of complex and heterogeneous environment. This paper proposes a trust assessment model (SeComTrust) based on the Zero Trust cybersecurity strategy. First, the paper introduces a community cloud architecture subdivided into different security domains. Second, it presents a process for selecting a trusted organization for an exchange based on direct or recommended trust value and reputation. Finally, a system for promoting or relegating organizations in the different security domains is applied. Experimental results show that our model guarantees the scalability of a community cloud with a high success rate of secure and quality resource sharing.展开更多
The modern development in cloud technologies has turned the idea of cloud gaming into sensible behaviour. The cloud gaming provides an interactive gaming application, which remotely processed in a cloud system, and it...The modern development in cloud technologies has turned the idea of cloud gaming into sensible behaviour. The cloud gaming provides an interactive gaming application, which remotely processed in a cloud system, and it streamed the scenes as video series to play through network. Therefore, cloud gaming is a capable approach, which quickly increases the cloud computing platform. Obtaining enhanced user experience in cloud gaming structure is not insignificant task because user anticipates less response delay and high quality videos. To achieve this, cloud providers need to be able to accurately predict irregular player workloads in order to schedule the necessary resources. In this paper, an effective technique, named as Fractional Rider Deep Long Short Term Memory (LSTM) network is developed for workload prediction in cloud gaming. The workload of each resource is computed based on developed Fractional Rider Deep LSTM network. Moreover, resource allocation is performed by fractional Rider-based Harmony Search Algorithm (Rider-based HSA). This Fractional Rider-based HSA is developed by combining Fractional calculus (FC), Rider optimization algorithm (ROA) and Harmony search algorithm (HSA). Moreover, the developed Fractional Rider Deep LSTM is developed by integrating FC and Rider Deep LSTM. In addition, the multi-objective parameters, namely gaming experience loss QE, Mean Opinion Score (MOS), Fairness, energy, network parameters, and predictive load are considered for efficient resource allocation and workload prediction. Additionally, the developed workload prediction model achieved better performance using various parameters, like fairness, MOS, QE, energy and delay. Hence, the developed Fractional Rider Deep LSTM model showed enhanced results with maximum fairness, MOS, QE of 0.999, 0.921, 0.999 and less energy and delay of 0.322 and 0.456.展开更多
Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Further...Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Furthermore, these systems which used to be isolated are now interconnected to corporate networks and to the Internet. Among the countermeasures to mitigate the threats, anomaly detection systems play an important role as they can help detect even unknown attacks. Deep learning which has gained a great attention in the last few years due to excellent results in image, video and natural language processing is being used for anomaly detection in information security, particularly in SCADA networks. The salient features of the data from SCADA networks are learnt as hierarchical representation using deep architectures, and those learnt features are used to classify the data into normal or anomalous ones. This article is a review of various architectures such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Stacked Autoencoder (SAE), Long Short Term Memory (LSTM), or a combination of those architectures, for anomaly detection purpose in SCADA networks.展开更多
Over the last decade, the rapid growth in traffic and the number of network devices has implicitly led to an increase in network energy consumption. In this context, a new paradigm has emerged, Software-Defined Networ...Over the last decade, the rapid growth in traffic and the number of network devices has implicitly led to an increase in network energy consumption. In this context, a new paradigm has emerged, Software-Defined Networking (SDN), which is an emerging technique that separates the control plane and the data plane of the deployed network, enabling centralized control of the network, while offering flexibility in data center network management. Some research work is moving in the direction of optimizing the energy consumption of SD-DCN, but still does not guarantee good performance and quality of service for SDN networks. To solve this problem, we propose a new mathematical model based on the principle of combinatorial optimization to dynamically solve the problem of activating and deactivating switches and unused links that consume energy in SDN networks while guaranteeing quality of service (QoS) and ensuring load balancing in the network.展开更多
Recent advances in diagnostics have made image analysis one of the main areas of research and development. Selecting and calculating these characteristics of a disease is a difficult task. Among deep learning techniqu...Recent advances in diagnostics have made image analysis one of the main areas of research and development. Selecting and calculating these characteristics of a disease is a difficult task. Among deep learning techniques, deep convolutional neural networks are actively used for image analysis. This includes areas of application such as segmentation, anomaly detection, disease classification, computer-aided diagnosis. The objective which we aim in this article is to extract information in an effective way for a better diagnosis of the plants attending the disease of “swollen shoot”.展开更多
