The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in ...The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave prop- agation are highlighted in high frequency domains. One im- portant result presented herein is the comparison between the first Bloch wave modes to the membrane and bend- ing/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homog- enized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retro- propagating Bloch wave modes with a negative group veloc- ity, and of the corresponding "retro-propagating" frequency bands.展开更多
The clustering behavior of a mono-disperse granular gas is experimentally studied in an asymmetric two-compartment setup. Unlike the random clustering in either compartment in the case of symmetric configuration when ...The clustering behavior of a mono-disperse granular gas is experimentally studied in an asymmetric two-compartment setup. Unlike the random clustering in either compartment in the case of symmetric configuration when lowering the shaking strength to below a critical value, the directed clustering is observed, which corresponds to an imperfect pitchfork bifurcation. Numerical solutions of the flux equation using a modified simple flux function show qualitative agreements with the experimental results. The potential application of this asymmetric structure is discussed.展开更多
文摘The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave prop- agation are highlighted in high frequency domains. One im- portant result presented herein is the comparison between the first Bloch wave modes to the membrane and bend- ing/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homog- enized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retro- propagating Bloch wave modes with a negative group veloc- ity, and of the corresponding "retro-propagating" frequency bands.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11034010 and 11274354)the Chinese Academy of Sciences "Strategic Priority Research Program - SJ-10" (Grant No. XDA04020200)the Special Fund for Earthquake Research of China (Grant No. 201208011)
文摘The clustering behavior of a mono-disperse granular gas is experimentally studied in an asymmetric two-compartment setup. Unlike the random clustering in either compartment in the case of symmetric configuration when lowering the shaking strength to below a critical value, the directed clustering is observed, which corresponds to an imperfect pitchfork bifurcation. Numerical solutions of the flux equation using a modified simple flux function show qualitative agreements with the experimental results. The potential application of this asymmetric structure is discussed.