The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient uti...The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient utilization of lepidolite as a lithium source.Therefore,the processes for the flotation of lepidolite have been studied in depth,particularly the development and use of lepidolite flotation collectors and the action mechanism of the collectors on the lepidolite surface.Based on the crystal-structure characteristics of lepidolite minerals,this review focuses on the application of anionic collectors,amine cationic collectors(primary amines,quaternary ammonium salts,ether amines,and Gemini amines),and combined collectors to the flotation behavior of lepidolite as well as the adsorption mechanisms.New directions and technologies for the controllable flotation of lepidolite are proposed,including process improvement,reagent synthesis,and mechanistic research.This analysis demonstrates the need for the further study of the complex environment inside lepidolite and pulp.By using modern analytical detection methods and quantum chemical calculations,research on reagents for the flotation of lepidolite has expanded,providing new concepts and references for the efficient flotation recovery and utilization of lepidolite.展开更多
China has experienced rapid urbanizations with dramatic land cover changes since 1978. Forest loss is one of land cover changes, and it induces various eco-environmental degradation issues. As one of China’s hotspot ...China has experienced rapid urbanizations with dramatic land cover changes since 1978. Forest loss is one of land cover changes, and it induces various eco-environmental degradation issues. As one of China’s hotspot regions, the Guangdong-Hong KongMacao Greater Bay Area(GBA) has undergone a dramatic urban expansion. To better understand forest dynamics and protect forest ecosystem, revealing the processes, patterns and underlying drivers of forest loss is essential. This study focused on the spatiotemporal evolution and potential driving factors of forest loss in the GBA at regional and city level. The Landsat time-series images from 1987 to2017 were used to derive forest, and landscape metrics and geographic information system(GIS) were applied to implement further spatial analysis. The results showed that: 1) 14.86% of the total urban growth area of the GBA was obtained from the forest loss in1987–2017;meanwhile, the forest loss area of the GBA reached 4040.6 km2, of which 25.60%(1034.42 km2) was converted to urban land;2) the percentages of forest loss to urban land in Dongguan(19.14%), Guangzhou(18.35%) and Shenzhen(15.81%) were higher than those in other cities;3) the forest became increasingly fragmented from 1987–2007, and then the fragmentation decreased from2007 to 2017);4) the landscape responses to forest changes varied with the scale;and 5) some forest loss to urban regions moved from low-elevation and gentle-slope terrains to higher-elevation and steep-slope terrains over time, especially in Shenzhen and Hong Kong.Urbanization and industrialization greatly drove forest loss and fragmentation, and, notably, hillside urban land expansion may have contributed to hillside forest loss. The findings will help policy makers in maintaining the stability of forest ecosystems, and provide some new insights into forest management and conservation.展开更多
The analysis of the 3 stages' (1988,1996,2000) variation of land-cover is performed according to Thematic Mapper (TM) and Enhancement Thematic Mapper(ETM) satellite image by combining ground GIS database with G...The analysis of the 3 stages' (1988,1996,2000) variation of land-cover is performed according to Thematic Mapper (TM) and Enhancement Thematic Mapper(ETM) satellite image by combining ground GIS database with GPS field collected data in the area of Xiaowan-Dachaoshan Reservoirs of Lancangjiang River cascaded Hydropower Area. Consequently, the land-cover is divided into five subclasses, namely water, paddy field and wetland, bare dryland and sparse shrub, secondary forest and density forest. The result showed that the areas of bare land, upland and secondary forest decreased in 1988-1996, whereas from 1996 to 2000, water body and density forest keep invariability while the areas of paddy field and wetland, bare dryland and sparse scrub increasing and the area of secondary forest decrease; Features of reciprocal transformation between density forest and other type of land-cover had two points, i.e. secondary forest, bare dryland and sparse shrub converted to density forest; and density forest converted to secondary forest and paddy field and wetland. It reflects the dynamic variation of density forest; the area which slope less than 8° and greater than 15° shows bigger variation, however, less change in 8°-15°.展开更多
High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning meth...High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning method for unmanned aerial vehicles(UAVs),which could achieve rapid image collection based on strictly calculated route parameters.The effectiveness of this method was verified using a DJI Mavic 2 Pro,obtaining high-resolution landslide images within the Dongchuan debris flow gully,in the Xiaojiang River Basin,Dongchuan District,Yunnan,China.A three-dimensional(3D)model was constructed by the structure-from-motion and multi-view stereo(SfM-MVS).Micro-geomorphic features were analyzed through visual interpretation,geographic information system(GIS),spatial analysis,and mathematical statistics methods.The results demonstrated that the proposed method could obtain comprehensive vertical information on landslides while improving measurement accuracy.The 3D model was constructed using the vertically oriented flight route to achieve centimeter-level accuracy(horizontal accuracy better than 6 cm,elevation accuracy better than 3 cm,and relative accuracy better than 3.5 cm).The UAV technology could further help understand the micro internal spatial and structural characteristics of landslides,facilitating intuitive acquisition of surface details.The slope of landslide clusters ranged from 36°to 72°,with the majority of the slope facing east and southeast.Upper elevation levels were relatively consistent while middle to lower elevation levels gradually decreased from left to right with significant variations in lower elevation levels.During the rainy season,surface runoff was abundant,and steep topography exacerbated changes in surface features.This route method is suitable for unmanned aerial vehicle(UAV)landslide surveys in complex mountainous environments.The geomorphological analysis methods used will provide references for identifying and describing topographic features.展开更多
In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urb...In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective.展开更多
The principles and methods of regional land consolidation in Yunnan Province are expounded. On the basis of differences in topography, climate, soil, hydrology and other natural conditions and the characteristics of s...The principles and methods of regional land consolidation in Yunnan Province are expounded. On the basis of differences in topography, climate, soil, hydrology and other natural conditions and the characteristics of spatial layout of land use, agricultural zoning, cropping system and land consolidation measures, the land consolidation zoning indicator system composed of five indicators covering ecological environment, socio-economy, land use, land consolidation and land quality is established by using the GIS spatial analysis and mathematical analysis. Against this backdrop, the Yunnan Province is divided into five first-level land consolidation zones, including the middle-mountain lake basin plateau consolidation zone in central Yunnan, the middle and low mountain wide valley basin consolidation zone in southwest Yunnan, the karst middle and low mountains consolidation zone in southeast Yunnan, the high-mountain and highlands consolidation zone in northeast Yunnan, the middle -mountain and mountain plateau consolidation zone in northeast Yunnan.展开更多
Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger in...Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.展开更多