Gesture recognition is topical in computer science and aims at interpreting human gestures via mathematical algorithms. Among the numerous applications are physical rehabilitation and imitation games. In this work, we...Gesture recognition is topical in computer science and aims at interpreting human gestures via mathematical algorithms. Among the numerous applications are physical rehabilitation and imitation games. In this work, we suggest performing human gesture recognition within the context of a serious imitation game, which would aim at improving social interactions with teenagers with autism spectrum disorders. We use an artificial intelligence algorithm to detect the skeleton of the participant, then model the human pose space and describe an imitation learning method using a Gaussian Mixture Model in the Riemannian manifold.展开更多
In a context of increasing competition and sustainable development, service prices and unused capacity enhancement play a crucial role in freight or people transportation management. The focus of the paper is on a Dia...In a context of increasing competition and sustainable development, service prices and unused capacity enhancement play a crucial role in freight or people transportation management. The focus of the paper is on a Dial-a-ride Problem in the Saharan country context, for the particular of Taxi “woro-woro”1. More precisely, these taxis help to transport groups of people without any affinity, from point A to point B without stopping. Also, we propose for this problem an exact solution based on a mix integer program (MIP). A secondary study on a random instance generation algorithm is presented, which allows us to have a diversified and varied benchmark on which to apply our MIP program.展开更多
The collaboration tools offered by Cloud Computing have increased the need to share data and services within companies or between autonomous organizations. This has led to the deployment of community cloud infrastruct...The collaboration tools offered by Cloud Computing have increased the need to share data and services within companies or between autonomous organizations. This has led to the deployment of community cloud infrastructures. However, several challenges will arise from this grouping of heterogeneous organizations. One of the main challenges is the management of trust between the actors of the community. Trust issues arise from the uncertainty about the quality of the resources and entities involved. The quality of a resource can be examined from a security or functional perspective. Therefore, ensuring security and monitoring the quality of resources is to ensure a high level of trust. Therefore, we propose in this paper a technique for dynamic trust management and quality monitoring of resources shared between organizations. Our approach consists, on the one hand, in evaluating the quality of resources based on quality of service measurement attributes and, on the other hand, in updating the trust values according to the information deduced from these measurements. The proposed framework is evaluated in terms of resource sharing success rate and execution time. Experimental results and comparison with TNA-SL and InterTrust models show that the framework can identify and track the behavior of malicious organizations with relatively low execution time.展开更多
With the advent of Big Data, the fields of Statistics and Computer Science coexist in current information systems. In addition to this, technological advances in embedded systems, in particular Internet of Things tech...With the advent of Big Data, the fields of Statistics and Computer Science coexist in current information systems. In addition to this, technological advances in embedded systems, in particular Internet of Things technologies, make it possible to develop real-time applications. These technological developments are disrupting Software Engineering because the use of large amounts of real-time data requires advanced thinking in terms of software architecture. The purpose of this article is to propose an architecture unifying not only Software Engineering and Big Data activities, but also batch and streaming architectures for the exploitation of massive data. This architecture has the advantage of making possible the development of applications and digital services exploiting very large volumes of data in real time;both for management needs and for analytical purposes. This architecture was tested on COVID-19 data as part of the development of an application for real-time monitoring of the evolution of the pandemic in Côte d’Ivoire using PostgreSQL, ELasticsearch, Kafka, Kafka Connect, NiFi, Spark, Node-Red and MoleculerJS to operationalize the architecture.展开更多
