In this study,analytical and numerical methods are applied to investigate the dynamic response of an axially moving plate subjected to parametric and forced excitation.Based on the classical thin plate theory,the gove...In this study,analytical and numerical methods are applied to investigate the dynamic response of an axially moving plate subjected to parametric and forced excitation.Based on the classical thin plate theory,the governing equation of the plate coupled with fluid is established and further discretized through the Galerkin method.These equations are solved using the method of multiple scales to obtain amplitude-frequency curves and phase-frequency curves.The stability of steady-state response is examined using Lyapunov’s stability theory.In addition,numerical analysis is employed to validate the results of analytical solutions based on the Runge-Kutta method.The multi-value and stability of periodic solutions are verified through stable periodic orbits.Detailed parametric studies show that proper selection of system parameters enables the system to stay in primary resonance or simultaneous resonance,and the state of the system can switch among different periodic motions,contributing to the optimization of fluid-structure interaction system.展开更多
This study investigates the vibration characteristics of bolted-flange-joined conical-cylindrical shells(BFJCCSs)through both theoretical analysis and experimental testing.The proposed model incorporates the pressure ...This study investigates the vibration characteristics of bolted-flange-joined conical-cylindrical shells(BFJCCSs)through both theoretical analysis and experimental testing.The proposed model incorporates the pressure distribution within the bolted joint and accounts for the flange effect.The energy expressions for the conical and cylindrical shells are derived from Donnell's shell theory,while those for the flanges are obtained from the Euler-Bernoulli beam theory.The Lagrange equation is used to derive the dynamic equation,and the experimental studies on the BFJCCS are conducted to validate the accuracy of the model.Subsequently,the comprehensive effects of bolt loosening and bolt number on the frequency parameters are analyzed.Additionally,the effects of the flange dimensions and cone angle on the vibration behavior of the BFJCCS are discussed.In particular,the dynamic differences between the welded conical-cylindrical shell(WCCS)and BFJCCS are investigated.It is found that compared with the WCCS,the fundamental frequency of the BFJCCS is reduced by 7.6%,and the corresponding modal damping ratio is reduced by 21.0%.However,the high-order frequencies of the BFJCCS are higher than those of the WCCS,accompanied by a higher modal damping ratio.Compared with the bolt loosening degree,the bolt number has a more significant effect on frequencies.As the bolt number decreases,the impact of the bolt loosening degree diminishes gradually.展开更多
In the aggressive marine environment over a long-term service period,coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity.This paper investigates the strength reduction of coas...In the aggressive marine environment over a long-term service period,coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity.This paper investigates the strength reduction of coastal bridges,especially focusing on the effects of non-uniform corrosion along the height of bridge piers.First,the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments.To investigate the various damage modes of the concrete cover,a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment.Second,the shear strength of these aging structures is analyzed.Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover.Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures’service time is assumed to be the same.展开更多
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t...Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.展开更多
Currently,our understanding of the pathogenesis of major neurodegenerative disorders,such as Alzheimer's,Parkinson's,and Huntington's diseases,is largely shaped by the amyloid cascade hypothesis.Pa rticula...Currently,our understanding of the pathogenesis of major neurodegenerative disorders,such as Alzheimer's,Parkinson's,and Huntington's diseases,is largely shaped by the amyloid cascade hypothesis.Pa rticularly,this hypothesis posits that in Alzheimer's disease,the aggregation of amyloid-beta peptide initiates a series of pathological processes leading to neuronal dysfunction and death(Zhang et al.,2024).展开更多
The aim of the present study is to investigate the nonlinear free vibration of spinning cylindrical shells under spinning and arbitrary boundary conditions.Artificial springs are used to simulate arbitrary boundary co...The aim of the present study is to investigate the nonlinear free vibration of spinning cylindrical shells under spinning and arbitrary boundary conditions.Artificial springs are used to simulate arbitrary boundary conditions.Sanders’shell theory is employed,and von Kármán nonlinear terms are considered in the theoretical modeling.By using Chebyshev polynomials as admissible functions,motion equations are derived with the Ritz method.Then,a direct iteration method is used to obtain the nonlinear vibration frequencies.The effects of the circumferential wave number,the boundary spring stiffness,and the spinning speed on the nonlinear vibration characteristics of the shells are highlighted.It is found that there exist sensitive intervals for the boundary spring stiffness,which makes the variation of the nonlinear frequency ratio more evident.The decline of the frequency ratio caused by the spinning speed is more significant for the higher vibration amplitude and the smaller boundary spring stiffness.展开更多