Tin is a critical metal for various industries,making its recovery from low-grade cassiterite ores crucial.This study aimed to optimize the flotation recovery of cassiterite using multi-component collector systems.Sev...Tin is a critical metal for various industries,making its recovery from low-grade cassiterite ores crucial.This study aimed to optimize the flotation recovery of cassiterite using multi-component collector systems.Several collectors were initially selected through micro-flotation tests,leading to the identification of optimal proportions for a four-component collector system(SHA-OHA-SPA-DBIA in a 4:3:2:1 ratio).Molecular dynamics simulations and surface tension tests were used to investigate the micellar behavior of these collectors in aqueous solution.The adsorption characteristics were quantified using microcalorimetry,enabling the determination of collection entropy and changes in Gibbs free energy.The four-component collector system showed the highest entropy change and the most favorable Gibbs free energy,leading to a cassiterite recovery of above 90%at a concentration of 8.0×10^(5)mol/L.Various analytical techniques were employed to systematically characterize the adsorption mechanism.The findings revealed a positive correlation between the adsorption products formed by the multicomponent collectors on the cassiterite surface and the entropy changes.Industrial-scale testing of the high-entropy collector system produced a tin concentrate with an Sn grade of 6.17%and an Sn recovery of 82.43%,demonstrating its substantial potential for practical applications in cassiterite flotation.展开更多
Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly as...Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste.展开更多
As one of the typical deposits in the Sichuan-Yunnan-Guizhou Pb-Zn metallogenic province,the Daliangzi Pb-Zn deposit has a close genetic relationship with the structural system of the black/fracture zone formed under ...As one of the typical deposits in the Sichuan-Yunnan-Guizhou Pb-Zn metallogenic province,the Daliangzi Pb-Zn deposit has a close genetic relationship with the structural system of the black/fracture zone formed under the action of the NWW-approximately EW strike-slip structures in the metallogenic province.The R1 black/fracture zone has a close relationship with ore forming;however,the mechanism of the rock-and ore-controlling action of the structural system remains unclear.Based on a detailed analysis of the tectonite-mineralized alteration lithofacies of the R1 black/fracture zone,the tectonite-mineralized alteration lithofacies zones can be divided into four types in succession outward from the Pb-Zn mineralization center(F_(5),F_(100),and other faults),i.e.,(1)the brecciated and stockwork-like Pb-Zn mineralization-complex breccia facies zone;(2)the stockwork-like Pb-Zn mineralization-simple breccia and cataclasite facies zone;(3)the veined pyrite-sulfide-dolomitic cataclasite facies zone;(4)the fine-veined calcite-black carbonized dolomite facies zone.With the evolution of the ore-forming fluid,the homogenization temperature decreases from Zone 1 to Zone 4;the salinity increases from Zone 1 to Zone 2 and then it decreases from Zones 3 and 4.The fluid density shows little change overall.The contents of Zn,Pb,Cu,Ga,Ge,Cd,Ag,and other metallogenic elements,Zn/Pb ratio,and CaO/MgO mole ratio decrease gradually from Zone 1 to Zone 4,and the REE fractionation,calcilization,silicification,and pyritization enhance gradually from Zone 1 to Zone 4.This series of changes is the product of diapirism(cryptoexplosion)of strike-slip structures and the black/fracture zone,among which the second-order structures derived from NWW-approximately EW-striking dextral shear-tension faults F_(1)and F_(15)control the brecciated and stockwork-like Pb-Zn mineralized complex breccia facies zones and the stockwork-like Pb-Zn mineralized simple breccia and cataclasite facies zones.Therefore,this paper establishes the zoning mode of tectonite-mineralized alteration lithofacies of the black/fracture zone and proposes that Zones 1 and 2 provide important prospecting criteria.展开更多
1.Objective.The Yidun arc within the Tethys-Himalaya metallogenic belt formed during the westward subduction of the Ganzi-Litang Ocean(237-206 Ma)during the Indosinian period,and then underwent the evolution stages of...1.Objective.The Yidun arc within the Tethys-Himalaya metallogenic belt formed during the westward subduction of the Ganzi-Litang Ocean(237-206 Ma)during the Indosinian period,and then underwent the evolution stages of the collisional orogeny(206-138 Ma)and the post-collisional orogeny(135-75 Ma).In recent years,a series of large and medium-sized Late Yanshanian intracontinental porphyry-skarn Mo-Cu-W deposits have been discovered in the southern part of the Yidun arc,including Xiuwacu,Relin,Hongshan,Tongchanggou,and Donglufang(Fig.1a).展开更多
Hemihydrate phosphogypsum(HPG)-based filling materials have become a new low-cost green alternative for early strength filling materials.They also provide a promising solution for the large-scale utilization of phosph...Hemihydrate phosphogypsum(HPG)-based filling materials have become a new low-cost green alternative for early strength filling materials.They also provide a promising solution for the large-scale utilization of phosphogypsum.However,pipe plugging,which is caused by the poor workability of HPG-based filling materials,has become a major safety hazard in the filling process.Determining an economical and practicable method is urgently needed to improve the workability of HPG slurry work.First,this work found that grind-ing treatment was much more effective than increasing concentration(59wt%-65wt%)and adding tailings(20wt%-100wt%)in enhan-cing the workability of HPG slurry based on a comprehensive analysis of water retention,fluidity,and flow stability.Then,the combined effects of particle size,particle morphology,water film,and interparticle interactions on the workability of HPG slurry were quantitat-ively described through a microanalysis.Moreover,the first direct evidence for the transformation from robust embedded structures to soft stacking structures was presented.In practice,the filling materials should be prepared by grinding HPG for 20 min and mixing with 0-200wt%phosphorus tailings to achieve satisfactory workability and mechanical performance.The results of this study provide practic-al and feasible methods for addressing the stable transportation problem of HPG slurry.展开更多
Tectono-geochemical analysis is one of the key technical methods for deep prospecting and prediction,but the extraction of information on weak and low degrees of mineralization remains a significant challenge.This stu...Tectono-geochemical analysis is one of the key technical methods for deep prospecting and prediction,but the extraction of information on weak and low degrees of mineralization remains a significant challenge.This study takes the Maoping super-large germanium-rich lead-zinc deposit in northeastern Yunnan as an example,systematically analyzes the mineralization element assemblages and their anomaly distribution characteristics,extracts information on low and weak anomalies at depth,clarifies the spatial distribution of ore-forming element anomalies and fluid migration patterns,and establishes tectono-geochemical deep anomaly evaluation criteria and prospecting models,thereby proposing directions for deep prospecting in the deposit.This research shows that the mineralization element assemblage of the F1 factor(Cd-Cu-Ge-Zn-Sb-In-Pb-Sr(-)-As-Hg)anomalies represents near-ore halos;the element assemblage of the F2 factor(Ni-Co-Cr-Rb-Ga)anomalies represents tail halos;the element assemblage of the F3 factor(Rb-Mo-Tl-As)anomalies represents front halos;and the element assemblage of the F4 factor(Ba-Ga)anomalies represents barite alteration anomalies.Elements such as Zn and Pb exhibit significant anomalies near the lead-zinc ore bodies.In the study area,vertical anomalies in the eastern region of the Luoze River indicate that ore-forming fluids migrated from the SE at depth to the NW at shallower levels,whereas in the western region,ore-forming fluids migrated from the SW at depth to the NE at shallower levels.Thus,the lateral extensions of different ore bodies in the eastern and western regions of the river have been determined.On this basis,tectono-geochemical deep anomaly evaluation criteria for the deposit are established,and directions for deep prospecting are proposed.This study provides scientific value and practical significance for deep prospecting and exploration engineering planning for similar lead-zinc deposits.展开更多