Epilepsy is a very common worldwide neurological disorder that can affect a person’s quality of life at any age. People with epilepsy typically have recurrent seizures that can lead to injury or in some cases even de...Epilepsy is a very common worldwide neurological disorder that can affect a person’s quality of life at any age. People with epilepsy typically have recurrent seizures that can lead to injury or in some cases even death. Curing epilepsy requires risky surgery. If not, the patient may be subjected to a long drug treatment associated with lifestyle advice without guarantee of total recovery. However, regardless of the type of treatment performed, late treatment necessarily creates psychological instability in the patient. It is therefore important to be able to diagnose the disease as early as possible if we desire that the patient does not suffer from its consequences on their mental health. That is why the study aims to propose a model for detecting epilepsy in order to be able to identify it as early as possible, especially in newborns. The objective of the article is to propose a model for detecting epilepsy using data from electroencephalogram signals from 10 newborns. This model developed using the extra trees classifier technique offers the possibility of predicting epilepsy in infants with an accuracy of around 99.4%.展开更多
Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for deton...Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for detonation. For this, the study uses a set of 22,000 X-ray scanned images. After preprocessing with filtering techniques to improve image quality, deep learning methods, such as Convolutional Neural Networks (CNNs), are applied for classification. The results are also compared with Autoencoder and Random Forest algorithms. The results are validated on a second dataset, highlighting the advantages of the adopted approach. Baggage screening is a very important part of the risk assessment and security screening process at airports. Automating the detection of dangerous objects from passenger baggage X-ray scanners can speed up and increase the efficiency of the entire security procedure.展开更多
This paper deals with the security of stock market transactions within financial markets, particularly that of the West African Economic and Monetary Union (UEMOA). The confidentiality and integrity of sensitive data ...This paper deals with the security of stock market transactions within financial markets, particularly that of the West African Economic and Monetary Union (UEMOA). The confidentiality and integrity of sensitive data in the stock market being crucial, the implementation of robust systems which guarantee trust between the different actors is essential. We therefore proposed, after analyzing the limits of several security approaches in the literature, an architecture based on blockchain technology making it possible to both identify and reduce the vulnerabilities linked to the design, implementation work or the use of web applications used for transactions. Our proposal makes it possible, thanks to two-factor authentication via the Blockchain, to strengthen the security of investors’ accounts and the automated recording of transactions in the Blockchain while guaranteeing the integrity of stock market operations. It also provides an application vulnerability report. To validate our approach, we compared our results to those of three other security tools, at the level of different metrics. Our approach achieved the best performance in each case.展开更多
Acceptable glycemic control when examining the effects of meals was </span></span><span><span><span style="font-family:"">achieved when combining basal insulin therapy and ...Acceptable glycemic control when examining the effects of meals was </span></span><span><span><span style="font-family:"">achieved when combining basal insulin therapy and high concentration insulin injection before a meal, when using a PID controller (Proportionality, Integrity and Derivative actions) alone, when using a PID controller with basal insulin therapy and when combining the three methods of insulin delivery. Naturally, a type 1 diabetic must inject himself with insulin in well-measured doses. Thus, the management and control of diabetes become a complex task when one must be considered the disturbance due to nutrition and sports activity. This concern has been at the center of much research through different approaches through mathematical methods and Artificial Intelligence methods. This article simulates a physiological model of glycemic control in type 1 diabetics by a PID regulatory mechanism, in the context of disturbances caused by the patient’s meals and athletic activity.展开更多
In medical imaging, particularly for analyzing brain tumor MRIs, the expertise of skilled neurosurgeons or radiologists is often essential. However, many developing countries face a significant shortage of these speci...In medical imaging, particularly for analyzing brain tumor MRIs, the expertise of skilled neurosurgeons or radiologists is often essential. However, many developing countries face a significant shortage of these specialists, which impedes the accurate identification and analysis of tumors. This shortage exacerbates the challenge of delivering precise and timely diagnoses and delays the production of comprehensive MRI reports. Such delays can critically affect treatment outcomes, especially for conditions requiring immediate intervention, potentially leading to higher mortality rates. In this study, we introduced an adapted convolutional neural network designed to automate brain tumor diagnosis. Our model features fewer layers, each optimized with carefully selected hyperparameters. As a result, it significantly reduced both execution time and memory usage compared to other models. Specifically, its execution time was 10 times shorter than that of the referenced models, and its memory consumption was 3 times lower than that of ResNet. In terms of accuracy, our model outperformed all other architectures presented in the study, except for ResNet, which showed similar performance with an accuracy of around 90%.展开更多