The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwi...The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.展开更多
More than a century ago,it was known that the accumulation of ordered protein aggregates,amyloid fibrils,accompanies several serious and still largely incurable pathologies,including Alzheimer’s and Parkinson’s dise...More than a century ago,it was known that the accumulation of ordered protein aggregates,amyloid fibrils,accompanies several serious and still largely incurable pathologies,including Alzheimer’s and Parkinson’s diseases.The striking gap between decades of research identifying amyloids as one of the key drivers of neurodegeneration and the persistent lack of effective antiamyloid therapies reveals a perplexing contradiction,which we define as the“amyloid paradox.”To address this paradox,here we summarize and analyze current perspectives on the unique properties and pathogenic mechanisms of amyloids,highlighting the variability and complexity of their biological consequences and uncovering the risks and limitations encountered in combating these aggregates.We conceptualize amyloid fibril pathogenicity as a complex cascade extending well beyond direct cytotoxicity,such as that arising from disruption of membranes and other cellular organelles.This review encompasses amyloids’disruptive effects on cellular processes and ability to trigger inflammatory responses,their resistance to degradation,capacity to regenerate after apparent destruction,tendency to propagate throughout the organism,propensity to cytotoxicity-increasing transformation,and ability to sequester and pathologically modify essential biomolecules.This integrated analysis reveals why single-target therapeutic approaches often fail and suggests that effective anti-amyloid strategies must address multiple aspects of amyloid pathogenicity simultaneously.The conceptual reframing of the threats of amyloid fibrils helps explain the origins of the amyloid paradox,enhances our understanding of these complex pathogenic agents,and provides a foundation for developing more effective and safe therapeutic strategies for neurodegenerative diseases.These strategies should address the complex and interconnected nature of amyloid pathogenicity rather than its targeting isolated aspects.展开更多
Disk-drum structures jointed by bolted flanges(DDSJBFs)are core parts in aircraft engines,whose dynamic responses affect structural overall safety and service performance.However,studies on the dynamic response of DDS...Disk-drum structures jointed by bolted flanges(DDSJBFs)are core parts in aircraft engines,whose dynamic responses affect structural overall safety and service performance.However,studies on the dynamic response of DDSJBFs under base excitation are not found in available literature.In the present work,the dynamic responses for DDSJBFs subjected to base excitation are investigated both theoretically and experimentally.The kinetic energy and potential energy of disk,drum,and flange are derived according to the Kirchhoff plate,the Sanders’shell,and the Euler-Bernoulli beam theories,respectively,where the influences of flange and the mass of bolt are taken into account.The artificial spring method is applied to model the bolted joint.The Chebyshev orthogonal polynomials are adopted as the admissible functions of disk and drum,and the Lagrange equations are used to obtain the motion equation.The motion equation is solved by using the Newmark-beta approach and the dynamic responses under base excitation are acquired.A series of experiment studies are conducted on a DDSJBF to demonstrate the correctness of established theoretical model.Finally,study results show that because the relative motion between bolted flange joint interfaces generates friction damping,increasing the excitation amplitude causes the increase of damping ratio of DDSJBFs on the whole,and the increase of resonant peak value exhibits a slowing trend.The above phenomenon becomes more evident when the number of bolt is less.With the increase of bolt mass and flange size,the resonant frequency significantly decreases,while the resonant peak value remains unchanged.展开更多
Due to its multiscale and multi-layer natures,the coherent structures of turbulent in the open channel flow is complex and difficult to be visualized for understanding its evolution.In this paper,five types of methods...Due to its multiscale and multi-layer natures,the coherent structures of turbulent in the open channel flow is complex and difficult to be visualized for understanding its evolution.In this paper,five types of methods for the vortical structure in the fluids,namely the Q-criterion,the vorticity,the Omega method,the velocity-vorticity correlation structures(VVCS)as well as the most recent Rortex method,are adopted to visualize the turbulent flow in the open channel.With the free surface modelled as a free slip boundary,a direct numerical simulation(DNS)is carried out to study the multi-layered flow structure characteristics under the free surface.The visualization results by the Q-criterion,the vorticity,the Omega method and the Rortex are firstly analyzed.Then the turbulent flow layers near the free surface are identified with corresponding anisotropy indices.Afterwards,the VVCS within various turbulence layers are visualized accordingly.This research indicates that the VVCS can straightforwardly show the geometry information of the cohere nt structures of turbulent in different layers for the ope n channel flow.展开更多