This study investigated the effect of konjac glucomannan(KGM)on the flotation separation of calcite and scheelite.Micro-flotation tests showed that under the action of 50 mg/L KGM,the floatability of calcite notably d...This study investigated the effect of konjac glucomannan(KGM)on the flotation separation of calcite and scheelite.Micro-flotation tests showed that under the action of 50 mg/L KGM,the floatability of calcite notably decreased,while the impact on scheelite was negligible,resulting in a recovery difference of 82.53%.Fourier transform infrared(FTIR)spectroscopy and atomic force micro-scopy(AFM)analyses indicated the selective adsorption of KGM on the calcite surface.Test results of the zeta potential and UV-visible absorption spectroscopy revealed that KGM prevented the adsorption of sodium oleate on the calcite surface.X-ray photoelectron spec-troscopy(XPS)analysis further confirmed the chemical adsorption of KGM on the calcite surface and the formation of Ca(OH)_(2).The density functional theory(DFT)simulation results were consistent with the flotation tests,demonstrating the strong adsorption perform-ance of KGM on the calcite surface.This study offers a pathway for highly sustainable and cost-effective mineral processing by utilizing the unique properties of biopolymers such as KGM to separate valuable minerals from gangue minerals.展开更多
The middle-scale Heima zinnwaldite deposit is situated in the southeastern Tibetan Plateau,SW China.The NNW-to NS-trending orebodies are hosted in the Gaoligongshan metamorphic zone.To clarify the zinnwaldite genesis ...The middle-scale Heima zinnwaldite deposit is situated in the southeastern Tibetan Plateau,SW China.The NNW-to NS-trending orebodies are hosted in the Gaoligongshan metamorphic zone.To clarify the zinnwaldite genesis at Heima,this study presents an integrated investigation of the Heima pegmatites,combining precise geochronology,isotopic tracing,and detailed mineral chemistry to constrain its formation age,petrogenetic origin,and mineralization processes.Our robust geochronological framework,employing magmatic zircon(56.93±0.53 Ma)and cassiterite(57.0±4.2 Ma),establishes the pegmatite emplacement during the Late Paleocene to Early Eocene,representing the maximum age of lithium mineralization.Hf isotopic compositions(εHf_((t))=−14.3 to−12.4)demonstrate that the Heima pegmatite originated from remelting of ancient sediments,distinguishing it from contemporaneous Eocene Gangdese-Tengchong granites(εHf_((t))=−12.7 to+11.0)that show mantle contributions.This crustal signature aligns with the evolutionary trend of Hf isotopes in regional gneissic granites(600−420 Ma),supporting an anatectic origin from ancient continental crust rather than being derivatives of nearby Eocene granitic plutons.Detailed geochemical analysis of Li-micas reveals two distinct generations with contrasting formation mechanisms.The primary mica-Ia(53.45±0.86 Ma,Rb-Sr age)exhibits extreme incompatible element enrichment(Li,Be,Rb,Cs)and remarkably low K/Rb ratios(3.98-4.37),characteristic of crystallization from highly fractionated granitic melts.In contrast,secondary mica-Ib and mica-Ⅱ(17.9-16.0 Ma,Rb-Sr age)show significant Nb-Ta-W enrichment,reflecting precipitation from F-P-rich hydrothermal fluids during Miocene metamorphic-hydrothermal events.Principal component analysis(PCA)confirms the compositional disparity between these mica generations,with the later phases attributed to fluid-induced alteration and reworking.Regional correlation identifies two distinct lithium mineralization episodes in the Gongshan area,southeast Tibetan Plateau.The Eocene phase(~55 Ma)is zinnwaldite-dominant(e.g.,Heima,Puladi),associated with crustal melting following Neo-Tethyan closure.The Miocene phase(~17 Ma)is spodumene-dominant(e.g.,Danzhu,Peili),linked to Himalayan leucogranites formed as the rapid exhumation,denudation,and decompression partial melting of Himalayan Crystalline Complex.展开更多
The Gejiu tin-copper-(tungsten)(Sn-Cu-(W))polymetallic district is located in the southwest of the W-Sn metallogenic belt in the western Youjiang Basin,Yunnan,Southwest China.Abundant W minerals have been identified i...The Gejiu tin-copper-(tungsten)(Sn-Cu-(W))polymetallic district is located in the southwest of the W-Sn metallogenic belt in the western Youjiang Basin,Yunnan,Southwest China.Abundant W minerals have been identified in the region via exploration.However,metallogenic sources and evolution of W remain unclear,and the existing metallogenic model has to be updated to guide further ore prospecting.Elemental and Sr-Nd isotopic data for scheelites assist in the determination of sources and evolution of the W-mineralizing fluids and metals in the district.Based on field geological survey,the scheelites in the Gejiu district can be categorized into three types:altered granite(Type Ⅰ),quartz vein(Type Ⅱ)from the Laochang deposit,and skarn(Type Ⅲ)from the Kafang deposit.Types Ⅰ and Ⅱ scheelites have low molybdenum(Mo)and strontium(Sr)contents,and Type Ⅱ scheelite has lower Sr contents than Type Ⅰ as well as higher Mo and Sr contents than Type Ⅲ scheelites.Varying Mo contents across the scheelite types suggests that the oxygen fugacity varied during ore accumulation.Type Ⅰ and Type Ⅱ scheelites exhibit similar rare earth elements(REE)patterns;Type Ⅲ scheelite contains lower REE content,particularly HREE,compared with the other scheelites.All scheelites exhibit negative Eu anomalies in the chondrite-normalized REE patterns.As the W-mineralization and two-mica granite share close spatial and temporal relationships,the negative Eu anomalies were likely inherited from the two-mica granite.Type Ⅰ and Type Ⅱ scheelites display varied(^(87)Sr/^(86)Sr)_(82 Ma)(0.7090-0.7141)andε_(Nd)(82 Ma)(from−9.9 to−5.4)values,similar to those of granite.However,Type Ⅲ scheelite exhibits lower(^(87)Sr/^(86)Sr)_(82 Ma)(0.7083-0.7087)and lowerε_(Nd)(82 Ma)(from−10.5 to−6.9)values than the two-mica granite.This indicates that the two-mica granite alone did not provide the ore-forming fluids and metals and that the Type Ⅲ scheelite ore-forming fluids likely involved external fluids that were probably derived from carbonate rocks.The implication is that highly differentiated two-mica granites were the source of primary W-bearing metals and fluids,which is consistent with earlier research on the origin of Sn ore-forming materials.展开更多
Hemimorphite exhibits poor floatability during sulfidization flotation.Cu^(2+)and Pb^(2+)addition enhances the reactivity of the hemimorphite surface and subsequently improves its flotation behavior.In this study,the ...Hemimorphite exhibits poor floatability during sulfidization flotation.Cu^(2+)and Pb^(2+)addition enhances the reactivity of the hemimorphite surface and subsequently improves its flotation behavior.In this study,the mechanisms of Cu^(2+)Pb^(2+)adsorption onto a hemimorphite surface were investigated.We examined the interaction mechanism of xanthate with the hemimorphite surface and observed the changes in the mineral surface hydrophobicity after the synergistic activation with Cu^(2+)Pb^(2+).Microflotation tests indicated that individual activation with Cu or Pb^(2+)increased the flotation recovery of hemimorphite,with Pb^(2+)showing greater effectiveness than Cu^(2+).Meanwhile,synergistic activation with Cu^(2+)Pb^(2+)considerably boosted the flotation recovery of hemimorphite.Cu^(2+)and Pb^(2+)were both adsorbed onto the hemimorphite surface,forming an adsorption layer containing Cu or Pb.Following the synergistic activation with Cu^(2+)+Pb^(2+),the activated layer on the hemimorphite surface consisted of Cu and Pb and a larger amount of the active product compared with the surface activated by Cu^(2+)or Pb^(2+)alone.In addition,xanthate adsorption on the hemimorphite surface increased noticeably after synergistic activation with Cu^(2+)Pb^(2+),suggesting a vigorous reaction between xanthate and the activated minerals.Therefore,synergistic activation with Cu^(2+)Pb^(2+)effectively increased the content of active products on the hemimorphite surface,thereby enhancing mineral surface reactivity,promoting collector adsorption,and improving surface hydrophobicity.展开更多