In this paper, a design of a miniature antenna for biomedical implant applications is presented. The proposed structure consists of a printed antenna designed to cover all frequency bands below 1 GHz and is dedicated ...In this paper, a design of a miniature antenna for biomedical implant applications is presented. The proposed structure consists of a printed antenna designed to cover all frequency bands below 1 GHz and is dedicated to biomedical applications with good matching, omnidirectional radiation, and a maximum realized gain of −26.7 dBi. It offers two bandwidths of 270 MHz and 762 MHz respectively. A Phantom model of the elliptical cylinder of 180 × 100 × 50 mm3 was used to simulate the electromagnetic radiation inside the human body. The tissue considered is equivalent to a muscle with a relative permittivity of 57 and a conductivity equal to 0.79 S/m. We also studied the antenna behavior when close to the internal electronic components. The simulation showed that the antenna remains robust in such an environment. Finally, the Specific Absorption Rate of the muscle was evaluated when the antenna was fed with 1 V. The evaluation proved that the calculated value of 0.48 W/Kg is well below the limit value imposed by the International Commission on Non-Ionizing Radiation Protection.展开更多
Intrusion Detection Systems (IDS) are essential for computer security, with various techniques developed over time. However, many of these methods suffer from high false positive rates. To address this, we propose an ...Intrusion Detection Systems (IDS) are essential for computer security, with various techniques developed over time. However, many of these methods suffer from high false positive rates. To address this, we propose an approach utilizing Recurrent Neural Networks (RNN). Our method starts by reducing the dataset’s dimensionality using a Deep Auto-Encoder (DAE), followed by intrusion detection through a Bidirectional Long Short-Term Memory (BiLSTM) network. The proposed DAE-BiLSTM model outperforms Random Forest, AdaBoost, and standard BiLSTM models, achieving an accuracy of 0.97, a recall of 0.95, and an AUC of 0.93. Although BiLSTM is slightly less effective than DAE-BiLSTM, both RNN-based models outperform AdaBoost and Random Forest. ROC curves show that DAE-BiLSTM is the most effective, demonstrating strong detection capabilities with a low false positive rate. While AdaBoost performs well, it is less effective than RNN models but still surpasses Random Forest.展开更多
文摘This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times.
文摘This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The participants were a 17-year-old young lady with ASD and intellectual deficit, and a control participant: a preadolescent with ASD but no intellectual deficit (Asperger syndrome). The game is comprised of four phases: greetings, pairing, imitation, and closing. Field educators were involved, playing specific roles: visual or physical inciter. The use of a robot allows for catching the participants’ attention, playing the imitation game for a longer period of time than with a human partner, and preventing the game partner’s negative facial expressions resulting from tiredness, impatience, or boredom. The participants’ behavior was observed in terms of initial approach towards the robot, positioning relative to the robot in terms of distance and orientation, reactions to the robot’s voice or moves, signs of happiness, and imitation attempts. Results suggest a more and more natural approach towards the robot during the sessions, as well as a higher level of social interaction, based on the variations of the parameters listed above. We use these preliminary results to draw the next steps of our research work as well as identify further perspectives, with this aim in mind: improving social interactions with adolescents with ASD and intellectual deficit, allowing for better integration of these people into our societies.
文摘This paper addresses the problem of the opportunistic spectrum access in Cognitive Radio. Indeed, most spectrum sensing algorithms suffer from a high computational cost to achieve the detection process. They need a prior knowledge of signal characteristics and present a bad performance in low Signal to Noise Ratio (SNR) environment. The choice of the optimal detection threshold is another issue for these spectrum sensing algorithms. To overcome the limits of spectrum detectors, we propose in this paper, a blind detection method based on the cyclostationary features of communication signals. Our detector evaluates the level of hidden periodicity contained in the observed signal to make decision on the state of a bandwidth. In order to reduce the computational cost, we take advantage of the FFT Accumulation Method to estimate the cyclic spectrum of the observed signal. Then, we generate the Cyclic Domain Profile of the cyclic spectrum which allows us to evaluate the level of the hidden periodicity in the signal. This level of periodicity is quantified through the crest factor of Cyclic Domain Profile, which represents the decision statistic of the proposed detector. We have established the analytic expression of the optimal threshold of the detection and the probability of detection to evaluate the performance of the proposed detector. Simulation results show that the proposed detector is able to detect the presence of a communication signal on a bandwidth in a very low SNR scenario.
