期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Performance Comparison of Chemically Modified Sugarcane Bagasse for Removing Cd(II) in Water Environment
1
作者 Manh Khai Nguyen Minh Trang Hoang +1 位作者 Thi Thuy Pham Bart Van der Bruggen 《Journal of Renewable Materials》 SCIE 2019年第5期415-428,共14页
This paper evaluates the adsorption capacity of chemically sugarcane bagasses with sodium hydroxide(SHS),citric acid(CAS),tartaric acid(TAS)and unmodified sugarcane bagasse(SB)for cadmium adsorption in water environme... This paper evaluates the adsorption capacity of chemically sugarcane bagasses with sodium hydroxide(SHS),citric acid(CAS),tartaric acid(TAS)and unmodified sugarcane bagasse(SB)for cadmium adsorption in water environment.The results prove adsorption capacity for Cd(II)increases after chemical modification and the adsorption fits perfectly with the Langmuir isotherm.CAS had the highest maximum adsorption capacity of 45.45 mg/g followed by TAS with 38.46 mg/g and SHS with 29.41 at optimum pH 5.0 and 120 minutes equilibrium time while 1 g SB removed 18.8 mg Cd(II)in the same conditions.The kinetics study of the process followed a pseudo-secondorder rate expression,that indicated a strong interaction between the biosorbents and adsorbate.The sugarcane bagasse and modified sugarcane bagasse were characterized by scanning electron microscopy(SEM)and Fourier transform infrared spectroscopy(FTIR)analysis.The chemical modification was confirmed by the presence of carboxyl and esters groups created at 1,738 cm-1.The estimation of acid groups in modified materials shows the enhancement of this group after modification.On the other hand,desorption studies showed the high leaching of cadmium ion from the biosorbent leading to the efficient reutilization of materials. 展开更多
关键词 CADMIUM chemical modification citric acid sugarcane bagasse
在线阅读 下载PDF
Mixed iridium-nickel oxides supported on antimony-doped tin oxide as highly efficient and stable acidic oxygen evolution catalysts 被引量:1
2
作者 Jonathan Ruiz Esquius Alec P LaGrow +5 位作者 Haiyan Jin Zhipeng Yu Ana Araujo Rita Marques Adélio Mendes Lifeng Liu 《Materials Futures》 2024年第1期165-180,共16页
Proton exchange membrane(PEM)water electrolysis represents a promising technology for green hydrogen production,but its widespread deployment is greatly hindered by the indispensable usage of platinum group metal cata... Proton exchange membrane(PEM)water electrolysis represents a promising technology for green hydrogen production,but its widespread deployment is greatly hindered by the indispensable usage of platinum group metal catalysts,especially iridium(Ir)based materials for the energy-demanding oxygen evolution reaction(OER).Herein,we report a new sequential precipitation approach to the synthesis of mixed Ir-nickel(Ni)oxy-hydroxide supported on antimony-doped tin oxide(ATO)nanoparticles(IrNiyO_(x)/ATO,20 wt.%(Ir+Ni),y=0,1,2,and 3),aiming to reduce the utilisation of scarce and precious Ir while maintaining its good acidic OER performance.When tested in strongly acidic electrolyte(0.1 M HClO_(4)),the optimised IrNi1Ox/ATO shows a mass activity of 1.0 mAµgIr^(−1) and a large turnover frequency of 123 s^(−1) at an overpotential of 350 mV,as well as a comparatively small Tafel slope of 50 mV dec^(−1),better than the IrOx/ATO control,particularly with a markedly reduced Ir loading of only 19.7µgIr cm^(−2).Importantly,IrNi1O_(x)/ATO also exhibits substantially better catalytic stability than other reference catalysts,able to continuously catalyse acidic OER at 10 mA cm^(−2) for 15 h without obvious degradation.Our in-situ synchrotron-based x-ray absorption spectroscopy confirmed that the Ir^(3+)/Ir^(4+)species are the active sites for the acidic OER.Furthermore,the performance of IrNi1Ox/ATO was also preliminarily evaluated in a membrane electrode assembly,which shows better activity and stability than other reference catalysts.The IrNi1Ox/ATO reported in this work is a promising alternative to commercial IrO_(2) based catalysts for PEM electrolysis. 展开更多
关键词 mixed oxides oxygen evolution reaction polymer electrolyte membrane antimony doped tin oxide membrane electrode assembly
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部