To investigate the influence of different joint conditions on the rockburst of a circular tunnel,a true-triaxial test of rockburst with a single set of joint conditions was conducted.The rockburst incubation and evolu...To investigate the influence of different joint conditions on the rockburst of a circular tunnel,a true-triaxial test of rockburst with a single set of joint conditions was conducted.The rockburst incubation and evolution characteristics and acoustic emission evolution characteristics under different joint directions and joint dip angles were studied.The Weibull function was used to fit rockburst debris with different particle sizes and a single set of joints to obtain statistical results.The experimental results revealed that shear fracture rockburst occurred in samples with joints aligned with the tunnel strike as well as joints with inclination angles of 45°,60°,and 90°.Slab buckling–shear fracture rockburst was more likely to occur in samples with inclination angles of 0°and 30°.Slab buckling–shear fracture rockburst occurred in samples with joints crossing the tunnel strike as well as in samples with joints with inclination angles of 0°,30°,45°,60°,and 90°.The location of the rockburst pit was influenced by the joint inclination angle when the joints aligned with the tunnel strike.In contrast,when the joints crossed the tunnel strike,the location of the rockburst pit was independent of the joint inclination angle.The cumulative absolute energy of acoustic emission(AE)exhibited an overall upward trend with the increase in joint dip angle.The cumulative absolute energy of the AE of the jointed samples was greater than that of intact samples(without joints).Loading reached the rockburst stage in the samples with joints aligned with the tunnel strike and dip angles of 45°,60°,and 90°.Moreover,the peak value of AE cumulative absolute energy was the highest.These results can elucidate the evolution mechanism of rockburst in the surrounding rock of circular tunnels with a single set of joints in deep underground engineering.展开更多
The Guanfang large-scale W deposit is located in the W polymetallic ore concentration area of Bozhushan in southeastern Yunnan,China.Despite extensive research,the fluid evolution process of the deposit remains ambigu...The Guanfang large-scale W deposit is located in the W polymetallic ore concentration area of Bozhushan in southeastern Yunnan,China.Despite extensive research,the fluid evolution process of the deposit remains ambiguous,leading to controversy regarding its genesis.This study conducted a detailed field geological survey,with systematic sampling of the KT6 orebody,to delineate mineralization stages.Fine mineralogy work,including the use of CL images of scheelite,in-situ LA-ICP-MS trace elements,and Sr isotopes,was carried out on diff erent generations of scheelite formed in various stages.The findings identified the evolution of fluids in the mineralization process,shedding light on the genesis of the deposit.The study revealed four mineralization stages at the Guanfang W deposit:prograde skarn stage,retrograde skarn stage,quartz-sulfide stage,and carbonate-fluorite stage.Diff erent generations of scheelite(Sch I,Sch II,Sch III)were observed in the first three stages,displaying distinct chondrite-normalized REE patterns.The REE of Sch I mainly substituted into the Ca site by REE^(3+)+□_(Ca),and there may be a similar substitution of Nb for REE,whereas it is not the main substitution method.The REE of Sch II mainly enter the scheelite lattice in the form of REE 3++Na+,and there may be a substitution of Nb for REE isomorphism.In the early stage,The REE of Sch III was mainly replaced by Nb for REE isomorphism,while in the later stage,the replacement mode of REE^(3+)+□_(Ca)coexisted with it.The Mo content in scheelite,along with the corresponding Eu anomalies in both scheelite and garnet,collectively imply that the ore-forming fluids during various mineralization stages were predominantly oxidizing,with only slight reducibility observed in Sch II.The in-situ Sr isotope ratios of scheelite concentrates ranged from 0.7093 to 0.7153,resembling those of the Bozhushan granite,indicating a relationship between W mineralization and granite.In addition,the Y/Ho ratios of scheelite from various mineralization stages exhibit a narrow range(19-31),with a pronounced correlation between the contents of Y and Ho and a similar trend in their variation.This consistency suggests that the Guanfang deposit has undergone a uniform or comparable evolutionary process,implying a stable ore-forming fluid across diff erent mineralization stages.展开更多
Flotation behavior of stibiconite after sulfidation roasting with sulfur at a high temperature and the sulfidation mechanisms were investigated by ultraviolet spectrophotometry,X-ray diffraction(XRD)combining with the...Flotation behavior of stibiconite after sulfidation roasting with sulfur at a high temperature and the sulfidation mechanisms were investigated by ultraviolet spectrophotometry,X-ray diffraction(XRD)combining with thermodynamic calculation,X-ray photoelectron spectroscopy(XPS)and electron probe microanalysis(EPMA).The XRD and thermodynamic analyses revealed that the Sb_(3)O_(6)(OH)was reduced into Sb_(2)O_(4)and Sb_(2)O_(3),and was transformed into Sb_(2)S_(3)after introducing sulfur at high temperatures.Flotation test results show that flotation recovery of the stibiconite after sulfidation reaches 90.3%.Ultraviolet spectrophotometry tests confirm that adsorption capacity of sodium butyl xanthate(SBX)on surface of the roasted products has a positive relationship with S/Sb mole ratio.XPS analyses indicate that Sb-bearing species including mainly Sb_(2)S_(3),Sb_(2)O_(3)and Sb_(2)(SO_(4))_(3) are formed at the surface of particle after sulfidation.The EPMA analyses verify that the Sb_(2)S_(3)is generated at the outer layer of sample after sulfidation roasting,but the particle interior is mainly composed of antimony oxides.The sulfur atmosphere induces the outward migration of oxygen to form Sb_(2)O_(4).Then,the Sb_(2)O_(4)is transformed into Sb_(2)O_(3)in two pathways,and the Sb_(2)S_(3)is formed.These findings will provide theoretical support for recovering antimony from antimony oxide ores by xanthate flotation methods.展开更多
基金financially supported by the Excellent Youth Scholars Program of State Key Laboratory of Complex Nonferrous Metal Resource Clean Utilization,Kunming University of Science and Technology,China(No.YXQN-2024003)the Central Government-Guided Local Science and Technology Development Fund Project,China(No.202407AB110022)。
文摘The rapid advancement of modern science and technology,coupled with the recent surge in new-energy electric vehicles,has significantly boosted the demand for lithium.This has promoted the development and efficient utilization of lepidolite as a lithium source.Therefore,the processes for the flotation of lepidolite have been studied in depth,particularly the development and use of lepidolite flotation collectors and the action mechanism of the collectors on the lepidolite surface.Based on the crystal-structure characteristics of lepidolite minerals,this review focuses on the application of anionic collectors,amine cationic collectors(primary amines,quaternary ammonium salts,ether amines,and Gemini amines),and combined collectors to the flotation behavior of lepidolite as well as the adsorption mechanisms.New directions and technologies for the controllable flotation of lepidolite are proposed,including process improvement,reagent synthesis,and mechanistic research.This analysis demonstrates the need for the further study of the complex environment inside lepidolite and pulp.By using modern analytical detection methods and quantum chemical calculations,research on reagents for the flotation of lepidolite has expanded,providing new concepts and references for the efficient flotation recovery and utilization of lepidolite.