文摘The adoption of Cloud Computing services in everyday business life has grown rapidly in recent years due to the many benefits of this paradigm. The various collaboration tools offered by Cloud Computing have eliminated or reduced the notion of distance between entities of the same company or between different organizations. This has led to an increase in the need to share resources (data and services). Community Cloud environments have thus emerged to facilitate interactions between organizations with identical needs and with specific and high security requirements. However, establishing trust and secure resource sharing relationships is a major challenge in this type of complex and heterogeneous environment. This paper proposes a trust assessment model (SeComTrust) based on the Zero Trust cybersecurity strategy. First, the paper introduces a community cloud architecture subdivided into different security domains. Second, it presents a process for selecting a trusted organization for an exchange based on direct or recommended trust value and reputation. Finally, a system for promoting or relegating organizations in the different security domains is applied. Experimental results show that our model guarantees the scalability of a community cloud with a high success rate of secure and quality resource sharing.
文摘The modern development in cloud technologies has turned the idea of cloud gaming into sensible behaviour. The cloud gaming provides an interactive gaming application, which remotely processed in a cloud system, and it streamed the scenes as video series to play through network. Therefore, cloud gaming is a capable approach, which quickly increases the cloud computing platform. Obtaining enhanced user experience in cloud gaming structure is not insignificant task because user anticipates less response delay and high quality videos. To achieve this, cloud providers need to be able to accurately predict irregular player workloads in order to schedule the necessary resources. In this paper, an effective technique, named as Fractional Rider Deep Long Short Term Memory (LSTM) network is developed for workload prediction in cloud gaming. The workload of each resource is computed based on developed Fractional Rider Deep LSTM network. Moreover, resource allocation is performed by fractional Rider-based Harmony Search Algorithm (Rider-based HSA). This Fractional Rider-based HSA is developed by combining Fractional calculus (FC), Rider optimization algorithm (ROA) and Harmony search algorithm (HSA). Moreover, the developed Fractional Rider Deep LSTM is developed by integrating FC and Rider Deep LSTM. In addition, the multi-objective parameters, namely gaming experience loss QE, Mean Opinion Score (MOS), Fairness, energy, network parameters, and predictive load are considered for efficient resource allocation and workload prediction. Additionally, the developed workload prediction model achieved better performance using various parameters, like fairness, MOS, QE, energy and delay. Hence, the developed Fractional Rider Deep LSTM model showed enhanced results with maximum fairness, MOS, QE of 0.999, 0.921, 0.999 and less energy and delay of 0.322 and 0.456.
文摘Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Furthermore, these systems which used to be isolated are now interconnected to corporate networks and to the Internet. Among the countermeasures to mitigate the threats, anomaly detection systems play an important role as they can help detect even unknown attacks. Deep learning which has gained a great attention in the last few years due to excellent results in image, video and natural language processing is being used for anomaly detection in information security, particularly in SCADA networks. The salient features of the data from SCADA networks are learnt as hierarchical representation using deep architectures, and those learnt features are used to classify the data into normal or anomalous ones. This article is a review of various architectures such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Stacked Autoencoder (SAE), Long Short Term Memory (LSTM), or a combination of those architectures, for anomaly detection purpose in SCADA networks.
文摘Over the last decade, the rapid growth in traffic and the number of network devices has implicitly led to an increase in network energy consumption. In this context, a new paradigm has emerged, Software-Defined Networking (SDN), which is an emerging technique that separates the control plane and the data plane of the deployed network, enabling centralized control of the network, while offering flexibility in data center network management. Some research work is moving in the direction of optimizing the energy consumption of SD-DCN, but still does not guarantee good performance and quality of service for SDN networks. To solve this problem, we propose a new mathematical model based on the principle of combinatorial optimization to dynamically solve the problem of activating and deactivating switches and unused links that consume energy in SDN networks while guaranteeing quality of service (QoS) and ensuring load balancing in the network.
文摘Recent advances in diagnostics have made image analysis one of the main areas of research and development. Selecting and calculating these characteristics of a disease is a difficult task. Among deep learning techniques, deep convolutional neural networks are actively used for image analysis. This includes areas of application such as segmentation, anomaly detection, disease classification, computer-aided diagnosis. The objective which we aim in this article is to extract information in an effective way for a better diagnosis of the plants attending the disease of “swollen shoot”.