For inverted T-type bridge decks, the air entrapped in the chambers between adjacent girders could increase the wave forces and lead to the destruction of the bridge decks. This paper studies the effects of the air re...For inverted T-type bridge decks, the air entrapped in the chambers between adjacent girders could increase the wave forces and lead to the destruction of the bridge decks. This paper studies the effects of the air relief openings (ARO) on the mitigation of the solitary wave-induced forces on the bridge decks. Hydrodynamic experiments are conducted for three inverted T-type decks with four, five, and six girders with different wave properties and deck clearances. The open source computational fluid dynamics toolbox OpenFOAM is adopted to conduct numerical simulations for the effects of the AROs. Since the numerical results correlate well with the measurements, the mechanism of the wave-structure interaction can be revealed by the numerical flow fields. Furthermore, the relationship between the shape and the volume of the ARO and the wave forces on the bridge decks, as well as the contribution of each ARO to the effect of the wave force mitigation, is also obtained from the numerical results of the OpenFOAM. Experimental and numerical results demonstrate that the AROs could effectively reduce the vertical wave forces on the bridge decks. The effects of the AROs increase with the increase of the volume of the ARO, while the shape of the ARO has no effect on the reduction of the wave forces.展开更多
To understand the effect of the compressibility on the cavitating flow, a compressible, multiphase, single component Reynolds averaged Navier-Stokes(RANS) solver is used to study the cavitating flow on a wedge in th...To understand the effect of the compressibility on the cavitating flow, a compressible, multiphase, single component Reynolds averaged Navier-Stokes(RANS) solver is used to study the cavitating flow on a wedge in the present work. A barotropic equation of status is used. A non-linear model for compressibility in the mixture is adopted to capture the effect of the compressibility within the complex cavitation bubbly mixtures. An unsteady cavitation phenomenon is found in the numerical simulation. The numerical results of local compressibility and Mach number in the bubbly mixture are given. The mechanism responsible for the unsteady shedding of the bubbly mixture is discussed based on the numerical results.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11502050 and No.12272091).
文摘In this study,analytical and numerical methods are applied to investigate the dynamic response of an axially moving plate subjected to parametric and forced excitation.Based on the classical thin plate theory,the governing equation of the plate coupled with fluid is established and further discretized through the Galerkin method.These equations are solved using the method of multiple scales to obtain amplitude-frequency curves and phase-frequency curves.The stability of steady-state response is examined using Lyapunov’s stability theory.In addition,numerical analysis is employed to validate the results of analytical solutions based on the Runge-Kutta method.The multi-value and stability of periodic solutions are verified through stable periodic orbits.Detailed parametric studies show that proper selection of system parameters enables the system to stay in primary resonance or simultaneous resonance,and the state of the system can switch among different periodic motions,contributing to the optimization of fluid-structure interaction system.
基金supported by the National Natural Science Foundation of China(No.12272088)the Out-standing Youth Science Foundation of Liaoning Province of China(No.2024JH3/50100013)。
文摘This study investigates the vibration characteristics of bolted-flange-joined conical-cylindrical shells(BFJCCSs)through both theoretical analysis and experimental testing.The proposed model incorporates the pressure distribution within the bolted joint and accounts for the flange effect.The energy expressions for the conical and cylindrical shells are derived from Donnell's shell theory,while those for the flanges are obtained from the Euler-Bernoulli beam theory.The Lagrange equation is used to derive the dynamic equation,and the experimental studies on the BFJCCS are conducted to validate the accuracy of the model.Subsequently,the comprehensive effects of bolt loosening and bolt number on the frequency parameters are analyzed.Additionally,the effects of the flange dimensions and cone angle on the vibration behavior of the BFJCCS are discussed.In particular,the dynamic differences between the welded conical-cylindrical shell(WCCS)and BFJCCS are investigated.It is found that compared with the WCCS,the fundamental frequency of the BFJCCS is reduced by 7.6%,and the corresponding modal damping ratio is reduced by 21.0%.However,the high-order frequencies of the BFJCCS are higher than those of the WCCS,accompanied by a higher modal damping ratio.Compared with the bolt loosening degree,the bolt number has a more significant effect on frequencies.As the bolt number decreases,the impact of the bolt loosening degree diminishes gradually.