基金Under the auspices of National Natural Science Foundation of China(No.41890854)Basic Research Program of Shenzhen Science and Technology Innovation Committee(No.JCYJ20180507182022554)+3 种基金National Key R&D Program of China(No.2017YFC0506200)National Natural Science Foundation of China(No.7181101150)National Natural Science Foundation of China(No.41901248)Shenzhen Future Industry Development Funding Program(No.201507211219247860)。
文摘China has experienced rapid urbanizations with dramatic land cover changes since 1978. Forest loss is one of land cover changes, and it induces various eco-environmental degradation issues. As one of China’s hotspot regions, the Guangdong-Hong KongMacao Greater Bay Area(GBA) has undergone a dramatic urban expansion. To better understand forest dynamics and protect forest ecosystem, revealing the processes, patterns and underlying drivers of forest loss is essential. This study focused on the spatiotemporal evolution and potential driving factors of forest loss in the GBA at regional and city level. The Landsat time-series images from 1987 to2017 were used to derive forest, and landscape metrics and geographic information system(GIS) were applied to implement further spatial analysis. The results showed that: 1) 14.86% of the total urban growth area of the GBA was obtained from the forest loss in1987–2017;meanwhile, the forest loss area of the GBA reached 4040.6 km2, of which 25.60%(1034.42 km2) was converted to urban land;2) the percentages of forest loss to urban land in Dongguan(19.14%), Guangzhou(18.35%) and Shenzhen(15.81%) were higher than those in other cities;3) the forest became increasingly fragmented from 1987–2007, and then the fragmentation decreased from2007 to 2017);4) the landscape responses to forest changes varied with the scale;and 5) some forest loss to urban regions moved from low-elevation and gentle-slope terrains to higher-elevation and steep-slope terrains over time, especially in Shenzhen and Hong Kong.Urbanization and industrialization greatly drove forest loss and fragmentation, and, notably, hillside urban land expansion may have contributed to hillside forest loss. The findings will help policy makers in maintaining the stability of forest ecosystems, and provide some new insights into forest management and conservation.
文摘The analysis of the 3 stages' (1988,1996,2000) variation of land-cover is performed according to Thematic Mapper (TM) and Enhancement Thematic Mapper(ETM) satellite image by combining ground GIS database with GPS field collected data in the area of Xiaowan-Dachaoshan Reservoirs of Lancangjiang River cascaded Hydropower Area. Consequently, the land-cover is divided into five subclasses, namely water, paddy field and wetland, bare dryland and sparse shrub, secondary forest and density forest. The result showed that the areas of bare land, upland and secondary forest decreased in 1988-1996, whereas from 1996 to 2000, water body and density forest keep invariability while the areas of paddy field and wetland, bare dryland and sparse scrub increasing and the area of secondary forest decrease; Features of reciprocal transformation between density forest and other type of land-cover had two points, i.e. secondary forest, bare dryland and sparse shrub converted to density forest; and density forest converted to secondary forest and paddy field and wetland. It reflects the dynamic variation of density forest; the area which slope less than 8° and greater than 15° shows bigger variation, however, less change in 8°-15°.
基金supported by the National Natural Science Foundation of China (Grant No. 62266026)
文摘High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning method for unmanned aerial vehicles(UAVs),which could achieve rapid image collection based on strictly calculated route parameters.The effectiveness of this method was verified using a DJI Mavic 2 Pro,obtaining high-resolution landslide images within the Dongchuan debris flow gully,in the Xiaojiang River Basin,Dongchuan District,Yunnan,China.A three-dimensional(3D)model was constructed by the structure-from-motion and multi-view stereo(SfM-MVS).Micro-geomorphic features were analyzed through visual interpretation,geographic information system(GIS),spatial analysis,and mathematical statistics methods.The results demonstrated that the proposed method could obtain comprehensive vertical information on landslides while improving measurement accuracy.The 3D model was constructed using the vertically oriented flight route to achieve centimeter-level accuracy(horizontal accuracy better than 6 cm,elevation accuracy better than 3 cm,and relative accuracy better than 3.5 cm).The UAV technology could further help understand the micro internal spatial and structural characteristics of landslides,facilitating intuitive acquisition of surface details.The slope of landslide clusters ranged from 36°to 72°,with the majority of the slope facing east and southeast.Upper elevation levels were relatively consistent while middle to lower elevation levels gradually decreased from left to right with significant variations in lower elevation levels.During the rainy season,surface runoff was abundant,and steep topography exacerbated changes in surface features.This route method is suitable for unmanned aerial vehicle(UAV)landslide surveys in complex mountainous environments.The geomorphological analysis methods used will provide references for identifying and describing topographic features.
基金supported by the project of the National Natural Science Foundation of China entitled“Distribution and change characteristics of construction land on slope gradient in mountainous cities of southern China”(No.41961039).
文摘In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective.
基金Supported by Multi-scale Object-oriented Land Use of Space Coupling Mechanism Research of National Natural Science Foundation
文摘The principles and methods of regional land consolidation in Yunnan Province are expounded. On the basis of differences in topography, climate, soil, hydrology and other natural conditions and the characteristics of spatial layout of land use, agricultural zoning, cropping system and land consolidation measures, the land consolidation zoning indicator system composed of five indicators covering ecological environment, socio-economy, land use, land consolidation and land quality is established by using the GIS spatial analysis and mathematical analysis. Against this backdrop, the Yunnan Province is divided into five first-level land consolidation zones, including the middle-mountain lake basin plateau consolidation zone in central Yunnan, the middle and low mountain wide valley basin consolidation zone in southwest Yunnan, the karst middle and low mountains consolidation zone in southeast Yunnan, the high-mountain and highlands consolidation zone in northeast Yunnan, the middle -mountain and mountain plateau consolidation zone in northeast Yunnan.
基金supported by Fundamental Research Projects of Yunnan Province,China(Nos.202101BE070001-009,202301AU070189).
文摘Mineral fulvic acid(MFA)was used as an eco-friendly pyrite depressant to recover chalcopyrite by flotation with the use of the butyl xanthate as a collector.Flotation experiments showed that MFA produced a stronger inhibition effect on pyrite than on chalcopyrite.The separation of chalcopyrite from pyrite was realized by introducing 150 mg/L MFA at a pulp pH of approximately 8.0.The copper grade,copper recovery,and separation efficiency were 28.03%,84.79%,and 71.66%,respectively.Surface adsorption tests,zeta potential determinations,and localized electrochemical impedance spectroscopy tests showed that more MFA adsorbed on pyrite than on chalcopyrite,which weakened the subsequent interactions between pyrite and the collector.Atomic force microscope imaging further confirmed the adsorption of MFA on pyrite,and X-ray photoelectron spectroscopy results indicated that hydrophilic Fe-based species on the pyrite surfaces increased after exposure of pyrite to MFA,thereby decreasing the floatability of pyrite.