文摘Gesture recognition is topical in computer science and aims at interpreting human gestures via mathematical algorithms. Among the numerous applications are physical rehabilitation and imitation games. In this work, we suggest performing human gesture recognition within the context of a serious imitation game, which would aim at improving social interactions with teenagers with autism spectrum disorders. We use an artificial intelligence algorithm to detect the skeleton of the participant, then model the human pose space and describe an imitation learning method using a Gaussian Mixture Model in the Riemannian manifold.
文摘In a context of increasing competition and sustainable development, service prices and unused capacity enhancement play a crucial role in freight or people transportation management. The focus of the paper is on a Dial-a-ride Problem in the Saharan country context, for the particular of Taxi “woro-woro”1. More precisely, these taxis help to transport groups of people without any affinity, from point A to point B without stopping. Also, we propose for this problem an exact solution based on a mix integer program (MIP). A secondary study on a random instance generation algorithm is presented, which allows us to have a diversified and varied benchmark on which to apply our MIP program.
文摘The collaboration tools offered by Cloud Computing have increased the need to share data and services within companies or between autonomous organizations. This has led to the deployment of community cloud infrastructures. However, several challenges will arise from this grouping of heterogeneous organizations. One of the main challenges is the management of trust between the actors of the community. Trust issues arise from the uncertainty about the quality of the resources and entities involved. The quality of a resource can be examined from a security or functional perspective. Therefore, ensuring security and monitoring the quality of resources is to ensure a high level of trust. Therefore, we propose in this paper a technique for dynamic trust management and quality monitoring of resources shared between organizations. Our approach consists, on the one hand, in evaluating the quality of resources based on quality of service measurement attributes and, on the other hand, in updating the trust values according to the information deduced from these measurements. The proposed framework is evaluated in terms of resource sharing success rate and execution time. Experimental results and comparison with TNA-SL and InterTrust models show that the framework can identify and track the behavior of malicious organizations with relatively low execution time.
文摘With the advent of Big Data, the fields of Statistics and Computer Science coexist in current information systems. In addition to this, technological advances in embedded systems, in particular Internet of Things technologies, make it possible to develop real-time applications. These technological developments are disrupting Software Engineering because the use of large amounts of real-time data requires advanced thinking in terms of software architecture. The purpose of this article is to propose an architecture unifying not only Software Engineering and Big Data activities, but also batch and streaming architectures for the exploitation of massive data. This architecture has the advantage of making possible the development of applications and digital services exploiting very large volumes of data in real time;both for management needs and for analytical purposes. This architecture was tested on COVID-19 data as part of the development of an application for real-time monitoring of the evolution of the pandemic in Côte d’Ivoire using PostgreSQL, ELasticsearch, Kafka, Kafka Connect, NiFi, Spark, Node-Red and MoleculerJS to operationalize the architecture.
文摘Epilepsy is a very common worldwide neurological disorder that can affect a person’s quality of life at any age. People with epilepsy typically have recurrent seizures that can lead to injury or in some cases even death. Curing epilepsy requires risky surgery. If not, the patient may be subjected to a long drug treatment associated with lifestyle advice without guarantee of total recovery. However, regardless of the type of treatment performed, late treatment necessarily creates psychological instability in the patient. It is therefore important to be able to diagnose the disease as early as possible if we desire that the patient does not suffer from its consequences on their mental health. That is why the study aims to propose a model for detecting epilepsy in order to be able to identify it as early as possible, especially in newborns. The objective of the article is to propose a model for detecting epilepsy using data from electroencephalogram signals from 10 newborns. This model developed using the extra trees classifier technique offers the possibility of predicting epilepsy in infants with an accuracy of around 99.4%.
文摘Baggage screening is crucial for airport security. This paper examines various algorithms for firearm detection in X-ray images of baggage. The focus is on identifying steel barrel bores, which are essential for detonation. For this, the study uses a set of 22,000 X-ray scanned images. After preprocessing with filtering techniques to improve image quality, deep learning methods, such as Convolutional Neural Networks (CNNs), are applied for classification. The results are also compared with Autoencoder and Random Forest algorithms. The results are validated on a second dataset, highlighting the advantages of the adopted approach. Baggage screening is a very important part of the risk assessment and security screening process at airports. Automating the detection of dangerous objects from passenger baggage X-ray scanners can speed up and increase the efficiency of the entire security procedure.