基金National Natural Science Foundation of China under Grant No.51678197the Major State Basic Research Development Program of China(973 Program)under Grant No.2011CB013604Fundamental Research Funds for the Central Universities of China with Grant No.HIT.BRETIV.201320
文摘In the aggressive marine environment over a long-term service period,coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity.This paper investigates the strength reduction of coastal bridges,especially focusing on the effects of non-uniform corrosion along the height of bridge piers.First,the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments.To investigate the various damage modes of the concrete cover,a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment.Second,the shear strength of these aging structures is analyzed.Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover.Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures’service time is assumed to be the same.
基金National Key R&D Program of China under Grant No.2022YFC3003603。
文摘Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges.
基金funded by the Russian Science Foundation(grant No.23-74-10092)(to AIS)。
文摘Currently,our understanding of the pathogenesis of major neurodegenerative disorders,such as Alzheimer's,Parkinson's,and Huntington's diseases,is largely shaped by the amyloid cascade hypothesis.Pa rticularly,this hypothesis posits that in Alzheimer's disease,the aggregation of amyloid-beta peptide initiates a series of pathological processes leading to neuronal dysfunction and death(Zhang et al.,2024).
基金Project supported by the National Natural Science Foundation of China(No.11922205)the Fundamental Research Funds for the Central Universities of China(No.N2005019)。
文摘The aim of the present study is to investigate the nonlinear free vibration of spinning cylindrical shells under spinning and arbitrary boundary conditions.Artificial springs are used to simulate arbitrary boundary conditions.Sanders’shell theory is employed,and von Kármán nonlinear terms are considered in the theoretical modeling.By using Chebyshev polynomials as admissible functions,motion equations are derived with the Ritz method.Then,a direct iteration method is used to obtain the nonlinear vibration frequencies.The effects of the circumferential wave number,the boundary spring stiffness,and the spinning speed on the nonlinear vibration characteristics of the shells are highlighted.It is found that there exist sensitive intervals for the boundary spring stiffness,which makes the variation of the nonlinear frequency ratio more evident.The decline of the frequency ratio caused by the spinning speed is more significant for the higher vibration amplitude and the smaller boundary spring stiffness.
基金supported by the National Natural Science Foundation of China(Nos.11922205,12072201)the Fundamental Research Fund for the Central Universities(No.N2005019)。
文摘The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.
基金funded by the Russian Science Foundation(Grant No.23-74-10092).
文摘More than a century ago,it was known that the accumulation of ordered protein aggregates,amyloid fibrils,accompanies several serious and still largely incurable pathologies,including Alzheimer’s and Parkinson’s diseases.The striking gap between decades of research identifying amyloids as one of the key drivers of neurodegeneration and the persistent lack of effective antiamyloid therapies reveals a perplexing contradiction,which we define as the“amyloid paradox.”To address this paradox,here we summarize and analyze current perspectives on the unique properties and pathogenic mechanisms of amyloids,highlighting the variability and complexity of their biological consequences and uncovering the risks and limitations encountered in combating these aggregates.We conceptualize amyloid fibril pathogenicity as a complex cascade extending well beyond direct cytotoxicity,such as that arising from disruption of membranes and other cellular organelles.This review encompasses amyloids’disruptive effects on cellular processes and ability to trigger inflammatory responses,their resistance to degradation,capacity to regenerate after apparent destruction,tendency to propagate throughout the organism,propensity to cytotoxicity-increasing transformation,and ability to sequester and pathologically modify essential biomolecules.This integrated analysis reveals why single-target therapeutic approaches often fail and suggests that effective anti-amyloid strategies must address multiple aspects of amyloid pathogenicity simultaneously.The conceptual reframing of the threats of amyloid fibrils helps explain the origins of the amyloid paradox,enhances our understanding of these complex pathogenic agents,and provides a foundation for developing more effective and safe therapeutic strategies for neurodegenerative diseases.These strategies should address the complex and interconnected nature of amyloid pathogenicity rather than its targeting isolated aspects.