基金supported by Yunnan Science and Technology Leading Talent Project(No.202305AB350005)。
文摘Tin is a critical metal for various industries,making its recovery from low-grade cassiterite ores crucial.This study aimed to optimize the flotation recovery of cassiterite using multi-component collector systems.Several collectors were initially selected through micro-flotation tests,leading to the identification of optimal proportions for a four-component collector system(SHA-OHA-SPA-DBIA in a 4:3:2:1 ratio).Molecular dynamics simulations and surface tension tests were used to investigate the micellar behavior of these collectors in aqueous solution.The adsorption characteristics were quantified using microcalorimetry,enabling the determination of collection entropy and changes in Gibbs free energy.The four-component collector system showed the highest entropy change and the most favorable Gibbs free energy,leading to a cassiterite recovery of above 90%at a concentration of 8.0×10^(5)mol/L.Various analytical techniques were employed to systematically characterize the adsorption mechanism.The findings revealed a positive correlation between the adsorption products formed by the multicomponent collectors on the cassiterite surface and the entropy changes.Industrial-scale testing of the high-entropy collector system produced a tin concentrate with an Sn grade of 6.17%and an Sn recovery of 82.43%,demonstrating its substantial potential for practical applications in cassiterite flotation.
基金Supported by Yunnan Major Scientific and Technological Projects(No.202403AA080001)National Natural Science Foundation of China(No.52074137)Yunnan Fundamental Research Projects(No.202201AT070151)。
文摘Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste.
基金funded by the programs of the National Natural Science Foundation(Nos.42172086,41572060,U1133602)the Program of‘Yunling Scholar’of Yunnan province(2014)+1 种基金the Projects of the Yunnan Engineering Laboratory of Mineral Resources Prediction and Evaluation(YM Lab)(2010)the Innovation Team of Yunnan Province and KMUST(2008,2012).
文摘As one of the typical deposits in the Sichuan-Yunnan-Guizhou Pb-Zn metallogenic province,the Daliangzi Pb-Zn deposit has a close genetic relationship with the structural system of the black/fracture zone formed under the action of the NWW-approximately EW strike-slip structures in the metallogenic province.The R1 black/fracture zone has a close relationship with ore forming;however,the mechanism of the rock-and ore-controlling action of the structural system remains unclear.Based on a detailed analysis of the tectonite-mineralized alteration lithofacies of the R1 black/fracture zone,the tectonite-mineralized alteration lithofacies zones can be divided into four types in succession outward from the Pb-Zn mineralization center(F_(5),F_(100),and other faults),i.e.,(1)the brecciated and stockwork-like Pb-Zn mineralization-complex breccia facies zone;(2)the stockwork-like Pb-Zn mineralization-simple breccia and cataclasite facies zone;(3)the veined pyrite-sulfide-dolomitic cataclasite facies zone;(4)the fine-veined calcite-black carbonized dolomite facies zone.With the evolution of the ore-forming fluid,the homogenization temperature decreases from Zone 1 to Zone 4;the salinity increases from Zone 1 to Zone 2 and then it decreases from Zones 3 and 4.The fluid density shows little change overall.The contents of Zn,Pb,Cu,Ga,Ge,Cd,Ag,and other metallogenic elements,Zn/Pb ratio,and CaO/MgO mole ratio decrease gradually from Zone 1 to Zone 4,and the REE fractionation,calcilization,silicification,and pyritization enhance gradually from Zone 1 to Zone 4.This series of changes is the product of diapirism(cryptoexplosion)of strike-slip structures and the black/fracture zone,among which the second-order structures derived from NWW-approximately EW-striking dextral shear-tension faults F_(1)and F_(15)control the brecciated and stockwork-like Pb-Zn mineralized complex breccia facies zones and the stockwork-like Pb-Zn mineralized simple breccia and cataclasite facies zones.Therefore,this paper establishes the zoning mode of tectonite-mineralized alteration lithofacies of the black/fracture zone and proposes that Zones 1 and 2 provide important prospecting criteria.
基金jointly supported by the Selection Project of High-level Scientific and Technological Talents and Innovative Teams Project in Yunnan Province(202305AT350004-4)the National Natural Science Foundation of China(42362010 and 42464005)+3 种基金the Field Scientific Observation and Research Station of Mountain Agroecosystem in the Lower Reaches of Nujiang River,Yunnan Province(202305AM340031)the Yunnan Provincial Department of Education Science Research Fund Project(2025J0983)the Wen Bang-chun Academician Workstation in Yunnan Province(202205AF150032)the Undergraduate Innovative Training Program(2310603235).
文摘1.Objective.The Yidun arc within the Tethys-Himalaya metallogenic belt formed during the westward subduction of the Ganzi-Litang Ocean(237-206 Ma)during the Indosinian period,and then underwent the evolution stages of the collisional orogeny(206-138 Ma)and the post-collisional orogeny(135-75 Ma).In recent years,a series of large and medium-sized Late Yanshanian intracontinental porphyry-skarn Mo-Cu-W deposits have been discovered in the southern part of the Yidun arc,including Xiuwacu,Relin,Hongshan,Tongchanggou,and Donglufang(Fig.1a).
基金financial support from the National Natural Science Foundation of China(No.52074137)the Yunnan Fundamental Research Projects,China(Nos.202301BE070001-054 and 202401CF070124)the Yunnan Major Scientific and Technological Projects,China(No.202403AA080001).
文摘Hemihydrate phosphogypsum(HPG)-based filling materials have become a new low-cost green alternative for early strength filling materials.They also provide a promising solution for the large-scale utilization of phosphogypsum.However,pipe plugging,which is caused by the poor workability of HPG-based filling materials,has become a major safety hazard in the filling process.Determining an economical and practicable method is urgently needed to improve the workability of HPG slurry work.First,this work found that grind-ing treatment was much more effective than increasing concentration(59wt%-65wt%)and adding tailings(20wt%-100wt%)in enhan-cing the workability of HPG slurry based on a comprehensive analysis of water retention,fluidity,and flow stability.Then,the combined effects of particle size,particle morphology,water film,and interparticle interactions on the workability of HPG slurry were quantitat-ively described through a microanalysis.Moreover,the first direct evidence for the transformation from robust embedded structures to soft stacking structures was presented.In practice,the filling materials should be prepared by grinding HPG for 20 min and mixing with 0-200wt%phosphorus tailings to achieve satisfactory workability and mechanical performance.The results of this study provide practic-al and feasible methods for addressing the stable transportation problem of HPG slurry.
基金National Natural Science Foundation of China(42472127,42172086)Yunnan Major Science and Technological Projects(202202AG050014)+2 种基金the Yunnan Major Project of Basic Research(202401BN070001-002)Yunnan Mineral Resources Prediction and Evaluation Engineering Research Center(2011)Yunnan Provincial Geological Process and Mineral Resources Innovation Team(2012).
文摘Tectono-geochemical analysis is one of the key technical methods for deep prospecting and prediction,but the extraction of information on weak and low degrees of mineralization remains a significant challenge.This study takes the Maoping super-large germanium-rich lead-zinc deposit in northeastern Yunnan as an example,systematically analyzes the mineralization element assemblages and their anomaly distribution characteristics,extracts information on low and weak anomalies at depth,clarifies the spatial distribution of ore-forming element anomalies and fluid migration patterns,and establishes tectono-geochemical deep anomaly evaluation criteria and prospecting models,thereby proposing directions for deep prospecting in the deposit.This research shows that the mineralization element assemblage of the F1 factor(Cd-Cu-Ge-Zn-Sb-In-Pb-Sr(-)-As-Hg)anomalies represents near-ore halos;the element assemblage of the F2 factor(Ni-Co-Cr-Rb-Ga)anomalies represents tail halos;the element assemblage of the F3 factor(Rb-Mo-Tl-As)anomalies represents front halos;and the element assemblage of the F4 factor(Ba-Ga)anomalies represents barite alteration anomalies.Elements such as Zn and Pb exhibit significant anomalies near the lead-zinc ore bodies.In the study area,vertical anomalies in the eastern region of the Luoze River indicate that ore-forming fluids migrated from the SE at depth to the NW at shallower levels,whereas in the western region,ore-forming fluids migrated from the SW at depth to the NE at shallower levels.Thus,the lateral extensions of different ore bodies in the eastern and western regions of the river have been determined.On this basis,tectono-geochemical deep anomaly evaluation criteria for the deposit are established,and directions for deep prospecting are proposed.This study provides scientific value and practical significance for deep prospecting and exploration engineering planning for similar lead-zinc deposits.