文摘This paper deals with the security of stock market transactions within financial markets, particularly that of the West African Economic and Monetary Union (UEMOA). The confidentiality and integrity of sensitive data in the stock market being crucial, the implementation of robust systems which guarantee trust between the different actors is essential. We therefore proposed, after analyzing the limits of several security approaches in the literature, an architecture based on blockchain technology making it possible to both identify and reduce the vulnerabilities linked to the design, implementation work or the use of web applications used for transactions. Our proposal makes it possible, thanks to two-factor authentication via the Blockchain, to strengthen the security of investors’ accounts and the automated recording of transactions in the Blockchain while guaranteeing the integrity of stock market operations. It also provides an application vulnerability report. To validate our approach, we compared our results to those of three other security tools, at the level of different metrics. Our approach achieved the best performance in each case.
文摘Acceptable glycemic control when examining the effects of meals was </span></span><span><span><span style="font-family:"">achieved when combining basal insulin therapy and high concentration insulin injection before a meal, when using a PID controller (Proportionality, Integrity and Derivative actions) alone, when using a PID controller with basal insulin therapy and when combining the three methods of insulin delivery. Naturally, a type 1 diabetic must inject himself with insulin in well-measured doses. Thus, the management and control of diabetes become a complex task when one must be considered the disturbance due to nutrition and sports activity. This concern has been at the center of much research through different approaches through mathematical methods and Artificial Intelligence methods. This article simulates a physiological model of glycemic control in type 1 diabetics by a PID regulatory mechanism, in the context of disturbances caused by the patient’s meals and athletic activity.
文摘In medical imaging, particularly for analyzing brain tumor MRIs, the expertise of skilled neurosurgeons or radiologists is often essential. However, many developing countries face a significant shortage of these specialists, which impedes the accurate identification and analysis of tumors. This shortage exacerbates the challenge of delivering precise and timely diagnoses and delays the production of comprehensive MRI reports. Such delays can critically affect treatment outcomes, especially for conditions requiring immediate intervention, potentially leading to higher mortality rates. In this study, we introduced an adapted convolutional neural network designed to automate brain tumor diagnosis. Our model features fewer layers, each optimized with carefully selected hyperparameters. As a result, it significantly reduced both execution time and memory usage compared to other models. Specifically, its execution time was 10 times shorter than that of the referenced models, and its memory consumption was 3 times lower than that of ResNet. In terms of accuracy, our model outperformed all other architectures presented in the study, except for ResNet, which showed similar performance with an accuracy of around 90%.
文摘In this paper, a design of a miniature antenna for biomedical implant applications is presented. The proposed structure consists of a printed antenna designed to cover all frequency bands below 1 GHz and is dedicated to biomedical applications with good matching, omnidirectional radiation, and a maximum realized gain of −26.7 dBi. It offers two bandwidths of 270 MHz and 762 MHz respectively. A Phantom model of the elliptical cylinder of 180 × 100 × 50 mm3 was used to simulate the electromagnetic radiation inside the human body. The tissue considered is equivalent to a muscle with a relative permittivity of 57 and a conductivity equal to 0.79 S/m. We also studied the antenna behavior when close to the internal electronic components. The simulation showed that the antenna remains robust in such an environment. Finally, the Specific Absorption Rate of the muscle was evaluated when the antenna was fed with 1 V. The evaluation proved that the calculated value of 0.48 W/Kg is well below the limit value imposed by the International Commission on Non-Ionizing Radiation Protection.
文摘Intrusion Detection Systems (IDS) are essential for computer security, with various techniques developed over time. However, many of these methods suffer from high false positive rates. To address this, we propose an approach utilizing Recurrent Neural Networks (RNN). Our method starts by reducing the dataset’s dimensionality using a Deep Auto-Encoder (DAE), followed by intrusion detection through a Bidirectional Long Short-Term Memory (BiLSTM) network. The proposed DAE-BiLSTM model outperforms Random Forest, AdaBoost, and standard BiLSTM models, achieving an accuracy of 0.97, a recall of 0.95, and an AUC of 0.93. Although BiLSTM is slightly less effective than DAE-BiLSTM, both RNN-based models outperform AdaBoost and Random Forest. ROC curves show that DAE-BiLSTM is the most effective, demonstrating strong detection capabilities with a low false positive rate. While AdaBoost performs well, it is less effective than RNN models but still surpasses Random Forest.