基金supported by the National Natural Science Foundation of China(Grant No.12272088)the Outstanding Youth Science Foundation of Liaoning Province(Grant No.2024JH3/50100013).
文摘Disk-drum structures jointed by bolted flanges(DDSJBFs)are core parts in aircraft engines,whose dynamic responses affect structural overall safety and service performance.However,studies on the dynamic response of DDSJBFs under base excitation are not found in available literature.In the present work,the dynamic responses for DDSJBFs subjected to base excitation are investigated both theoretically and experimentally.The kinetic energy and potential energy of disk,drum,and flange are derived according to the Kirchhoff plate,the Sanders’shell,and the Euler-Bernoulli beam theories,respectively,where the influences of flange and the mass of bolt are taken into account.The artificial spring method is applied to model the bolted joint.The Chebyshev orthogonal polynomials are adopted as the admissible functions of disk and drum,and the Lagrange equations are used to obtain the motion equation.The motion equation is solved by using the Newmark-beta approach and the dynamic responses under base excitation are acquired.A series of experiment studies are conducted on a DDSJBF to demonstrate the correctness of established theoretical model.Finally,study results show that because the relative motion between bolted flange joint interfaces generates friction damping,increasing the excitation amplitude causes the increase of damping ratio of DDSJBFs on the whole,and the increase of resonant peak value exhibits a slowing trend.The above phenomenon becomes more evident when the number of bolt is less.With the increase of bolt mass and flange size,the resonant frequency significantly decreases,while the resonant peak value remains unchanged.
基金the National Natural Science Foundation of China(Grant Nos.51809084,91852117).
文摘Due to its multiscale and multi-layer natures,the coherent structures of turbulent in the open channel flow is complex and difficult to be visualized for understanding its evolution.In this paper,five types of methods for the vortical structure in the fluids,namely the Q-criterion,the vorticity,the Omega method,the velocity-vorticity correlation structures(VVCS)as well as the most recent Rortex method,are adopted to visualize the turbulent flow in the open channel.With the free surface modelled as a free slip boundary,a direct numerical simulation(DNS)is carried out to study the multi-layered flow structure characteristics under the free surface.The visualization results by the Q-criterion,the vorticity,the Omega method and the Rortex are firstly analyzed.Then the turbulent flow layers near the free surface are identified with corresponding anisotropy indices.Afterwards,the VVCS within various turbulence layers are visualized accordingly.This research indicates that the VVCS can straightforwardly show the geometry information of the cohere nt structures of turbulent in different layers for the ope n channel flow.
基金the National Natural Science Foundation of China(Grant No.51725801).
文摘For inverted T-type bridge decks, the air entrapped in the chambers between adjacent girders could increase the wave forces and lead to the destruction of the bridge decks. This paper studies the effects of the air relief openings (ARO) on the mitigation of the solitary wave-induced forces on the bridge decks. Hydrodynamic experiments are conducted for three inverted T-type decks with four, five, and six girders with different wave properties and deck clearances. The open source computational fluid dynamics toolbox OpenFOAM is adopted to conduct numerical simulations for the effects of the AROs. Since the numerical results correlate well with the measurements, the mechanism of the wave-structure interaction can be revealed by the numerical flow fields. Furthermore, the relationship between the shape and the volume of the ARO and the wave forces on the bridge decks, as well as the contribution of each ARO to the effect of the wave force mitigation, is also obtained from the numerical results of the OpenFOAM. Experimental and numerical results demonstrate that the AROs could effectively reduce the vertical wave forces on the bridge decks. The effects of the AROs increase with the increase of the volume of the ARO, while the shape of the ARO has no effect on the reduction of the wave forces.
文摘To understand the effect of the compressibility on the cavitating flow, a compressible, multiphase, single component Reynolds averaged Navier-Stokes(RANS) solver is used to study the cavitating flow on a wedge in the present work. A barotropic equation of status is used. A non-linear model for compressibility in the mixture is adopted to capture the effect of the compressibility within the complex cavitation bubbly mixtures. An unsteady cavitation phenomenon is found in the numerical simulation. The numerical results of local compressibility and Mach number in the bubbly mixture are given. The mechanism responsible for the unsteady shedding of the bubbly mixture is discussed based on the numerical results.