基金supported by the National Natural Science Foundation of China(No.52164022).
文摘This study investigated the effect of konjac glucomannan(KGM)on the flotation separation of calcite and scheelite.Micro-flotation tests showed that under the action of 50 mg/L KGM,the floatability of calcite notably decreased,while the impact on scheelite was negligible,resulting in a recovery difference of 82.53%.Fourier transform infrared(FTIR)spectroscopy and atomic force micro-scopy(AFM)analyses indicated the selective adsorption of KGM on the calcite surface.Test results of the zeta potential and UV-visible absorption spectroscopy revealed that KGM prevented the adsorption of sodium oleate on the calcite surface.X-ray photoelectron spec-troscopy(XPS)analysis further confirmed the chemical adsorption of KGM on the calcite surface and the formation of Ca(OH)_(2).The density functional theory(DFT)simulation results were consistent with the flotation tests,demonstrating the strong adsorption perform-ance of KGM on the calcite surface.This study offers a pathway for highly sustainable and cost-effective mineral processing by utilizing the unique properties of biopolymers such as KGM to separate valuable minerals from gangue minerals.
基金supported by the Ministry of Natural Resources-Provincial Joint Cooperation Project in 2024(No.2024ZRBSHZ126)The Second Comprehensive Scientific Research Project on the Qinghai-Tibetan Plateau“Assessment of Current Status and Future Prospects for Rare Metal Resources”(No.2019QZKK0802)+4 种基金Yunnan Foundation Project(No.202201AU070162)Career Development Fund for Early-Career Geologists at YIGS(No.YDKYR[2024]3)YDIG Expert Innovation Studio(No.YDIG[2024]24)New round of Yunnan Province prospecting Action and Project of Geological Exploration Fund(No.K202408)KUST-NSRF Talent Development Project(No.KKZ3202421133).
文摘The middle-scale Heima zinnwaldite deposit is situated in the southeastern Tibetan Plateau,SW China.The NNW-to NS-trending orebodies are hosted in the Gaoligongshan metamorphic zone.To clarify the zinnwaldite genesis at Heima,this study presents an integrated investigation of the Heima pegmatites,combining precise geochronology,isotopic tracing,and detailed mineral chemistry to constrain its formation age,petrogenetic origin,and mineralization processes.Our robust geochronological framework,employing magmatic zircon(56.93±0.53 Ma)and cassiterite(57.0±4.2 Ma),establishes the pegmatite emplacement during the Late Paleocene to Early Eocene,representing the maximum age of lithium mineralization.Hf isotopic compositions(εHf_((t))=−14.3 to−12.4)demonstrate that the Heima pegmatite originated from remelting of ancient sediments,distinguishing it from contemporaneous Eocene Gangdese-Tengchong granites(εHf_((t))=−12.7 to+11.0)that show mantle contributions.This crustal signature aligns with the evolutionary trend of Hf isotopes in regional gneissic granites(600−420 Ma),supporting an anatectic origin from ancient continental crust rather than being derivatives of nearby Eocene granitic plutons.Detailed geochemical analysis of Li-micas reveals two distinct generations with contrasting formation mechanisms.The primary mica-Ia(53.45±0.86 Ma,Rb-Sr age)exhibits extreme incompatible element enrichment(Li,Be,Rb,Cs)and remarkably low K/Rb ratios(3.98-4.37),characteristic of crystallization from highly fractionated granitic melts.In contrast,secondary mica-Ib and mica-Ⅱ(17.9-16.0 Ma,Rb-Sr age)show significant Nb-Ta-W enrichment,reflecting precipitation from F-P-rich hydrothermal fluids during Miocene metamorphic-hydrothermal events.Principal component analysis(PCA)confirms the compositional disparity between these mica generations,with the later phases attributed to fluid-induced alteration and reworking.Regional correlation identifies two distinct lithium mineralization episodes in the Gongshan area,southeast Tibetan Plateau.The Eocene phase(~55 Ma)is zinnwaldite-dominant(e.g.,Heima,Puladi),associated with crustal melting following Neo-Tethyan closure.The Miocene phase(~17 Ma)is spodumene-dominant(e.g.,Danzhu,Peili),linked to Himalayan leucogranites formed as the rapid exhumation,denudation,and decompression partial melting of Himalayan Crystalline Complex.
基金financed by Yunnan Major Scientific and Technological Projects(Grant No.202202AG050006)the National Natural Science Foundation of China(Grant No.42462011)Projects of Yunnan Province Technology Hall(Grant No.202305AT350004).
文摘The Gejiu tin-copper-(tungsten)(Sn-Cu-(W))polymetallic district is located in the southwest of the W-Sn metallogenic belt in the western Youjiang Basin,Yunnan,Southwest China.Abundant W minerals have been identified in the region via exploration.However,metallogenic sources and evolution of W remain unclear,and the existing metallogenic model has to be updated to guide further ore prospecting.Elemental and Sr-Nd isotopic data for scheelites assist in the determination of sources and evolution of the W-mineralizing fluids and metals in the district.Based on field geological survey,the scheelites in the Gejiu district can be categorized into three types:altered granite(Type Ⅰ),quartz vein(Type Ⅱ)from the Laochang deposit,and skarn(Type Ⅲ)from the Kafang deposit.Types Ⅰ and Ⅱ scheelites have low molybdenum(Mo)and strontium(Sr)contents,and Type Ⅱ scheelite has lower Sr contents than Type Ⅰ as well as higher Mo and Sr contents than Type Ⅲ scheelites.Varying Mo contents across the scheelite types suggests that the oxygen fugacity varied during ore accumulation.Type Ⅰ and Type Ⅱ scheelites exhibit similar rare earth elements(REE)patterns;Type Ⅲ scheelite contains lower REE content,particularly HREE,compared with the other scheelites.All scheelites exhibit negative Eu anomalies in the chondrite-normalized REE patterns.As the W-mineralization and two-mica granite share close spatial and temporal relationships,the negative Eu anomalies were likely inherited from the two-mica granite.Type Ⅰ and Type Ⅱ scheelites display varied(^(87)Sr/^(86)Sr)_(82 Ma)(0.7090-0.7141)andε_(Nd)(82 Ma)(from−9.9 to−5.4)values,similar to those of granite.However,Type Ⅲ scheelite exhibits lower(^(87)Sr/^(86)Sr)_(82 Ma)(0.7083-0.7087)and lowerε_(Nd)(82 Ma)(from−10.5 to−6.9)values than the two-mica granite.This indicates that the two-mica granite alone did not provide the ore-forming fluids and metals and that the Type Ⅲ scheelite ore-forming fluids likely involved external fluids that were probably derived from carbonate rocks.The implication is that highly differentiated two-mica granites were the source of primary W-bearing metals and fluids,which is consistent with earlier research on the origin of Sn ore-forming materials.
基金supported by the National Natural Science Foundation of China(Nos.52304291 and 52264026)Yunnan Fundamental Research Projects,China(No.202301AW070018)。
文摘Hemimorphite exhibits poor floatability during sulfidization flotation.Cu^(2+)and Pb^(2+)addition enhances the reactivity of the hemimorphite surface and subsequently improves its flotation behavior.In this study,the mechanisms of Cu^(2+)Pb^(2+)adsorption onto a hemimorphite surface were investigated.We examined the interaction mechanism of xanthate with the hemimorphite surface and observed the changes in the mineral surface hydrophobicity after the synergistic activation with Cu^(2+)Pb^(2+).Microflotation tests indicated that individual activation with Cu or Pb^(2+)increased the flotation recovery of hemimorphite,with Pb^(2+)showing greater effectiveness than Cu^(2+).Meanwhile,synergistic activation with Cu^(2+)Pb^(2+)considerably boosted the flotation recovery of hemimorphite.Cu^(2+)and Pb^(2+)were both adsorbed onto the hemimorphite surface,forming an adsorption layer containing Cu or Pb.Following the synergistic activation with Cu^(2+)+Pb^(2+),the activated layer on the hemimorphite surface consisted of Cu and Pb and a larger amount of the active product compared with the surface activated by Cu^(2+)or Pb^(2+)alone.In addition,xanthate adsorption on the hemimorphite surface increased noticeably after synergistic activation with Cu^(2+)Pb^(2+),suggesting a vigorous reaction between xanthate and the activated minerals.Therefore,synergistic activation with Cu^(2+)Pb^(2+)effectively increased the content of active products on the hemimorphite surface,thereby enhancing mineral surface reactivity,promoting collector adsorption,and improving surface hydrophobicity.
基金funded by the National Natural Science Foundation of China(Grant Nos.52364005,51934003)Yunnan major scientific and technological special project(202202AG050014).This support is gratefully acknowledged.
文摘To investigate the influence of different joint conditions on the rockburst of a circular tunnel,a true-triaxial test of rockburst with a single set of joint conditions was conducted.The rockburst incubation and evolution characteristics and acoustic emission evolution characteristics under different joint directions and joint dip angles were studied.The Weibull function was used to fit rockburst debris with different particle sizes and a single set of joints to obtain statistical results.The experimental results revealed that shear fracture rockburst occurred in samples with joints aligned with the tunnel strike as well as joints with inclination angles of 45°,60°,and 90°.Slab buckling–shear fracture rockburst was more likely to occur in samples with inclination angles of 0°and 30°.Slab buckling–shear fracture rockburst occurred in samples with joints crossing the tunnel strike as well as in samples with joints with inclination angles of 0°,30°,45°,60°,and 90°.The location of the rockburst pit was influenced by the joint inclination angle when the joints aligned with the tunnel strike.In contrast,when the joints crossed the tunnel strike,the location of the rockburst pit was independent of the joint inclination angle.The cumulative absolute energy of acoustic emission(AE)exhibited an overall upward trend with the increase in joint dip angle.The cumulative absolute energy of the AE of the jointed samples was greater than that of intact samples(without joints).Loading reached the rockburst stage in the samples with joints aligned with the tunnel strike and dip angles of 45°,60°,and 90°.Moreover,the peak value of AE cumulative absolute energy was the highest.These results can elucidate the evolution mechanism of rockburst in the surrounding rock of circular tunnels with a single set of joints in deep underground engineering.
基金suppor ted by Yunnan Major Scientific and Technological Projects(Grant No.202202AG050006)the Personnel Training Project of Kunming University of Science and Technology(Grant No.KKZ3202221022)。
文摘The Guanfang large-scale W deposit is located in the W polymetallic ore concentration area of Bozhushan in southeastern Yunnan,China.Despite extensive research,the fluid evolution process of the deposit remains ambiguous,leading to controversy regarding its genesis.This study conducted a detailed field geological survey,with systematic sampling of the KT6 orebody,to delineate mineralization stages.Fine mineralogy work,including the use of CL images of scheelite,in-situ LA-ICP-MS trace elements,and Sr isotopes,was carried out on diff erent generations of scheelite formed in various stages.The findings identified the evolution of fluids in the mineralization process,shedding light on the genesis of the deposit.The study revealed four mineralization stages at the Guanfang W deposit:prograde skarn stage,retrograde skarn stage,quartz-sulfide stage,and carbonate-fluorite stage.Diff erent generations of scheelite(Sch I,Sch II,Sch III)were observed in the first three stages,displaying distinct chondrite-normalized REE patterns.The REE of Sch I mainly substituted into the Ca site by REE^(3+)+□_(Ca),and there may be a similar substitution of Nb for REE,whereas it is not the main substitution method.The REE of Sch II mainly enter the scheelite lattice in the form of REE 3++Na+,and there may be a substitution of Nb for REE isomorphism.In the early stage,The REE of Sch III was mainly replaced by Nb for REE isomorphism,while in the later stage,the replacement mode of REE^(3+)+□_(Ca)coexisted with it.The Mo content in scheelite,along with the corresponding Eu anomalies in both scheelite and garnet,collectively imply that the ore-forming fluids during various mineralization stages were predominantly oxidizing,with only slight reducibility observed in Sch II.The in-situ Sr isotope ratios of scheelite concentrates ranged from 0.7093 to 0.7153,resembling those of the Bozhushan granite,indicating a relationship between W mineralization and granite.In addition,the Y/Ho ratios of scheelite from various mineralization stages exhibit a narrow range(19-31),with a pronounced correlation between the contents of Y and Ho and a similar trend in their variation.This consistency suggests that the Guanfang deposit has undergone a uniform or comparable evolutionary process,implying a stable ore-forming fluid across diff erent mineralization stages.
基金Projects(52074139,51964027)supported by the National Natural Science Foundation of ChinaProject(KKS 2202152011)supported by the High-level Talents of Yunnan Province,China。
文摘Flotation behavior of stibiconite after sulfidation roasting with sulfur at a high temperature and the sulfidation mechanisms were investigated by ultraviolet spectrophotometry,X-ray diffraction(XRD)combining with thermodynamic calculation,X-ray photoelectron spectroscopy(XPS)and electron probe microanalysis(EPMA).The XRD and thermodynamic analyses revealed that the Sb_(3)O_(6)(OH)was reduced into Sb_(2)O_(4)and Sb_(2)O_(3),and was transformed into Sb_(2)S_(3)after introducing sulfur at high temperatures.Flotation test results show that flotation recovery of the stibiconite after sulfidation reaches 90.3%.Ultraviolet spectrophotometry tests confirm that adsorption capacity of sodium butyl xanthate(SBX)on surface of the roasted products has a positive relationship with S/Sb mole ratio.XPS analyses indicate that Sb-bearing species including mainly Sb_(2)S_(3),Sb_(2)O_(3)and Sb_(2)(SO_(4))_(3) are formed at the surface of particle after sulfidation.The EPMA analyses verify that the Sb_(2)S_(3)is generated at the outer layer of sample after sulfidation roasting,but the particle interior is mainly composed of antimony oxides.The sulfur atmosphere induces the outward migration of oxygen to form Sb_(2)O_(4).Then,the Sb_(2)O_(4)is transformed into Sb_(2)O_(3)in two pathways,and the Sb_(2)S_(3)is formed.These findings will provide theoretical support for recovering antimony from antimony oxide ores by xanthate flotation methods.